
Article

A Box-Girder Design Using Metaheuristic Algorithms and
Mathematical Test Functions for Comparison

Károly Jármai 1,* , Csaba Barcsák 2 and Gábor Zoltán Marcsák 3

����������
�������

Citation: Jármai, K.; Barcsák, C.;

Marcsák, G.Z. A Box-Girder Design

Using Metaheuristic Algorithms and

Mathematical Test Functions for

Comparison. Appl. Mech. 2021, 2,

891–910. https://doi.org/10.3390/

applmech2040052

Received: 12 August 2021

Accepted: 18 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515 Miskolc, Hungary
2 EPAM Systems Ltd., 1083 Budapest, Hungary; csaba.barcsak@gmail.com
3 DACHS Hungary Ltd., 1031 Budapest, Hungary; marcsakgabor@gmail.com
* Correspondence: jarmai@uni-miskolc.hu

Abstract: In engineering, metaheuristic algorithms have been used to solve complex optimization
problems. This paper investigates and compares various algorithms. On one hand, the study seeks
to ascertain the advantages and disadvantages of the newly presented heuristic techniques. The
efficiency of the algorithms is highly dependent on the nature of the problem. The ability to change
the complexity of the problem and the knowledge of global optimal locations are two advantages of
using synthetic test functions for algorithm benchmarking. On the other hand, real-world design
issues may frequently give more meaningful information into the effectiveness of optimization
strategies. A new synthetic test function generator has been built to examine various optimization
techniques. The objective function noisiness increased significantly with different transformations
(Euclidean distance-based weighting, Gaussian weighting and Gabor-like weighting), while the
positions of the optima remained the same. The test functions were created to assess and compare
the performance of the algorithms in preparation for further development. The ideal proportions of
the primary girder of an overhead crane have also been discovered. By evaluating the performance
of fifteen metaheuristic algorithms, the optimum solution to thirteen mathematical optimization
techniques, as well as the box-girder design, is identified. Some conclusions were drawn about the
efficiency of the different optimization techniques at the test function and the transformed noisy
functions. The overhead travelling crane girder design shows the real-life application.

Keywords: optimization; benchmarking; test functions; main girder; overhead crane

1. Introduction

It is tough to gauge which optimization algorithm is the most successful. A vari-
ety of novel evolutionary methods have recently surfaced. The performance of a novel
metaheuristic algorithm should be objectively compared to that of previous algorithms
when it is described. A wide range of test routines is provided for creating benchmarks.
Some are entirely new [1]. When available resources are scarce, the optimum approach
is utilized to discover the best solution to a problem. Despite the rapid advancement of
computer science, most optimization issues cannot be addressed by examining all possible
options. NP-hard tasks, such as the Traveling salesman problem (also known as TSP),
may have a large search area that must be thoroughly explored in exponential computing
time. Metaheuristic algorithms can find approximate answers even when the search space
is excessively vast. The efficiency of fifteen optimization methods in identifying global
minima of diverse continuous mathematical test functions is compared in this paper. Math-
ematical function optimization is essential because it can be used to solve most real-world
optimization issues. In the literature there exist numerous mathematical test functions.
A software solution that utilizes a unique method for building bespoke test functions
has also been created. In this paper, first those test functions are introduced which are
used in the evaluation process. A new synthetic test function generator has been built to

Appl. Mech. 2021, 2, 891–910. https://doi.org/10.3390/applmech2040052 https://www.mdpi.com/journal/applmech

https://www.mdpi.com/journal/applmech
https://www.mdpi.com
https://orcid.org/0000-0001-8487-4327
https://doi.org/10.3390/applmech2040052
https://doi.org/10.3390/applmech2040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/applmech2040052
https://www.mdpi.com/journal/applmech
https://www.mdpi.com/article/10.3390/applmech2040052?type=check_update&version=3

Appl. Mech. 2021, 2 892

examine various optimization techniques. The function transformations to make the objec-
tive functions noisier are described using Euclidean distance-based weighting, Gaussian
weighting and Gabor-like weighting. At the same time, the positions of the optima remain
the same. The crane girder optimization shows the applicability of the optimizers for a
real-life problem. The efficiency is different, information which helps users to select the
proper algorithm.

2. Materials and Methods—Benchmark Problems

Several mathematical test functions may be found in the literature, such as in the paper
of Mologa and Smutnicki [2]. The number of variables and the number and distribution of
local extremes affects the complexity of test functions. Continuous test functions with two
variables were investigated because such issues may be represented as 3D surfaces. Table 1
lists the ten test functions that were utilized in alphabetical order. The centre of Ackley’s
function is a massive valley, with a somewhat level outside part. Metaheuristic algorithms
are easily captured by one of the local optima of this frequently used multimodal test
function. The problem scenario is as follows: First we check the efficiency of the algorithms
using the test functions. Then, using function transformations, we make the objective
functions noisier to make the problem-solving more difficult. After that, we use the
optimizers for a real-life problem.

Table 1. The most crucial information about benchmark problems (all functions are minimized, n is the number of
design variables).

Name Definition Search Range and Global Optimum

Ackley’s function (F1) f (x) = −20× exp (−0.2×
√

1
n

n
∑

i=1

(
x2

i
)

−exp(1
n

n
∑

i=1
cos(2πxi)) + 20

+exp(1)

−32.768 ≤ xi ≤ 32.768
xi = 0, i = 1, . . . , n

f (x) = 0 (min)

De Jong’s function (F2) f (x) =
n
∑

i=1
x2

i

−5.12 ≤ xi ≤ 5.12
xi = 0, i = 1, . . . , n

f (x) = 0 (min)

Drop-Wave function (F3) f (x) = −
1+cos (12×

√
x2

1+x2
2)

1
2 (x2

1+x2
2)+2

+ 1

−5.12 ≤ xi ≤ 5.12
xi = 0, i = 1, 2
f (x) = 0 (min)

Easom’s function (F4)
f (x) = −cos cos (x1)× cos cos (x2)×

exp exp (−(x1 − π)2 − (x2 − π)2) + 1

−10 ≤ xi ≤ 10
xi = π, i = 1, 2
f (x) = 0 (min)

Griewangk’s function (F5) f (x) = 1
4000 ×

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

−600 ≤ xi ≤ 600
xi = 0, i = 1, . . . , n

f (x) = 0 (min)

Matyas’ function (F6) f (x) = 0.26× (x2
1 + x2

2)− 0.48× x1 × x2

−10 ≤ xi ≤ 10
xi = 0, i = 1, 2

f (x.) = 0 (min)

Rastrigin’s function (F7) f (x) = 10× n +
n
∑

i=1

[
x2

i − 10× cos(2πxi)
] −5.12 ≤ xi ≤ 5.12

xi = 0, i = 1, . . . , n
f (x) = 0 (min)

Rosenbrock’s valley (F8) f (x) =
n−1
∑

i=1

[
100×

(
xi+1 − x2

i
)2

+ (1− xi)
2
] −2.048 ≤ xi ≤ 2.048

xi = 1, i = 1, . . . , n
f (x) = 0 (min)

Schaffer’s No. 2 function (F9) f (x) = 0.5 + sin2(x2
1−x2

2)−0.5

[1+0.001×(x2
1+x2

2)]2

−10 ≤ xi ≤ 10
xi = 0, i = 1, 2
f (x) = 0 (min)

Three-hump camelback (F10) f (x) = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2

−2.048 ≤ xi ≤ 2.048
xi = 0, i = 1, 2
f (x) = 0 (min)

The benchmark problem of DeJong’s function is unimodal, simple, and convex. The
Drop-Wave function is very complicated when an object is dropped into a liquid surface,
increasing ripples. Similar to De Jong’s function, Easom’s function is unimodal, but
it is more challenging since the global optimum is small concerning the search space.
Griewangk’s function has a rough surface with numerous equally scattered local optima,

Appl. Mech. 2021, 2 893

similar to De Jong’s function. Matyas’ function is a plate-shaped issue with no local
extremes and just one global extreme, which is very simple to locate.

Convergence to the global optimum is challenging, making it an excellent benchmark
for assessing the accuracy and pace of convergence of search algorithms. The egg holder, or
Rastrigin’s function, is a widely used, highly multimodal issue with regularly distributed
local extremes. In Rosenbrock’s valley, which is unimodal, the global minimum may be
located in a small, parabolic valley. Schaffer’s test function is quite noisy, having many
local optima that are very close to each other. Finally, the Three-hump camelback resembles
the Rosenbrock Valley in look, but with two local extremes.

The minimum and maximum values of the variables are the Searchspace (min) and
(max) in the pseudocodes of the different algorithms.

3. Composition of Test Functions

Liang et al. [3] proposed a novel theoretical method for deriving more complex test
functions from simpler ones. The idea behind creating a composition of functions is that
the weighted sum of a few simple basic functions with a known optimum may quickly
provide severe test challenges for heuristic algorithms. We may create a broad range of test
issues using the composition of functions since the kind and quantity of essential functions
can be dynamically defined. Barcsák and Jármai [4] have developed a realistic framework
that builds on the previous concept. A software solution has been created that uses the
practical base to efficiently create customized, arbitrarily complicated test problems.

3.1. Theoretical Method

In order to create arbitrarily elaborate and sophisticated test functions, the method
requires a large number of input parameters:

• Xmin, Xmax
D: search range of the complex function;

• D: number of dimensions;
• f i(θ): list of basic functions, where θ ∈ RD;
• xmin, xmax

D: search range of the basic functions;
• oi: the global optimum position for the i-th basic function;
• bias: a vector that identifies the global best solution. This allows the user to change

the basic functions’ optimal values. A vector to define the global optimum.

The values of the global optimum points of the basic function must be actually un-
changed in order to specify the position of global and local optima. To accomplish this, the
fundamental functions must be evaluated outside of the search range specified. As a result,
the global optimal placements of the core functions must be independent of the search
range. The complicated test functions can be determined using the following equations:

F(θ) = ∑
[

wi

(
fi(ϑi)

fi(oi)
+ biasi

)]
(1)

ϑi =
θ −

(
Xmin − xmini κi + ψi

)
κi

, κi =
Xmax − Xmin
xmaxi − xmini

(2)

where ψi is the shifting vector and the weighting function wi guarantees that the preset
ideal placements and values are maintained; nevertheless, the first function has the most
significant weighting number, while the others have equal or smaller weighting numbers.
The higher the weighting coefficient, the closer the solution comes to locating the global
optimal location (oi) of a basic function. The weighting coefficients of the other fundamen-
tal function(s) are decreased at the same time. Weighting functions were used in three
different ways.

Appl. Mech. 2021, 2 894

3.1.1. Euclidean Distance-Based Weighting

The first weighting function uses the Euclidean distance between the provided point
of the complex function (ϑ.) and the optimum locations (oi) of the basic function.

wi = Euclideandistance(ϑi, oi) (3)

The following are the normalized distances:

wi =
wi

∑ w
(4)

where ∑ w means the sum of the weightings

wi = 1− wi (5)

If wi 6= max(w), and n is the number of basic functions:

wi =
1−max(w)

(n− 1)
(6)

3.1.2. Gaussian Weighting

Using Gaussian functions to derive weighting factors can result in smoother edges.

wi = e
(ϑi−oi)

2

6 (7)

3.1.3. Gabor Weighting

If the weighting function introduces noise, more difficult optimization issues may
arise. It is critical, however, not to stray from the original optimal settings. The weighting
function should return values between 0 and 1, with its global maxima located at the global
optimum of the complicated function.

wi =

∣∣∣∣∣∏k
cos(ϑi(k)τ1)e

−∑k ϑi(k)
2

τ2

∣∣∣∣∣ (8)

where ϑi(k) is the k-th element of the ϑi. vector, τ1 is the parameter for noise, and τ2 is the
range of convergence. Increasing the τ1 parameter, more noise will occur. If wi 6= max(w),
and n is the number of basic functions:

wi =
1−max(w)

(n− 1)
(9)

3.2. Practical Example

A complicated test function was created to show the strategy and increase the number
of benchmark issues utilized in this research (Figure 1). The parameters for input are
as follows:

• [Xmin, Xmax]
D: The search area of the complicated function is [−10, 10]D

• D: dimension count is 2
• fi(θ): 7 basic functions have been used; all of them are Ackley functions (F1).
• [xmin, xmax]

D : There is no need to define the search range of the basic functions
because the optimal locations have been shifted.

• o(x): the x coordinates for optima of the basic functions: [7.5; 5; 5; 0; −7.5; −5; 0]
• o(y): the y coordinates for optima of the basic functions: [0; 5; −5; −5; 0; 5; 0]
• Bias: a vector to shift the basic functions: [3; 1; 2; 0.5; 1; 4.5; 0]

Appl. Mech. 2021, 2 895
Appl. Mech. 2021, 2, FOR PEER REVIEW 5

Name Surface Plot Contour Plot

Complex function
with Euclidean
distance-based
weighting (F11)

(a) (b)

Complex function
with Gaussian

weighting (F12)

(c) (d)

Complex function
with Gabor-like
weighting (=3, = 8) (F13)

(e) (f)

Figure 1. Surface and contour plots of complex benchmark problems. (a) Surface plot of complex
function with Euclidean distance-based weighting; (b) Contour plot of complex function with
Euclidean distance-based weighting; (c) Surface plot of complex function with Gaussian
weighting; (d) Contour plot of complex function with Gaussian weighting; (e) Complex function
with Gabor-like weighting (τ1 = 3, τ2 = 8); (f) Contour plot of Complex function with Gabor-like
weighting (τ1 = 3, τ2 = 8).

3.3. Novel Software Solution to Easily Generate Complex Test Functions
Using the framework described above, a software solution has been built that makes

it simple to create customized arbitrarily severe test tasks. The application operated on
the NET Framework and was developed entirely in C#. The most pleasing aspect of the
software is the automated source code creation. The machine generates the C# source code
for the complicated function while the user builds it in a visual editor. As a consequence,
the newly created optimization issue may be used right away.

4. Main Characteristics of Metaheuristic Algorithms
As previously stated, metaheuristic algorithms benefit from identifying

approximation answers even when the search space is incredibly vast. However,
obtaining the global optimum cannot be guaranteed because they do not consider all

Figure 1. Surface and contour plots of complex benchmark problems. (a) Surface plot of complex function with Euclidean
distance-based weighting; (b) Contour plot of complex function with Euclidean distance-based weighting; (c) Surface plot
of complex function with Gaussian weighting; (d) Contour plot of complex function with Gaussian weighting; (e) Complex
function with Gabor-like weighting (τ1 = 3, τ2 = 8); (f) Contour plot of Complex function with Gabor-like weighting (τ1 =
3, τ2 = 8).

3.3. Novel Software Solution to Easily Generate Complex Test Functions

Using the framework described above, a software solution has been built that makes
it simple to create customized arbitrarily severe test tasks. The application operated on
the NET Framework and was developed entirely in C#. The most pleasing aspect of the
software is the automated source code creation. The machine generates the C# source code
for the complicated function while the user builds it in a visual editor. As a consequence,
the newly created optimization issue may be used right away.

4. Main Characteristics of Metaheuristic Algorithms

As previously stated, metaheuristic algorithms benefit from identifying approxima-
tion answers even when the search space is incredibly vast. However, obtaining the global

Appl. Mech. 2021, 2 896

optimum cannot be guaranteed because they do not consider all alternative options. Meta-
heuristic algorithms improve computer performance, but accuracy may suffer as a result.

A suitable metaheuristic algorithm must be used to maintain the balance between
local and global searches. On the one hand, it must do a thorough investigation of the
whole search region; on the other hand, it must conduct a quick search around the current
best places. In other words, instead of wasting time in low-quality areas, the aim is to
discover regions with high-quality solutions quickly. The majority of heuristic algorithms
exhibit stochastic behaviour. Even if the final responses differ somewhat they should, in
principle, converge to the optimum solution for the particular issue.

However, due to the stochastic nature of metaheuristic algorithms, the approach
used to arrive at a solution is always a bit different. Many nature-inspired metaheuristic
algorithms have emerged based on the behavior of biological and physical systems. Fifteen
optimization techniques were investigated, including evolutionary (Cultural Algorithm,
Differential Evolution, Memetic Algorithm), physical (Harmony Search, Simulated Anneal-
ing, Cross-Entropy Method), swarm intelligence (Bacterial Foraging, Bat Algorithm, Bees
Algorithm, Cuckoo Search, Firefly, Particle Swarm and Multi-Swarm Optimization), swarm
intelligence (Bacterial Foraging, Bat Algorithm, Bees Algorithm, Cuckoo Search, Firefly,
Particle Swarm and Multi-Swarm Optimization) and other methods such as Nelder—Mead
and Random Search.

Some of the innovative approaches that have been created are Virus optimization [1],
Dynamic differential annealed optimization [5], Hybrid multi-objective optimization [6],
or Big bang–big crunch algorithm [7], and Water evaporation optimization [8]. The perfor-
mance of mixed metaheuristic algorithms can be improved [9]. Multi-objective evolutionary
algorithms are necessary when there are several objective functions [10–12]. Brownlee
describes various metaheuristic algorithms in his book [13].

Benchmarked Metaheuristic Algorithms

Liu and Passino [14] initially described and published the Bacterial Foraging Opti-
mization Algorithm (BFOA) in 2002. It is a recently developed swarm intelligence search
method. These techniques rely on the collective intelligence of a group of people who
are all similar. In theory, a single organism may not be able to solve a problem on its
own. However, if a group of individuals develops, the combined intellect of the group
may be adequate to finish the task. The foraging and reproductive behavior of E. coli
bacteria colonies provide the basis for Bacterial Foraging. The chemotaxis movement of the
group is focused on obtaining vital nutrients (global optimum) while avoiding potentially
hazardous surroundings (local optima).

Yang [15], a swarm intelligence metaheuristic method based on bat echolocation,
published the Bat Algorithm (BATA) in 2010. Bats can find and identify prey (global
optimum) and avoid obstacles using echolocation even in total darkness (local optima).
Similar to sonar, bats produce a sound pulse and listen for the echo that returns from
the surroundings. During the search, the frequency, volume, and rate of emission of the
individual sound, which indicates the position of the prey, varies, alerting other bats. The
loudness of the sound the bat makes decreases as it comes closer to the prey, but the rate at
which it emits pulses rises. The Bat Algorithm combines the advantages of Particle Swarm
Optimization and the Firefly Algorithm, two current swarm intelligence techniques.

The Bees Algorithm (BA) was published in 2005 by Pham et al. [16]. It was developed
mainly to determine the global optimum of continuous mathematical functions. It falls
within the swarm intelligence technique category. The Bees Algorithm was inspired by
honey bee foraging activity, as the name suggests. Bee colonies send out scout bees to
explore the surroundings and find nectar-rich spots (global or local optima). When the
scout bees return to the hive, they inform the worker bees about the location and quality
of food sources. The number of worker bees dispatched to each food source is influenced
by these parameters. Scout bees are always on the hunt for appropriate locations, while
worker bees inspect those that have already been found.

Appl. Mech. 2021, 2 897

On the other hand, Scout bees are in charge of global search, whilst worker bees are in
charge of local search. Both Ant Colony and Particle Swarm Optimization are equivalent
approaches. Bees, on the other hand, have a hierarchy of their own. The Bees Algorithm
may be used to tackle both continuous and combinatorial optimization problems.

In 1997, Rubinstein [17] introduced the Cross-Entropy Method (CEM), a probabilistic
optimization method. The method gets its name from the Kullback—Leibler cross-entropy
divergence, a similarity measure between two probability distributions. The Cross-Entropy
Method is an adaptive significance estimate approach for rare-event probability in discrete
event simulation systems. Optimization problems are classed as rare-event systems because
the likelihood of discovering an optimal solution via a random search is a rare event
probability. The approach modifies the random search sample distribution to make the
improbable occurrence of finding the optimal solution more likely.

The Cuckoo Search (CS) Algorithm was created and published by Yang and Deb [18]
in 2009. The algorithm was inspired by the brood parasitism of certain cuckoo species,
which means they lay their eggs in the nests of other host species. If the host birds discover
the foreign eggs are not their own, they can either reject them or leave the existing nest
and create a new one somewhere else. The method randomly distributes a fixed number
of nests over the search space. The cuckoos lay their eggs one at a time in a nest that they
choose at random. A cuckoo egg symbolizes a unique solution, and each egg in a nest
represents a solution. The algorithm aims to find a new, perhaps better solution (global
optimum) to replace the faulty one (local optima). The members of the next generation will
come from the best nests with the best eggs.

The Cultural Algorithm (CA) was created by Reynolds [19] and published in 1994.
This evolutionary algorithm depicts the progression of cultural evolution for human society.
The habits, beliefs, and values of an individual make up their culture. Culture may have a
beneficial or detrimental impact on the environment due to feedback loops. This creates
a knowledge base of both good and potentially harmful input about large areas of the
environment (the global optimum) (local optima). Generations build and use this cultural
knowledge base as circumstances change.

The Differential Evolution (DE) technique, developed by Storn and Price [20], was
published in 1995 and was part of the field of evolutionary algorithms. Natural selection
is the central tenet of Darwin’s Theory of Evolution, founded on natural selection. The
method maintains a population of potential solutions throughout generations by recombi-
nation, assessment, and selection. Recombination generates a new viable solution based on
the weighted difference between two randomly selected population members connected to
a third population member.

Yang [21] developed and published the Firefly (FF) Technique, a multimodal optimiza-
tion metaheuristic algorithm inspired by nature. The flashing behavior of fireflies to engage
with other fireflies was the inspiration for the software. Bioluminescence, a biological
process that causes flashing lights, may be utilized to attract both potential mates and prey.
It can also be used as an early warning system. The speed with which the light flashes and
the intensity with which it flashes are essential communication components. The flashing
light can be linked to the goal function that has to be improved. As it comes closer to the
proper solution, a firefly will produce more light. The less luminous fireflies will flock to
the more dazzling ones. The attraction of a firefly is proportional to its brightness, which
diminishes as the distance between them rises. The firefly will travel at random if there
are no other glowing fireflies in the vicinity. The Firefly Algorithm is more adaptable to
changes in attractiveness than other algorithms, such as Particle Swarm Optimization, and
its visibility may be changed. To improve efficiency, the technique has undergone several
substantial adjustments [22].

Harmony Search (HS) was released in 2001 by Geem et al. [23]. It was influenced
by the improvisation of jazz musicians. When they begin a musical performance, they
adjust their songs to the band, resulting in vocal harmony. When a phoney sound is heard,
each group member modifies their behavior to improve their performance. The musicians

Appl. Mech. 2021, 2 898

regard harmony as a full possible answer, and they seek balance through minor changes
and improvisation. The aesthetic appreciation of the audience for harmony represents
the cost function. Similar to the Cultural Algorithm, the candidate solution components
are either stochastically generated directly from the memory of high-quality solutions,
changed from the memory of high-quality solutions, or allocated randomly.

In 1989, Moscato [24] invented the Memetic Algorithm (MA). The program mimics
the generation of cultural information and its transmission from one person to another.
The basic unit of cultural knowledge is the meme, which is derived from the biology word
gene (an idea, a discovery, etc.). Universal Darwinism is the expansion of genes beyond
biological systems to any system where discrete bits of information may be transmitted
and subjected to evolutionary change. The objective of the algorithm is to conduct a
population-based global search while individuals do local searches to locate appropriate
locations. A balance between global and local search strategies is vital to guarantee that the
algorithm does not become trapped in a local optimum while saving computing resources.
A meme is a piece of information about the search that is passed down from generation to
generation and has an evolutionary impact. Genetic and cultural evolution approaches are
combined in the Memetic Algorithm.

The Nelder-Mead (NM) algorithm was called after Nelder and Mead [25], who intro-
duced this metaheuristic approach in 1965. In the literature, the method is referred to as the
Amoeba Method [26]. Nelder—Mead is a simplex search technique that employs a nonlin-
ear optimization approach. The method produces a set of randomly generated candidate
solutions, each with its unique fitness function value. Their fitness rates the options, and
with each generation the algorithm tries to replace the poorest answer with a better one.
The three options for the optimal solution are the reflected point, the extended point, and
the contracted point. All of these locations are in a line, from the most inconvenient to the
centroid. The centroid, with the exception of the worst point, is at the center of all points.
If neither of the locations is better than the current worst solution, the amoeba moves all
points halfway to the best point except the best location.

Particle Swarm Optimization (PSO), a swarm intelligence metaheuristic algorithm
created by Eberhart and Kennedy [27], was first implemented in 1995. The foraging
behavior of bird and fish swarms was the inspiration for the function of Particle Swarm.
The particles of the swarm move throughout the search area, looking for places with a long
history. The best-known position of each particle as well as of the swarm impact their new
position. The mathematical techniques used by the movement determine the new particle
velocity and position, guiding the swarm to the global optimum. In each generation, the
process is repeated, with random impacts on particle mobility. On the development and
application of PSO, several articles [28–30] have been published.

Multi-Swarm Optimization is a subset of Particle Swarm Optimization (PSO) (MSO).
Instead of a single swarm, MSO uses a user-defined number of swarms to find the global
optimum [31]. The technique is particularly effective for multimodal optimization prob-
lems involving a large number of local optima. Multi-Swarm Optimization [32] is a new
approach for optimizing the global and local search balance.

As the name indicates, the Random Search (RS) algorithm is a basic random search
method. It has an identical chance of landing in any place in the search space [33]. New
solutions are always distinct from those that came before them. Random search provides a
candidate solution building and assessment approach.

The Simulated Annealing (SA) approach was described and published by Kirk-
patrick [34] in 1983. The functioning of the algorithm is based on a physical phenomenon.
Certain materials develop beneficial characteristics when heated and subsequently cooled
under controlled circumstances in metallurgy. During the process, the crystal structure of
the material changes as the particles pick more advantageous locations. The metaheuristic
algorithm, which seeks for better solutions to a given issue, mimics this process. Each
algorithm result is a representation of the energy state of the system. The Metropolis-
Hastings Monte Carlo method controls the acceptance of the new location. The sample

Appl. Mech. 2021, 2 899

acceptance criteria are tightened as the system cools, focusing on increasing mobility. The
size of the neighbourhood used to generate candidate solutions might change over time
or be impacted by temperature, beginning large and narrowing as the algorithm is run.
A basic linear cooling regime is used with a high beginning temperature that is steadily
lowered with each repetition. If the cooling phase is long enough, the system should always
converge to the global optimum. The continuous version of the technique was created by
Corana et al. [35]. It is currently being improved in order to improve its performance [36].

List of the tuning settings for the various techniques are shown in Table 2. Theses
values are generally sufficient, but as the number of unknowns grows and the constraints
become increasingly nonlinear, some changes are necessary.

Table 2. List of the tuning settings for the various techniques *.

Algorithm Name of the Parameter Value of the Parameter

Bacterial Foraging Algorithm (BFOA)

Cellsnum 50
Ned 4
Nre 5
Nc 25
Ns 10

Stepsize 0.05
Ped 0.25

Bat Algorithm (BATA)

PopulationSize 40
Loudness 0.5
PulseRate 0.5
Frequency 2

Bees Algorithm (BA)

Beesnum 50
Sitesnum 3

EliteSitesnum 1
PatchSizeinit 3

OtherBeesnum 2
EliteBeesnum 7

Cross-Entropy Method (CEM)
Samplesnum 50

UpdateSamplesnum 5
Learnrate 0.7

Cuckoo Search Algorithm (CS) NestSize 40
DiscoveryRate 0.25

Cultural Algorithm (CA) Populationnum 50

Differential Evolution (DE)
Populationsize 50

Weightingfactor 0.8
Crossoverrate 0.9

Firefly Algorithm (FF) PopulationSize 40
Gamma 1

Harmony Search (HS)
Memorysize 50

Consolidationrate 0.95
PitchAdjustrate 0.7

Memetic Algorithm (MA) Populationsize 50
MemePopsize 16

Multi-Swarm Optimization (MSO)

NumberOfSwarms 3
c3 0.3645

death 0.005
immigrate 0.005

Nelder—Mead Algorithm (NM) Amoebasize 20

Random Search (RS) Populationsize 50

Particle Swarm Optimization (PSO)

Populationsize 50
W weighting factor 0.729

C1 cognitive learning coefficient 1.49445

C2 social learning coefficient 1.49445

Simulated Annealing (SA) temp_change
Tempmax

0.995
Searchspace (max)-Searchspace (min)

* According to Table 1, the Searchspace (min) (max) refers to the min and max values of the variables.

The internal parameters of each algorithm have been set from the literature and from
our own experiences. There are newer techniques also available to improve the efficiency
of the optimization, such as Arithmetic Optimization [37], the newly published Aquila
Optimizer [38] and some new comparisons which were made [39].

Appl. Mech. 2021, 2 900

5. Numerical Experiments

It is a time-consuming and challenging process to compare metaheuristic optimization
approaches. Because the algorithms are stochastic, statistical techniques were used to
produce relevant results. Each test function was subjected to 100 Monte Carlo searches by
the metaheuristic algorithms. This implies that the computed 100 were chosen at random
from a large pool of possibilities. The maximum number of iterations for each search was
set at 500. It is clear that maximizing iteration number is not the best option to make good
comparisons. However, we found that in most cases, the optimizers were close enough to
the optima to be comparable. It was built in the same way as the other F1–F13 test functions.

5.1. Statistical Results

In the statistics tables, the performance of algorithms at various test functions is summarized
(Tables 3 and 4). The specified method(s) yielded the best results (shown in bold letters). Table 4
also shows the number of function evaluations for the Rastrigin function (F7). The techniques
differ, even though the runtimes and number of function evaluations are nearly proportional. The
Harmony Search (HS) needed the fewest function evaluations, whereas the Memetic Algorithm
(MA) required the most. Only a few function evaluations were necessary for the Nelder—Mead
Algorithm (NM), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Random
Search (RS), and Nelder—Mead Algorithm (NM). It was built in the same way as test functions
F1 through F13.

Table 3. Fitness values after 500 iterations and 100 Monte Carlo runs for the Ackley function (F1).

Mean Fitness Best Fitness Worst Fitness Standard Deviation Average Runtime
(ms)

BFOA 0.003284 0.000541 0.007118 0.001593 28.88
BATA 3.04138 0.000254 12.55774 2.833844 15.34

BA 8.84 × 10−12 1.61 × 10−12 2.24 × 10−11 4.3 × 10−12 24.81
CEM 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0 143.95

CS 4.21 × 10−15 4.44 × 10−16 1.25 × 10−13 1.32 × 10−14 63.29
CA 0.500321 4.44 × 10−16 6.88414 1.159808 48.54
DE 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0 17.35
FF 1.08 × 10−5 7.58 × 10−7 2.83 × 10−5 6.15 × 10−6 491.88
HS 2.791707 0.006343 6.884312 1.665716 3.42
MA 0.37983 0.002013 3.512875 0.882168 1954.37

MSO 8.35 × 10−16 4.44 × 10−16 7.55 × 10−15 1.23 × 10−15 52.64
NM 2.52 × 10−16 6.85 × 10−7 6.53 × 10−6 1.21 × 10−6 2.03
PSO 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0 19.57
RS 0.768881 0.015493 2.272974 0.526217 36.65
SA 0.019018 1.11 × 10−6 1.900706 0.190069 45.29

Table 4. Fitness values after 500 iterations and 100 Monte Carlo runs for the Rastrigin function (F7). Numbers of function
evaluations are also given.

Mean Fitness Best Fitness Worst Fitness Standard
Deviation

Average
Runtime (ms)

Number of
Function

Evaluations

BFOA 0.001832 1.06 × 10−5 0.009678 0.002044 27.22 132,289
BATA 0.378383 3.96 × 10−8 1.989938 0.54349 15.09 18,010

BA 1.14 × 10−14 3.55 × 10−15 2.06 × 10−13 2.29 × 10−15 22.33 26,565
CEM 0.017501 3.55 × 10−15 0.778653 0.103756 142.54 100,200

CS 1.23 × 10−13 3.55 × 10−15 2.81 × 10−12 3.57 × 10−13 60.99 150,140
CA 0.631063 3.55 × 10−15 4.017563 0.672397 46.39 65,102
DE 3.15 × 10−13 3.55 × 10−15 6.11 × 10−12 8.25 × 10−13 16.49 10,020
FF 0.001274 1.16 × 10−12 0.019729 0.003574 455.5 117,501
HS 0.335195 0.000101 1.995724 0.541824 3.32 540
MA 0.170291 2.42 × 10−6 2.473278 0.449167 1928.07 546,620

MSO 3.65 × 10−13 3.55 × 10−15 4.59 × 10−12 7.13 × 10−13 50.09 52,011
NM 0.766118 3.55 × 10−14 4.97479 0.914905 2.04 1765
PSO 1.03 × 10−12 3.55 × 10−15 2.92 × 10−11 3.6 × 10−13 16.88 5010
RS 0.15041 0.001012 0.555862 0.132872 30 5010
SA 2.5 × 10−10 1.6 × 10−12 1.27 × 10−9 2.37 × 10−10 37.31 5010

Appl. Mech. 2021, 2 901

Table 5 summarizes the algorithms’ efficiency and dependability. Data from each
row are normalized so that the lowest value is 0 and the maximum value is 100. These
are the average minima discovered by 100 Monte Carlo simulations, not the absolute
minima discovered by each procedure. The global optima of the various test functions are
listed in Table 1.

Table 5. For thirteen benchmark functions, the average normalized optimization results were obtained.

BFOA BATA BA CEM CS CA DE FF HS MA MSO NM PSO RS SA

F1 0.11 100.00 0 0 0 16.45 0 0 91.79 12.49 0 0 0 25.28 0.63
F2 0.01 0 0 0 0 100.00 0 0 48.51 1.57 0 0 0 5.36 0
F3 2.82 100.00 0 14.67 0 47.96 0.17 0.02 76.81 13.93 0 63.26 0 27.15 50.81
F4 0 67.91 3.05 0 0 11.78 75.26 18.81 62.98 60.31 0 100.00 0 1.68 3.33
F5 100.00 31.93 0 0.43 0 4.38 0.01 0.03 40.28 1.90 0 3.55 0.11 8.03 28.69
F6 0 0 0 0 0 13.84 2.50 0 100.00 35.87 0 0 0 0.86 0.03
F7 0.24 49.39 0 2.28 0 82.37 0 0.17 43.75 22.23 0 100.00 0 19.63 0
F8 0.03 0 4.65 0 0.24 100.00 0.11 0 86.60 32.11 0 0 0 2.63 0
F9 100.00 65.45 0 0 0 21.40 0.01 0 48.21 7.25 0 76.73 0 3.92 23.27
F10 0.02 100.00 0 0 0 16.45 0 0 2.74 1.13 0 0 0 1.53 0
F11 1.86 76.03 0 0 0 100.00 0 0.31 83.33 36.74 0 54.40 3.40 27.87 0
F12 3.07 56.07 0 0.84 0 83.39 0 0.22 46.27 12.23 0 100.00 5.79 14.01 0.20
F13 0.29 59.48 0 1.18 0 100.00 0 2.99 49.47 16.54 0 42.93 9.99 22.29 0
Σ 2 3 11 8 12 0 7 6 0 0 13 5 9 0 6

In Figure 2, convergence plots were used to assess the rate of convergence of search
algorithms. The responses are normalized from 0 to 100, with 0 representing the best and
100 representing the worst. The convergence rate measures how quickly metaheuristic
algorithms can find the best solution. The data points represent the best fit in each iteration
as averaged over 100 Monte Carlo simulations. The efficiency of the algorithms is shown
in Figure 2. The top five best performance algorithms are listed below (the number denotes
the number of solutions found for the 13 test functions):

Multi-Swarm Optimization (MSO) (13)
Cuckoo Search Algorithm (CS) (12)
Bees Algorithm (BA) (11)
Particle Swarm Optimization (PSO) (9)
Cross-Entropy Method (CEM) (8)

5.2. Assessment of Benchmark Results, Algorithms’ Strengths and Weaknesses

We used fifteen distinct search methods to answer the thirteen benchmark tasks.
Unimodal and multimodal issues with varying numbers and distributions of local extremes,
as well as unimodal and multimodal problems with varying numbers and distributions of
local extremes, were among the aspects of the test functions. Using the software that was
built, three challenging benchmark tasks were generated. After analyzing a considerable
amount of statistical data, overall performance of the algorithms became apparent. Figure 2
demonstrates the advantages of swarm intelligence techniques. Multi-Swarm Optimization
was used to find the global optima in every case (MSO).

On the other hand, even for complicated and noisy functions, Cuckoo Search (CS)
and the Bees Algorithm (BA) almost always found the global optima. The Cross-Entropy
Method (CEM) and Particle Swarm Optimization (PSO) were less reliable, but they were
still highly efficient. In addition, the Cross-Entropy Method and Simulated Annealing
(SA) worked excellently; nevertheless, they occasionally remained trapped in local optima.
Increasing the number of iterations to enhance the performance of slowly convergent
algorithms (HS, SA), convergence charts in Figure 2 show how fast things are coming
together. The best algorithms have a rapid convergence rate, which has been shown to be
crucial for success.

Appl. Mech. 2021, 2 902

Appl. Mech. 2021, 2, FOR PEER REVIEW 12

in Figure 2. The top five best performance algorithms are listed below (the number
denotes the number of solutions found for the 13 test functions):

Multi-Swarm Optimization (MSO) (13)
Cuckoo Search Algorithm (CS) (12)
Bees Algorithm (BA) (11)
Particle Swarm Optimization (PSO) (9)
Cross-Entropy Method (CEM) (8)

Name Convergence Plot

(a) Ackley’s
function (F1)

(b) Complex
function with

Euclidean
distance-based
weighting (F11)

(c) Complex
function with

Gaussian
weighting (F12)

Figure 2. Cont.

Appl. Mech. 2021, 2 903Appl. Mech. 2021, 2, FOR PEER REVIEW 13

(d) Complex
function with

Gabor-like
weighting (=3, = 8) (F13)

Figure 2. Convergence plots for Ackley (F1) and Complex (F11. F12. F13) functions. (a) ackley’s function; (b) complex
function with Euclidean distance-based weighting; (c) complex function with Gaussian weighting; (d) complex function
with Gabor-like weighting (τ1 = 3.τ2 = 8).

5.2. Assessment of Benchmark Results, Algorithms’ Strengths and Weaknesses
We used fifteen distinct search methods to answer the thirteen benchmark tasks.

Unimodal and multimodal issues with varying numbers and distributions of local
extremes, as well as unimodal and multimodal problems with varying numbers and
distributions of local extremes, were among the aspects of the test functions. Using the
software that was built, three challenging benchmark tasks were generated. After
analyzing a considerable amount of statistical data, overall performance of the algorithms
became apparent. Figure 2 demonstrates the advantages of swarm intelligence techniques.
Multi-Swarm Optimization was used to find the global optima in every case (MSO).

On the other hand, even for complicated and noisy functions, Cuckoo Search (CS)
and the Bees Algorithm (BA) almost always found the global optima. The Cross-Entropy
Method (CEM) and Particle Swarm Optimization (PSO) were less reliable, but they were
still highly efficient. In addition, the Cross-Entropy Method and Simulated Annealing
(SA) worked excellently; nevertheless, they occasionally remained trapped in local
optima. Increasing the number of iterations to enhance the performance of slowly
convergent algorithms (HS, SA), convergence charts in Figure 2 show how fast things are
coming together. The best algorithms have a rapid convergence rate, which has been
shown to be crucial for success.

According to the convergence charts, the weighting functions have a considerable
influence on the complexity of complicated functions. According to the mean fitness
function values, the complex function with Euclidean distance-based weighting (F11) was
more challenging to solve than the simple function (F1). Using the Gaussian weighting
function, on the other hand, resulted in smoother edges, reducing the number and
distribution of local extremes, making it easier for search engines to identify the global
optima. The Complex function with Gabor-like weighting was arguably the most
challenging test function since the weighting function produced so much noise.

The best method in this test case was Multi-Swarm Optimization, although its
solution was inferior to Euclidean distance-based weighting. Finally, complicated
functions with varying weightings have proven to be significant benchmark difficulties.

6. Determining the Optimal Dimensions of the Main Girder of an Overhead
Travelling Crane

The overhead crane is one of the most widely used forms of lifting equipment in
modern industry. The main purpose of the crane is to handle and transport large loads
from one area to another. In addition to lifting large objects, it is capable of short-term
horizontal movement, servicing an area of floor space within its travel limitations.

1E-16

1E-13

1E-10

1E-07

1E-04

1E-01

1E+02
0 50 100 150 200 250 300 350 400 450

M
ea

n
fit

ne
ss

 v
al

ue

Number of generations

BFOA BATA BA CEM CS CA DE FF

HS MA MSO NM PSO RS SA

Figure 2. Convergence plots for Ackley (F1) and Complex (F11. F12. F13) functions. (a) ackley’s function; (b) complex function with
Euclidean distance-based weighting; (c) complex function with Gaussian weighting; (d) complex function with Gabor-like weighting
(τ1 = 3, τ2 = 8).

According to the convergence charts, the weighting functions have a considerable in-
fluence on the complexity of complicated functions. According to the mean fitness function
values, the complex function with Euclidean distance-based weighting (F11) was more
challenging to solve than the simple function (F1). Using the Gaussian weighting function,
on the other hand, resulted in smoother edges, reducing the number and distribution of
local extremes, making it easier for search engines to identify the global optima. The Com-
plex function with Gabor-like weighting was arguably the most challenging test function
since the weighting function produced so much noise.

The best method in this test case was Multi-Swarm Optimization, although its solution
was inferior to Euclidean distance-based weighting. Finally, complicated functions with
varying weightings have proven to be significant benchmark difficulties.

6. Determining the Optimal Dimensions of the Main Girder of an Overhead
Travelling Crane

The overhead crane is one of the most widely used forms of lifting equipment in
modern industry. The main purpose of the crane is to handle and transport large loads
from one area to another. In addition to lifting large objects, it is capable of short-term
horizontal movement, servicing an area of floor space within its travel limitations.

In manufacturing and logistics, where productivity and downtime are important,
overhead cranes are widely used. They may transport items between factories, warehouses,
and rail and port freight yards. The parallel runways of the crane are usually supported
by steel or concrete columns or the reinforced walls of the facility. Moreover, because the
bridge construction is elevated above ground level, it only takes up a small quantity of
valuable real estate. The distance between the runways is bridged by a moving bridge,
which may roll on its powered wheels. With the trolley, the lifting component of the crane,
known as the hoist, moves along the bridge rails.

The girder, the principal load-bearing component of the structure, is a critical compo-
nent of the travelling bridge. In terms of girder count, single and double girder structures
are the most prevalent. The girders are usually composed of structural steel. The dimen-
sions of the primary girder must be established during the planning stage of the crane. To
keep production and running costs low, the dead weight of the girder must be maintained
to a minimum. The bridge crane, on the other hand, must be able to operate consistently
throughout its lifetime [40]. Excessive use of safe coefficients can lead to material waste
and energy consumption, among other things [41].

This study improved a double-welded box type girder made of a structural steel
plate. For an overhead crane, the main girders optimization is a nonlinear, constrained
optimization problem. The penalty function approach was used to determine the optimum

Appl. Mech. 2021, 2 904

solution. To solve optimization challenges for robotic arm design, several methods with
penalty functions were employed [42].

6.1. The Optimum Design Mathematical Model

A mathematical model of optimization should be supplied to address the mean girder
design problem of the overhead crane. All of the choice variables, constraints, and goal
functions have been determined.

6.1.1. Decision Variables

Four variables, h, tw
2 , b, t f [43], can be used to characterize the dimensions of the

double-welded box-type girders of the overhead crane. Figure 3 illustrates this.

Figure 3. The decision variables of the design problem. (a) The cross section (b) The whole structure
with loadings and deformation.

6.1.2. Constraints

On the four decision variables, min and max limits must be determined (Constraints
F1, F2, F3, F4):

300 mm ≤ h ≤ 2000 mm

4 mm ≤ tw

2
≤ 50 mm

300 mm ≤ b ≤ 1200 mm

4 mm ≤ t f ≤ 50 mm

The fatigue (Constraint F5) constraint is defined by Eurocode 3 [44]

∆σ =
Mq

4Wx
≤ ∆σn

γM f
(10)

Mq = ψd
F

2L

(
L− k

2

)2
(11)

Wx =
2Ix(

h + t f

) (12)

Ix =
h3 tw

2
12

+ 2b
t3

f

12
+ 2bt f

(
h
2
+

t f

2

)2
(13)

where Mq is the varying bending moment, ψd is a dynamic factor, F is the varying vertical
load, L is the span length of the main girder. k is the length of the trolley, Wx is the elastic
section modulus, Ix is the moment of inertia, ∆σn is the fatigue stress range corresponding

Appl. Mech. 2021, 2 905

to the given cycles of N (N = 3× 106 and γM f is a safety factor (according to Eurocode
3 [44], γM f = 1.35.

The static stress (Constraint F6) is calculated as follows:

σmax =
Ms

Wx
≤

fy

γM1
(14)

Ms =
γGL2

8
(

Aρg + gj + gs
)
+ γG

G1L
4

(15)

where Ms is the static stress, fy is the yield stress, γM1, γG are safety factors, A is the cross-
sectional area (A = htw + 2bt f), ρ is the volumetric mass density, g is the gravitational
acceleration, gj is the uniform vertical load on the sidewalk, gs is the uniform vertical load
of the rail, and G1 is the weight of the actuating machinery (chassis, drive, engine).

The flange buckling (Constraint F7):

(b− 40)
t f

≤ 1
δ

(16)

δ =
1

42ε
(17)

ε =

√
235
fy

(18)

The web buckling (Constraint F8):

2h
tw
≤ 1

β
(19)

β =
1

124ε
(20)

ε =

√
235
fy

. (21)

The deflection (Constraint F9) is defined by:

F(L− k)
48Es Ix

(
3L2 − (L− k)2

)
≤ L

600
(22)

where Es is the elastic modulus of the steel.

6.1.3. Objective Functions

It is a single-objective problem since the optimization aims to find the minimum mass
of the main girder m. The cross-sectional area, which is defined by the objective function
and design factors, is proportional to the mass [45].

A = htw + 2bt f (23)

f (x) = m = ALρ (24)

The objective function with penalty is as follows:

F(x, rk) = f (x)− rk ∑
j

1
gj(x)

(25)

where the limit lim
rk→∞

Fmin = fmin. Where rk is the penalty parameter, gj(x) are the violated

inequality constraints.

Appl. Mech. 2021, 2 906

6.2. Mathematical Modelling of the Optimum Design Problem

The metaheuristic algorithm collection was used to solve this structural optimization
issue using the same input parameters as in Table 2. Metaheuristic methods were used to
conduct 100 Monte Carlo searches. For each search, the maximum number of iterations
was set at 1000. To avoid the violation of restrictions, a penalty function was created (see
Equation (25)).

The following data were given: ψd=2, F =240.000 (N), L = 20.000 (mm), k = 1.900 (mm),
∆σn. = 69.8 (MPa), γM f . = 1.35, for Fe 360 steel, the yield stress is fy = 235

(
N

mm2

)
, γM1. =

1.1, γG. =1.35. ρ = 7.85 (kg/dm3), g = 9.81 (m/s2), gj = 1
(

N
mm2

)
, gs = 0.2

(
N

mm2

)
, G1 = 30

kN, Es = 2.1× 105
(

N
mm2

)
.

Tables 6 and 7 describe the optimum dimensions of welded box type girders and the
accompanying constraint values. The best result is shown in bold letters.

Table 6. Optimum dimensions of the welded box type main girder.

h tw
2 b tf

Cross-
Sectional Area

(mm2)
Mass (kg) Run Time

(ms)

BFOA 1209.889 19.53007 702.8998 17.30789 47960.64 7529.82 368
BATA 1266.957 20.43493 503.0842 22.05898 48085.24 7549.382 79

BA 1240.19 20.21222 625.6542 18.49131 48205.32 7568.235 98
CEM 1210.866 19.53009 586.1365 20.74772 47970.32 7531.34 556

CS 1186.37 19.15503 675.2558 18.73322 48024.38 7539.828 252
CA 1122.725 19.51167 540.9183 22.64809 48040.19 7542.311 146
DE 1220.704 19.69891 534.5374 22.41704 48012.03 7537.889 80
FF 1216.134 19.61507 708.8209 16.9796 47925.53 7524.309 1859
HS 1161.865 18.98102 538.3703 24.45729 48387.55 7596.845 8
MA 1305.94 21.20183 320.3388 32.5539 48544.88 7621.546 8309

MSO 1212.164 19.55104 699.1941 17.32737 47929.45 7524.924 274
NM 1216.954 19.62829 684.4668 17.56559 47932.84 7525.456 7
PSO 1212.432 19.55535 687.6858 17.61221 47932.87 7525.461 90
RS 1245.286 20.12348 666.9302 17.37803 48239.35 7573.578 165
SA 1217.185 19.63202 704.3912 17.05795 47926.74 7524.498 180

Table 7. Corresponding constraint values to optimum dimensions.

Fatigue Static Stress Flange Buckling Web Buckling Deflection

BFOA 56.28 213.64 35.31 124.00 31.56
BATA 56.28 213.63 41.78 123.97 31.09

BA 56.23 213.50 27.95 123.11 30.30
CEM 56.24 213.53 21.88 123.94 30.49

CS 56.20 213.34 37.22 123.96 31.45
CA 56.26 213.63 12.78 124.00 29.26
DE 55.56 211.04 17.75 123.74 30.35
FF 56.28 213.64 40.38 124.00 31.23
HS 56.28 213.64 37.75 124.00 31.08
MA 55.22 213.64 32.98 123.69 30.60

MSO 56.28 213.36 23.76 124.00 29.77
NM 56.28 213.64 40.87 124.00 31.41
PSO 56.28 213.27 38.97 124.00 31.55
RS 55.12 213.11 29.92 123.51 29.83
SA 56.24 213.64 40.25 124.00 31.86

Despite the fact that the Firefly Algorithm (FF) provided the optimum solution, the
variations in the outcomes were small. The weight difference between the best (Firefly
Algorithm, 7524.309 kg) and worst (Memetic Algorithm, 7621.546 kg) solutions was merely
97.237 kg, or less than 2% of the mass of the main girder. The small variance in the results
indicates that all of the algorithms were implemented successfully. The values of the

Appl. Mech. 2021, 2 907

constraints in Table 7 further verify the correct operation of the metaheuristic algorithms
since the most significant restrictions were fatigue 66.48, static stress 213.64, flange buckling
42, web buckling 124, and deflection 66.67.

The Brute Force method was used to determine the optimal measurements for future
evaluation of the main girder of the overhead crane. Brute Force examined all possible
options; however, the continuous variables must be discretized in order to obtain the results
in an acceptable period of time. Even still, evaluating the 3.237.480.000 possible options
took 70 min (4,149,129,594 ms). The best configuration is h = 1240 mm, tw/2 = 20 mm,
b = 681 mm, tf = 17 mm, with a main girder weight of 7,528,778 kg. When the findings of
the metaheuristic algorithms were compared to the results of Brute Force approach, it was
revealed that the metaheuristic algorithms generated superior results.

The Firefly algorithm discovered a better answer in two seconds less time than the
Brute Force technique, which took 70 min. The rounding of continuous variables resulted
in a discrepancy of 4 kg. If the production of the main beam is planned, the continuous
values in the main beam should be discretized using the findings of the Firefly algorithm.

7. Discussion and Future Research

Numerical optimization is a rapidly developing field of research. Several novel
evolutionary optimization techniques have recently surfaced. A software solution has
been created that allows for the creation of arbitrarily complicated and sophisticated test
procedures. In this study, fifteen optimization algorithms with thirteen test functions were
benchmarked before being applied to a real-world technical design challenge: finding
the optimal dimensions of the main girder of an overhead crane. A comparison with the
Brute Force method was carried out. We used fifteen distinct search methods to answer the
thirteen benchmark tasks. Unimodal and multimodal issues with varying numbers and
distributions of local extremes, as well as unimodal and multimodal problems with varying
numbers and distributions of local extremes, were among the aspects of the test functions.
Using the software that was built, three challenging benchmark tasks were generated. After
analyzing considerable statistical data, the overall performance of the algorithms became
apparent. At the test functions, we have elaborated three different weighting functions to
introduce noise, making the optimization more difficult. It is critical, however, not to stray
from the original optimal settings to be comparable. According to the convergence charts,
the weighting functions significantly influence the complexity of complicated functions.
The complex function with Euclidean distance-based weighting (F11) was more challenging
to solve than the simple function, according to the mean fitness function values (F1). The
Gaussian weighting function, on the other hand, produced smoother edges by reducing the
number and distribution of local extremes, making it easier for search engines to identify
the global optima. Because the weighting function produced so much noise, the Complex
function with Gabor-like weighting was arguably the most challenging test function.

The test functions, as well as the crane girder design, show that evolutionary optimiza-
tion techniques are powerful design tools. Based on these 13 test examples, Multi-Swarm
Optimization (MSO), the Cuckoo Search method (CS), the Bees Algorithm (BA), and Parti-
cle Swarm Optimization (PSO) are the most efficient optimization algorithms. For crane
girder optimization, the Firefly algorithm (FF) performed best. So we cannot declare that
in all cases there is one algorithm which is the most efficient.

We intend to develop more difficult, self-made test issues in the future, as well as
compare and contrast alternative metaheuristic techniques as were shown in [37–39]. Based
on the benchmark findings, novel, more efficient hybrid metaheuristic algorithms have been
created, which might be applied in real-world structural and system optimization issues, as
in recent publications [46–48]. Naturally, the development of the optimization techniques
never stops; existing techniques are modified to be more efficient, as recently in [49].

Appl. Mech. 2021, 2 908

8. Conclusions

Those who are making structural optimization consistently seek reliable and quick
algorithms to elaborate optimization. There are a significant number of techniques available.
All authors declare that his/her algorithm is better than the others. The different test
functions were to evaluate the performance of these algorithms. We have introduced
Euclidean distance-based weighting, Gaussian weighting, and Gabor-like weighting to
render the test more challenging. These noisy test functions selected the optimization
techniques better than the simple test functions. On the other hand, it is clear that no
optimizer exists which has the best performance in all cases and at all types of problem-
solving. In any case, we have demonstrated which are the most efficient optimizers at our
test function range. This can help users to choose their own method. Finally a real-world
problem, the crane girder design, shows the applicability of these techniques.

Author Contributions: Conceptualization, K.J., C.B. and G.Z.M.; methodology, K.J., C.B.; software,
G.Z.M. and C.B.; formal analysis, K.J. and C.B.; writing—review and editing, K.J., C.B. and G.Z.M.;
supervision, K.J.; project administration, K.J. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was supported by the Hungarian National Research, Development and
Innovation Office under the project number K 134358.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to express gratitude for the help and advice of László Kota
in the optimization.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, Y.-C.; Juarez, J.R.C. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm. Eng.

Optim. 2015, 48, 1–21. [CrossRef]
2. Mologa, M.; Smutnicki, C. Test Functions for Optimization Needs. 2014, pp. 1–10. Available online: http://www.robertmarks.

org/Classes/ENGR5358/Papers/functions.pdf (accessed on 24 May 2020).
3. Liang, J.; Suganthan, P.; Deb, K. Novel composition test functions for numerical global optimization. In Proceedings of the

Proceedings 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005; IEEE: Piscataway, NJ, USA, 2005;
pp. 68–75.

4. Barcsák, C.; Jármai, K. Benchmark for testing evolutionary algorithms. In Proceedings of the 10th World Congress on Structural
and Multidisciplinary Optimization WCSMO10, Orlando, FL, USA, 19–24 May 2013.

5. Ghafil, H.N.; Jármai, K. Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering
applications. Appl. Soft Comput. 2020, 93, 106392. [CrossRef]

6. Smairi, N.; Siarry, P.; Ghédira, K. A hybrid particle swarm approach based on Tribes and tabu search for multi-objective
optimization. Optim. Methods Softw. 2015, 31, 204–231. [CrossRef]

7. Hasançebi, O.; Kazemzadeh Azad, S. Discrete size optimization of steel trusses using a refined big bang–big crunch algorithm.
Eng. Optim. 2014, 46, 61–83. [CrossRef]

8. Kaveh, A.; Bakhshpoori, T. A new metaheuristic for continuous structural optimization: Water evaporation optimization. Struct.
Multidiscip. Optim. 2016, 54, 23–43. [CrossRef]

9. Yousefikhoshbakht, M.; Didehvar, F.; Rahmati, F. Solving the heterogeneous fixed fleet open vehicle routing problem by a
combined metaheuristic algorithm. Int. J. Prod. Res. 2014, 52, 2565–2575. [CrossRef]

10. Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello, C.A.C. A survey of multi-objective metaheuristics applied to structural optimization.
Struct. Multidiscip. Optim. 2014, 49, 537–558. [CrossRef]

11. Zavala, G.; Nebro, A.J.; Luna, F.; Coello, C.A.C. Structural design using multi-objective metaheuristics. Comparative study and
application to a real-world problem. Struct. Multidiscip. Optim. 2016, 53, 545–566. [CrossRef]

12. Karakostas, S. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary
algorithms (non-dominated sorting genetic algorithm II). Eng. Optim. 2015, 47, 601–621. [CrossRef]

13. Brownlee, J. Clever Algorithms: Nature-Inspired Programming Recipes; Lulu: Morrisville, NC, USA, 2011; pp. 27–336.

http://doi.org/10.1080/0305215X.2014.994868
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
http://doi.org/10.1016/j.asoc.2020.106392
http://doi.org/10.1080/10556788.2015.1055562
http://doi.org/10.1080/0305215X.2012.748047
http://doi.org/10.1007/s00158-015-1396-8
http://doi.org/10.1080/00207543.2013.855337
http://doi.org/10.1007/s00158-013-0996-4
http://doi.org/10.1007/s00158-015-1291-3
http://doi.org/10.1080/0305215X.2014.908870

Appl. Mech. 2021, 2 909

14. Liu, Y.; Passino, K. Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent
Behaviors. J. Optim. Theory Appl. 2002, 115, 603–628. [CrossRef]

15. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NISCO 2010);
González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Studies in Computational Intelligence; Springer: Berlin,
Germany, 2010; pp. 65–74.

16. Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm; Technical report; Manufacturing
Engineering Centre, Cardiff University: Cardiff, Wales, 2005.

17. Rubinstein, R.Y. Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 1997, 99, 89–112. [CrossRef]
18. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired

Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; IEEE Publications: Piscataway, NJ, USA, 2009; pp. 210–214.
19. Reynolds, R.G. An introduction to cultural algorithms. In Proceedings of the 3rd Annual Conference on Evolutionary Program-

ming, San Diego, CA, USA, 24–26 February 1994; World Scientific Publishing: Singapore, 1994; pp. 131–139.
20. Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces;

Technical Report TR-95-012; International Computer Science Institute: Berkeley, CA, USA, 1995.
21. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications, SAGA 2009,

Lecture Notes in Computer Sciences 5792; Springer: Berlin, Germany, 2009; pp. 169–178.
22. Carbas, S. Design optimization of steel frames using an enhanced firefly algorithm. Eng. Optim. 2016, 48, 2007–2025. [CrossRef]
23. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new metaheuristic optimization algorithm: Harmony search. Simulation 2001, 76,

60–68. [CrossRef]
24. Moscato, P. On evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms; Technical Report;

California Institute of Technology: Pasadena, CA, USA, 1989.
25. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
26. McCaffrey, J. Amoeba Method Optimization using C#. MSDN Magazine, June 2013. Available online: https://docs.microsoft.

com/en-us/archive/msdn-magazine/2013/june/test-run-amoeba-method-optimization-using-csharp (accessed on 24 May
2020).

27. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

28. Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: New York, NY, USA, 2010; pp. 760–766.
29. Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93.
30. Mortazavi, A.; Toğan, V. Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm

optimizer. Struct. Multidiscip. Optim. 2016, 54, 715–736. [CrossRef]
31. Zhao, S.Z.; Liang, J.J.; Suganthan, P.N.; Tasgetiren, M.F. Dynamic multi-swarm particle swarm optimizer with local search for

Large Scale Global Optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), Hong Kong, China, 1–6 June 2008; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2008; pp. 3845–3852.

32. McCaffrey, J. Multi-Swarm Optimization. MSDN Magazine, Vol. 28, No. 9. September 2013. Available online: https://docs.
microsoft.com/en-us/archive/msdn-magazine/2013/september/test-run-multi-swarm-optimization (accessed on 19 October
2021).

33. Brooks, S.H. A Discussion of Random Methods for Seeking Maxima. Oper. Res. 1958, 6, 244–251. [CrossRef]
34. Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 1984, 34, 975–986. [CrossRef]
35. Corana, A.; Marchesi, M.; Martini, C.; Ridella, S. Minimizing multimodal functions of continuous variables with the “simulated

annealing” algorithm. ACM Trans. Math. Softw. 1987, 13, 262–280. [CrossRef]
36. Hasançebi, O.; Çarbaş, S.; Saka, M.P. Improving the performance of simulated annealing in structural optimization. Struct.

Multidiscip. Optim. 2010, 41, 189–203. [CrossRef]
37. Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
38. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
39. Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special

Session on Real-Parameter Optimization; Technical Report 201212; Computational Intelligence Laboratory, Zhengzhou University:
Zhengzhou, China, 2013.

40. Sun, C.; Tan, Y.; Zeng, J.; Pan, J.; Tao, Y. The Structure Optimization of Main Beam for Bridge Crane Based on An Improved PSO. J.
Comput. 2011, 6, 1585–1590. [CrossRef]

41. Zuberi, R.H.; Kai, L.; Zhengxing, Z. Design optimization of EOT crane bridge. In Proceedings of the International Conference on
Engineering Optimization, Rio de Janeiro, Brazil, 1–5 June 2008; pp. 192–201.

42. Ghafil, H.N.; Jármai, K. Optimization for Robot Modelling with MATLAB; Springer Nature: Cham, Switzerland, 2020; 220p.
[CrossRef]

43. Farkas, J.; Jármai, K. Analysis and Optimum Design of Metal Structures; Taylor & Francis: Boca Raton, FL, USA, 2020; pp. 236–239.
44. Eurocode 3, Design of Steel Structures, Part 1-1: General Structural Rules; CEN: Brussels, Belgium, 2009.

http://doi.org/10.1023/A:1021207331209
http://doi.org/10.1016/S0377-2217(96)00385-2
http://doi.org/10.1080/0305215X.2016.1145217
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1093/comjnl/7.4.308
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/june/test-run-amoeba-method-optimization-using-csharp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/june/test-run-amoeba-method-optimization-using-csharp
http://doi.org/10.1007/s00158-016-1449-7
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/september/test-run-multi-swarm-optimization
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/september/test-run-multi-swarm-optimization
http://doi.org/10.1287/opre.6.2.244
http://doi.org/10.1007/BF01009452
http://doi.org/10.1145/29380.29864
http://doi.org/10.1007/s00158-009-0418-9
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.4304/jcp.6.8.1585-1590
http://doi.org/10.1007/978-3-030-40410-9

Appl. Mech. 2021, 2 910

45. Farkas, J.; Jármai, K. Optimum Design of Steel Structures; Springer: Heidelberg, Germany, 2013; 288p. [CrossRef]
46. Ziane, K.; Ilinca, A.; Karganroudi, S.; Dimitrova, M. Neural Network Optimization Algorithms to Predict Wind Turbine Blade

Fatigue Life under Variable Hygrothermal Conditions. Eng 2021, 2, 278–295. [CrossRef]
47. Paggi, M. An Analysis of the Italian Lockdown in Retrospective Using Particle Swarm Optimization Applied to an Epidemiological

Model. Physics 2020, 2, 368–382. [CrossRef]
48. Seyedi, M.R.; Khalkhali, A. A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube Under

Axial Load. Vehicles 2020, 2, 438–452. [CrossRef]
49. Abbaszadeh Shahri, A.; Khorsand Zak, M.; Abbaszadeh Shahri, H. A modified firefly algorithm applying on multi-objective

radial-based function for blasting. Neural Comput. Appl. 2021, 1–17. [CrossRef]

http://doi.org/10.1007/978-3-642-36868-4
http://doi.org/10.3390/eng2030018
http://doi.org/10.3390/physics2030020
http://doi.org/10.3390/vehicles2030024
http://doi.org/10.1007/s00521-021-06544-z

	Introduction
	Materials and Methods—Benchmark Problems
	Composition of Test Functions
	Theoretical Method
	Euclidean Distance-Based Weighting
	Gaussian Weighting
	Gabor Weighting

	Practical Example
	Novel Software Solution to Easily Generate Complex Test Functions

	Main Characteristics of Metaheuristic Algorithms
	Numerical Experiments
	Statistical Results
	Assessment of Benchmark Results, Algorithms’ Strengths and Weaknesses

	Determining the Optimal Dimensions of the Main Girder of an Overhead Travelling Crane
	The Optimum Design Mathematical Model
	Decision Variables
	Constraints
	Objective Functions

	Mathematical Modelling of the Optimum Design Problem

	Discussion and Future Research
	Conclusions
	References

