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Abstract: This paper deals with the modal analysis of optimized trapezoidal stiffened plates with
simple supported conditions on the four edges of the base plate. The main objective of the finite
element analysis is to investigate the natural frequencies and mode shapes of some stiffened structures
subjected to lateral pressure and uniaxial compression in order to identify any potentially dangerous
frequencies and eliminate the failure possibilities. The natural frequencies and mode shapes are
important parameters in the design of stiffened plates for dynamic loading conditions. In this study,
the numerical analysis is performed for such a design of this kind of welded plates which have
already been optimized for lateral pressure and uniaxial compression. The objective function of the
optimization to be minimized performed with the Excel Solver program is the cost function which
contains material and fabrication costs for Gas Metal Arc Welding (GMAW) welding technology. In
this study, the eigenvalue extraction used to calculate the natural frequencies and mode shapes is
based on the Lanczos iteration methods using the Abaqus software. The structure is made of two
grades of steel, which are described with different yield stress while all other material properties of
the steels in the isotropic elastic model remain the same. Drawing the conclusion from finite element
analysis, this circumstance greatly affects the result.

Keywords: optimization; trapezoidal stiffener; FEA; natural frequencies

1. Introduction

Welded stiffened plates are widely used in various load-carrying structures, e.g., ships,
bridges, bunkers, tank roofs, offshore structures and vehicles. They are subject to various
loadings, e.g., compression, bending, shear or combined load. The shape of plates can be
square rectangular, circular, trapezoidal, etc. They can be stiffened in one or two directions
with stiffeners of flat, L, box, trapezoidal or other shapes. From these structural versions,
we select here rectangular plates that are uniaxially compressed, laterally pressed and
stiffened in the direction of the compressive load.

Several researchers have studied the behaviour of stiffened plates, which remains a
widely researched topic. Kim et al. [1] proposed a refined empirical formulation to predict
the ultimate strength performance or ultimate limit state of flat-bar type steel stiffened panel
under longitudinal compression. De Queiroz et al. [2] performed a structural numerical
analysis to estimate the central deflection of thin stiffened plates and simple supported
stiffened plates subjected to a transverse and uniformly distributed load, and the influence
of parameters such as the number of longitudinal and transverse stiffeners and the ratio
between their height and thickness, and searched for the optimal geometrical configuration
of for naval and offshore applications by applying the exhaustive search technique and
using Ansys software. Li et al. [3] investigated the ultimate strength of welded stiffened
plates under the predominant action of axial compression with non-linear finite element
analysis using the commercial finite element code Abaqus. Troina et al. [4] developed an
approach associating the Constructal Design Method [5] and Exhaustive Search technique,
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merged in a computational model, validated and then applied with the scope to minimize
the central deflections of these plates.

In addition, many studies have been published to reduce the total cost by minimizing
the total weight and fabrication cost of the welded stiffened structure. To achieve the
lowest costs, many optimization methods have been proposed and developed. Welding
is a relatively expensive technology in the fabrication of stiffened plates. It is important
to decrease the cost of the whole structure. Therefore, designers use a suitable structural
version by comparison of structural solutions.

Structural optimization is a good basis not only for achieving weight and cost savings
but also for helping designers select the most suitable structure version. Papers [6,7] elabo-
rated a new optimization method for a totally FRP composite construction in which the
single-objective weight optimization was solved by applying the Interior Point Algorithm
of the Matlab software, the Generalized Reduced Gradient (GRG) Nonlinear Algorithm of
the Excel Solver software, and the Laminator software. The Digimat-HC software solved
the numerical models for the optimum structure. Their main contribution was developing
a new method for optimizing a totally FRP composite sandwich structure. Zhou et al. [8]
studied some distribution laws of the stress mode shapes (SMSs) from the layup and stress
component perspectives for the analysis and optimization of dynamic composite laminates
in aircraft structures. A study by Guan et al. [9] indicated that the four-node support can be
used in a free vibration test to determine the elastic properties of full-sized wood composite
panels. Kim et al. [1] studied the ultimate limit state (ULS) behaviour of stiffened panels
under longitudinal compression by a non-linear finite element method (NLFEM) using
the Ansys software and considering different types of stiffeners mainly being used in
shipbuilding, i.e., T-bar, flat-bar and angle-bar.

This paper contains the minimum cost design of longitudinally stiffened plates using
strength calculation methods and finite element analysis, which is a powerful technique
that is used, among other things, for the dynamic response of structures. Numerous
studies have discussed the inclusion and efficiency of the finite element method in the
analysis of structures; therefore, the case of stiffened plates is also studied successfully
in this way [10]. More detailed descriptions of finite element procedures can be found
in [11,12]. Numerical simulation possibilities employ finite element methods for the modal
and buckling analysis of plates to investigate the effect of initial geometric imperfection
on the load-displacement response. It is worthwhile to mention the use of FEA if there
are necessary cutouts in a thin-walled structure as a functional requirement that weaken
the affected part of the structures, thus compromising the structure’s integrity, or if the
stiffeners are reinforced the structure. Paper [13] is devoted to the natural frequencies of
plates with square holes when subjected to in-plane uniaxial, biaxial or shear loading. Jafari
et al. [14] introduced the optimal values of effective parameters on the stress distribution
around a circular, elliptical and quasi-square cutouts in perforated orthotropic plates under
in-plane loadings. In case the plates also are reinforced with stiffeners, paper [15] provides
an overview for the buckling and free vibration analysis. Wu et al. [16] investigated the
case of rectangular plates subjected to preloads. The vibrational properties of the structures
can also be investigated by numerical and experimental modal analysis with dynamic
loads. For instance, in paper [17], mechanical vibrations of the IPM motor components
were detected and analyzed via a numerical, analytical and experimental investigation.
Modal analysis methods can be useful for vibration control to identify the transient natural
frequencies and transient modal shapes online and in real-time [18].

In the authors’ previous paper [19], various Young’s moduli were used, and it was
assumed that the structural parts (the base plate and ribs) were made of different steel
materials. The natural frequencies were investigated, and a linear perturbation analysis
for the stiffened plate with flat stiffeners was performed in the commercial software
Abaqus [12], where a flat stiffened plate was only uniaxially compressed. Simple, practical
design procedures and calculation methods are not available due to the anisotropy of
the stiffened plates having longitudinally single-sided, closed stiffeners. Therefore, it is
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especially worthwhile to use finite element analysis to determine mode shapes. In this
study, the numerical investigations on the vibration analysis of trapezoidal stiffened plates
under uniaxial compression and lateral pressure are carried out to identify any potentially
dangerous frequencies.

2. Designed Constraints

Paper [20] developed the minimum cost design of longitudinally stiffened plates
using strength calculation methods. Its results show that the trapezoidal stiffeners are
more cost-effective than open section ribs, e.g., the cost savings can reach 40%, although
the higher strength steel is 8–10% more expensive. These procedures can be also applied
to many other problems in engineering practice; for example, for composite sandwich
structures [6,21] and plastic composite sandwich construction in aircraft structures [7].

2.1. Calculation of the Deflection Due to Compression and Lateral Pressure

Paper [22] used differential equations of large deflection orthotropic plate theory and
the Galerkin method to derive the following cubic equation for elastic deflection of stiffened
plate loaded by lateral pressure p and uniaxial compression. They have continued this line
for initial deflection in [23].

C1 A3
m + C2 A2

m + C3 Am + C4 = 0, (1)

where assuming that the orthotropic model is in a x′ − y′ plane and provided that the
structural reference axes (x, y, and z) are parallel to the principal material axes (x′, y′, and
z′), the following equations are written as:
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)
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and

C4 = Aom
m2B

L
σxav −

16LB
π4tF

p, (5)

in which m is the number of half buckling length, B is the width of the base plate under
compression, L is the length of the base plate, n = φ − 1 is the number of ribs, tF and tS
are the thicknesses of the base plate and the stiffener, respectively, and the longitudinal
Young’s modulus and the transverse modulus are given by

Ex′ = E
(

1 +
nAS
BtF

)
, Ey′ = E, (6)

For given applied compression the uniaxial normal stress is obtained as

σxav =
N

BtF + (ϕ− 1)As
, (7)

and Aom is according to Equation (16).
The self-weight is taken into account; consequently, the lateral pressure is modified as

p = p0 +
ρVg
BL

, (8)

where ρ is the material density, V is the volume of the structure, p0 is the uniformly
distributed load, and the gravitational acceleration is denoted by g.
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The torsional and flexural stiffnesses of the orthotropic plate can be given in a relatively
simple form if we introduce the following notations:

Dx′ =
Et3

F

12
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EtFy2

G
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b
, (9)
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Gx′y′ It

b
, (14)
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E

2
(

1 + νx′y′
) , (15)

in which ν is the Poisson’s ratio, yG is the distance of the center of gravity which is
derived from Equation (37), Iy′ , given by Equation (38), describes the moment of inertia
of cross-section containing a stiffener and a base plate strip of width b, and It, given by
Equation (41), is the stiffener torsional moment of inertia.

The deflection due to lateral pressure is calculated as

Aom =
5qL4

384EIy′
, q = pb, b =

B
ϕ

. (16)

The solution of Equation (1) is

Am = − C2

3C1
+ k1 + k2, (17)

where
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and
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1
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. (21)

2.2. Deflection Due to the Shrinkage of Longitudinal Welds

The deflection of the stiffened plate due to the longitudinal welds is as follows

fmax =
CL2

8
≤ wmax =

L
1000

, (22)
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where the curvature for steel is

C = 0.844× 10−3 QTyT
Iy′

, (23)

where QT is the heat input.

yT = yG −
tF
2

(24)

denotes the weld eccentricity. The heat input for stiffeners for the aW weld size is

QT = 2× 59.5a2
W . (25)

2.3. Calculation of Stress Constraint

The calculation of the stress constraint can include several effects of loads. These can
be the following: average compression stress and bending stress caused by deflections due
to lateral pressure, compression and the shrinkage of longitudinal welds.

σmax = σxaν +
M
Iy′

yG ≤ σUP, (26)

where σxav is according to Equation (7) and

M = N(A0m + Am + fmax)σxaν +
qL2

8
(27)

is the bending moment, in which the magnitude of compression force is denoted by N.
According to [24], the calculation of local buckling stress σUP of a faceplate strip

of width
b1 = max{a3, b− a3}. (28)

is calculated taking into account the effect of residual welding stresses and initial imperfections:

σUP
fY

=

(
0.526

λP

)0.7
when λP ≥ 0.526 (29)

σUP
fY

= 1 when λP < 0.526, (30)

where

λP =
b1

tF

√
4π2E

10.92 fY
=

b1/tF
56.8ε

. (31)

3. Optimizing Method and Objective Function

The optimization algorithm methods have been inspired by natural or humanmade
phenomena to introduce mathematical formulations that can solve problems in different
fields of sciences. Specifically, optimization algorithms are used to find the maximum
or minimum of a function. They have a wide range of applications in industry [25] and
engineering problems such as structures [20]. Developers are more interested in phenomena
that could inspire them to develop a new method that can solve new problems or find
the best solutions for the existing ones. More descriptions of the optimum design of steel
structures are found in [26,27].

In this paper, the Excel Solver program is used to minimize the cost function. This
is a multi-objective optimization method in our case. The iterative algorithm is based on
Weighted Normalized Method. The optimal design variables are the thicknesses of the base
plate (tF) and the stiffener (tS) and the number of ribs (ϕ − 1) which are limited in size.
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The objective function to be minimized is the cost function. It is defined as the sum of
material (Km) and fabrication (K f ) costs

K = Km + K f = kmρV + k f (T1 + T2 + T3), (32)

where km and k f are cost factors, ρ is the density, V is the volume of the structure and Ti are
the fabrication times: T1 is the time for preparation, tacking and assembly, T2 is the time of
welding and T3 is the time of additional work such as deslagging, changing electrodes and
chipping. The total time for welding is the sum of T1, T2 and T3, which is elaborated in [15].
In this paper, we calculated with GMAW welding technology.

The uniaxial compression at two opposite ends of the structure and the lateral pressure
p on the base plate act on the stiffened plate as shown in Figure 1. The magnitude of
compression force N is 1.974× 107 N as a result of a uniformly distributed static load
which can be described as loading over the length B and at the ends of the stiffeners. As
shown in Table 1, three different values are employed for lateral pressure p on the base
plate, namely 0.02, 0.01 and 0.005 MPa.
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Figure 1. Design of trapezoidal stiffened plate loaded by uniaxial compression and lateral pressure.

The material is assumed to be isotropic elastic. In our investigation, the stiffened
plate is made of two grades of steel, provided that the difference in steel quality is simply
meant by yield stress fY = 235 MPa and fY = 355 MPa while Young’s modulus of
E = 2.1× 105 MPa, Poisson’s ratio of ν = 0.3 and density of ρ = 7.85× 10−9 t/mm3

remain the same.
The welded plates studied were designed to have been optimized for loading while

the following dimensions of stiffeners are fixed:

a1 = 90 mm, a3 = 300 mm, (33)

and the other dimensions of stiffeners in Figure 2 can be obtained from the optimized
results of Table 1 applying the formulas below:

ε =

√
235
fY

, (34)

a2 = 38εtS , (35)

hS =

√
a2

2 −
a3 − a1

2
. (36)

The distance of the centre of gravity of the rib from the y-axis of the mid-plane of the
base plate is calculated as follows:

yG =
a1tS(hS + tF/2) + 2a2tS(hS + tF)/2

btF + AS
. (37)
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The corresponding inertias of the structure from optimized results can be obtained as
follows: Section moment of inertia about the y′-axis which is parallel to the y-axis at the
centre of gravity
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The geometrical data of the base plate are width B = 6000 mm and length L = 4000 mm.
The stiffeners are welded to the base plate with fillet welds to reinforce the plate. The
numerical results for uniaxial compression and lateral pressure are summarized in Table 1,
in which the columns contain the optimized main geometrical data and the optimised cost
results. These results were used for the further modal analysis study.

Table 1. Optimum dimensions for trapezoidal stiffener at three different lateral pressures (p) and
constant uniaxial compression (N = 1.974× 107 N) in case of two yield stresses ( fY) and km/k f = 1.5
the cost minima.

No.
p

[MPa]
fY

[MPa]
tF

[mm]
tS

[mm]
ϕ− 1

[-]
b

[mm]
K/km [kg]

km/k f = 0 km/k f = 1.5

1. 0.02 235 23 9 3 1000 5317 6437
2. 0.01 235 23 8 3 1000 5122 6132
3. 0.005 235 22 8 3 1000 4934 5932
4. 0.02 355 17 10 4 800 4991 6431
5. 0.01 355 18 8 5 666.67 4700 5845
6. 0.005 355 15 8 5 666.67 4320 5621



Appl. Mech. 2021, 2 688

The result shows that the number of stiffeners ϕ – 1 decreases if the lateral pressure is
increased, but ϕ – 1 increases if the yield stress of the material is increased.

4. Modal Analysis

The eigenvalue extraction to calculate the natural frequencies and the corresponding
mode shapes is based on the subspace or Lanczos iteration methods described in [11], which
are used to perform modal frequency response analysis or to investigate the eigenvalue
for buckling prediction, and are applied to extract eigenvalues i.e., natural frequencies.
Two analysis steps are used for natural frequencies belonging to the trapezoidal stiffened
plate subjected to uniaxial compression and lateral pressure. At the first step, the applied
loads and geometric nonlinearity were considered so that at the second step, the load
stiffness is determined at the end of the first general analysis step and can be included
in the eigenvalue extraction. To investigate the natural frequencies, a linear perturbation
analysis for the stiffened plate with trapezoidal stiffeners is performed with these steps,
using the commercial software Abaqus according to the model shown in Figure 3.
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which are used to perform modal frequency response analysis or to investigate the eigen-
value for buckling prediction, and are applied to extract eigenvalues i.e., natural frequen-
cies. Two analysis steps are used for natural frequencies belonging to the trapezoidal stiff-
ened plate subjected to uniaxial compression and lateral pressure. At the first step, the 
applied loads and geometric nonlinearity were considered so that at the second step, the 
load stiffness is determined at the end of the first general analysis step and can be included 
in the eigenvalue extraction. To investigate the natural frequencies, a linear perturbation 
analysis for the stiffened plate with trapezoidal stiffeners is performed with these steps, 
using the commercial software Abaqus according to the model shown in Figure 3. 
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4.1. FE Model Description

The uniform thickness base plate is reinforced by some trapezoidal-shaped stiffen-
ers and simple support conditions are subjected on all the edges (SSSS). As described
in Section 3, the stiffener number and geometry were optimized before the FE analysis.
Figure 1 is depicted, the side lengths of the plate parallel to the x-axis and y-axis are
denoted by L and B, respectively.

Using the advantage of symmetry in geometry and loading, only one-quarter of
the plate with boundary conditions is modelled in the FEA. The displacement bound-
ary conditions on the FE model are as follows: Symmetry along the x-axis, for which
uy = φx = φz = 0 is required; symmetry along the y-axis, which requires ux = φy = φz = 0;
simple is prescribed support on the edge at x = ±L/2 according to uz = φx = 0 and at the
edge of y = ±B/2 according to uz = φy = 0. Let ux, uy, and uz denote the displacements
of a point in the mid-plane of the trapezoidal stiffened plate along the x, y, and z directions,
respectively and φx, φy, and φz are the rotations of the normal to the mid-plane at the same
point of the structure (see in Figure 3).

The finite element method, which is a popular numerical technique, is used to numer-
ically solve differential equations arising in engineering and modelling problems such as
modal analysis problems [10,19]. The main concept of this technique is that the geometry
of structure subdivides into non-overlapping small parts, so-called finite elements, which
are implemented by the construction of a mesh. The conventional element types possess
simple shaped geometry with well-defined stress displacement relationships. Due to the
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design, stress accumulation occurs at the supports along the side with length B, where
the base plate meets the stiffeners, and therefore the mesh destiny in the FE model locally
significantly affects the maximum stress values there. At the first step of modal analysis for
the preload case, the applied loads and geometric nonlinearity were considered so that the
best choice is the first-order element. Thus, the sufficiently refined mesh needs to ensure
that the results from simulations are adequate. Accordingly, the trapezoidal stiffened plate
is meshed into finite elements, which are four-node reduced integration shell elements
(S4R in Abaqus), see details in [11,12]. The approximate global size is specified as 40 mm,
as shown in Figure 3.

4.2. Modal Analysis Results

The numerical results of the FE analysis for natural frequencies are summarized in
Table 2, which contains the first six natural frequencies from No. 1 to No. 6. in order to
identify any potentially dangerous frequencies.

Table 2. Comparison of natural frequencies [rad/s] of the first six mode shapes according to the
optimized 6 cases taken from Table 1.

No.
Mode Sequence Number

1 2 3 4 5 6

1. 116.39 253.72 553.46 629.09 746.49 844.18
2. 88.870 239.44 555.24 601.75 733.92 772.18
3. 88.026 231.55 534.53 581.81 694.87 766.37
4. 117.05 235.98 578.32 760.09 785.89 862.40
5. 64.490 212.70 574.14 674.46 773.65 851.75
6. 72.286 209.47 406.64 753.10 792.69 865.22

In the optimized case 6, the first six mode shapes of the stiffened plate are depicted
in Figures 4–9. The mode shapes for the other five cases of Table 2 are not shown
separately here.
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Figure 9. The sixth mode shape of the trapezoidal stiffened plate for case 6 of Table 2: (a) Mode 6 in top view; (b) Mode 6 
in the bottom view from the side of the stiffeners. 

The layout and the number of trapezoid stiffeners can have an important influence 
on the dynamic response of the stiffened plates. The first natural frequencies show signif-
icant difference only at lateral pressure 𝑝 = 0.005 MPa and 𝑝 = 0.01 MPa so that the op-
timized structures of yield stress 𝑓 = 235 MPa and 𝑓 = 355 MPa influence the frequen-
cies of the structures made based on the optimized results in Table 1. According to Table 
2, the reduction in the first natural frequencies no longer occurs at lateral pressure 𝑝 =0.02 MPa if the grade of steel changes. 
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The layout and the number of trapezoid stiffeners can have an important influence on
the dynamic response of the stiffened plates. The first natural frequencies show significant
difference only at lateral pressure p = 0.005 MPa and p = 0.01 MPa so that the optimized
structures of yield stress fY = 235 MPa and fY = 355 MPa influence the frequencies of
the structures made based on the optimized results in Table 1. According to Table 2, the
reduction in the first natural frequencies no longer occurs at lateral pressure p = 0.02 MPa
if the grade of steel changes.

Comparing the first natural frequencies in Table 2 with the simulation results without
loading, the rate of reduction is between 15% and 40%, and the first mode shapes are also
similar to Figure 4a,b as expected. The same conclusions can be derived from [19]. Practice
shows that the natural frequencies as numerical results of FEA are in good agreement
with the experimental results. We can conclude that the plates become stiffer with more
stiffeners, and the maximum displacement decreases so that the stiffeners can have a
significant effect on global displacement.

5. Conclusions

The result of optimization for different manufacturing costs leads to structures with
different geometry. The increased yield stress leads to a thickening of the base plate and
a decrease in the number of ribs. From the optimization process and the finite element
analyses carried out to examine the behaviour of trapezoidal stiffened plates under uniaxial
compression and lateral pressure, the following conclusions can be drawn: that (i) the
number of stiffeners ϕ – 1 decreases if the lateral pressure is increased, but ϕ − 1 increases
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if the yield stress of the material is increased, (ii) the eigenfrequencies show a significant
decrease based on our finite element analysis if the trapezoidal stiffened welded plates
are subjected to given loadings, (iii) the structure can be made of two grades of steel,
which are described with different yield stress while all other material properties in the
isotropic elastic model remain the same, then this condition is greatly influencing the results,
and (iv) the influence of initial geometric imperfections allowed by designed constraints
on frequencies is less significant, which is similar to the results in [19]. Therefore, it is
important to know that the structures are properly designed, made from proper materials,
and constructed considering loading during their lifespan. The FE analysis has provided
the natural frequencies and shape modes so that the dynamic behaviour of the stiffened
plates can be further investigated by mode superposition analysis.
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