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Abstract: The Euler–Bernoulli theory of beams is usually presented in two forms: (i) in the linear case
of a small slope using Cartesian coordinates along and normal to the straight undeflected position;
and (ii) in the non-linear case of a large slope using curvilinear coordinates along the deflected
position, namely, the arc length and angle of inclination. The present paper starts with the exact
equation in a third form, that is, (iii) using Cartesian coordinates along and normal to the undeflected
position like (i), but allowing exactly the non-linear effects of a large slope like (ii). This third form
of the equation of the elastica shows that the exact non-linear shape is a superposition of linear
harmonics; thus, the non-linear effects of a large slope are equivalent to the generation of harmonics
of a linear solution for a small slope. In conclusion, it is shown that: (i) the critical buckling load is
the same in the linear and non-linear cases because it is determined by the fundamental mode; (ii) the
buckled shape of the elastica is different in the linear and non-linear cases because non-linearity adds
harmonics to the fundamental mode. The non-linear shape of the elastica, for cases when powers of
the slope cannot be neglected, is illustrated for the first four buckling modes of cantilever, pinned,
and clamped beams with different lengths and amplitudes.

Keywords: non-linear buckling; large slope; Euler–Bernoulli beam theory; uniform elastic beams;
critical buckling load; buckled elastica; harmonics; cantilever; pinned and clamped beams

1. Introduction

The Bernoulli [1] and Euler [2] theory of beams is a standard introductory subject in
textbooks on elasticity [3–11] and leads to the phenomenon of buckling, which has been
considered in several conditions: (i) geometric and material non-linearities [12]; (ii) in com-
bination with shear [13,14] that is more significant for thin-walled beams [15–19]; (iii) con-
straints [20–22], such as hyper or non-local elasticity [23,24]; (iv) vibrations [25,26], that can
be excited by unsteady applied forces [27–33], leading to control problems [34]; (v) steady
mechanical [35] or thermal [36–38] effects; and (vi) vibrations of tapered beams [39–55],
with multiple applications like airplane wings and flexible aircraft and helicopters [56–64].
Among this wide range of topics related to the buckling of elastic beams, the present paper
focuses on geometric non-linearities associated with a large slope of the elastica.

The equation of the elastica of a beam is usually written in one of the two forms: (i) in
Cartesian coordinates,

y = ζ(x), (1a)

with the x-axis along the undeformed beam; or (ii) in curvilinear coordinates,

s = ξ(θ), (1b)
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with the arc length s as a function of the angle of inclination. The linear theory assumes
for (1a) a small slope, (

ζ ′
)2 ≡

(
dζ

dx

)2
� 1, (2a)

where the prime in this paper denotes the derivative with x, and implies that the maximum
deflection is small, compared with the length (Figure 1),

(ζmax)
2 � L2. (2b)

However, the latter condition of small maximum deflection relative to length (2b)
does not imply [65] linearity (2a) in the case of “ripples” with a large slope (Figure 2).
The condition of linearity can be expressed in terms of a small angle of inclination,

θ2 � 1, (3a)

that is equivalent to
cos θ ∼ 1, sin θ ∼ θ ∼ tan θ = ζ ′. (3b)

x

y

L

ζmax

Figure 1. A linear deflection is defined by a small slope and implies that the maximum deflection is
small compared with the distance between the supports.

x

y

Figure 2. The converse to the Figure 1 may not be true; for example, if the maximum deflection
is small, but the slope is large due to the presence of steep “ripples”, the deflection of the beam
is non-linear.

The Euler–Bernoulli theory of beams states that the bending moment M is proportional
to the curvature k,

M(x) = −EIk(x), (4)

that is the product of the Young modulus E of the material by the moment of inertia I of
the cross-section. For a beam of constant cross-sections made of a homogeneous material,
the bending stiffness EI is constant. In the case of a uniform beam [66], that is, with constant
bending stiffness, geometric non-linearities can arise from the curvature, k ≡ dθ/ds,that is,
the rate of change of the angle of inclination with the arc length
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ds =
[
(dx)2 + (dζ)2

]1/2
= dx

(
1 + ζ ′2

)1/2
. (5)

The curvature is given by

k(x) =
dx
ds

d
dx
(
arctan ζ ′

)
, (6)

and thus, it is only in the case of a small slope (2a) that the equation of the elastica is linear:

M(x) = −EIζ ′′(x). (7)

If the slope of the elastica is not small, its shape is specified by non-linear ordinary
differential equations [67–79].

The linear theory shows that if a critical buckling load Tc is reached, a beam in the ten-
sion deforms and gains a buckled shape, and higher critical loads, Tc,n with n = 1, 2, . . . , ∞,
lead to a succession of harmonics y = ζn(x). In the present paper, it is shown that geometric
non-linearities associated with a large slope,

M(x) = −EIζ ′′
[
1 +

(
ζ ′
)2
]−3/2

, (8)

do not affect the critical buckling load, but change the shape of the elastica that becomes a
superposition of harmonics of the linear case,

ζ(x) =
∞

∑
m=1

Amζm(x). (9)

The coefficients An are determined in this paper for the three cases of (i) cantilever,
(ii) clamped, and (iii) pinned beams, and the shape of the elastica is illustrated taking into
account non-linear geometric effects associated with a large slope. Before proceeding to
discuss non-linear geometric effects in the Euler–Bernoulli theory [1–11], the preceding
classification of the references [12–64] is complemented by a brief discussion of some
additional references. The method of the elastica for non-linear beams, schematized in
Figure 3, involves the solution of ordinary differential equations [66–79]. The exact analytical
solutions can be obtained using elliptic functions [80–85] for simpler loading cases.

x

y

L

y = ζ(x) s

ζ

θ = arctan
(

dζ
dx

)

Figure 3. The Euler–Bernoulli theory of the elastica y = ζ(x) of beams is usually presented (i) in the
linear case of a small slope, ζ ′2 � 1, with ζ ′ ≡ dζ/dx using Cartesian coordinates with x along and
y normal to the undeflected position; (ii) in the non-linear case of an unrestricted slope, ζ ′ ∼ O(1),
using curvilinear coordinates along the deflected position, namely, the arc length s and angle of
deflection θ = arctan(ζ ′). In the present paper, the Cartesian coordinates (x, y) are used as in (i),
but without the restriction on slope, that is with dζ/dx ∼ O(1) as in (ii), corresponding to the
non-linear bending of an Euler–Bernoulli beam with unrestricted slope.
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The articles [86,87] show that large deflections are specified by a combination of in-
complete and complete elliptic integrals. The results of these two articles are given with
limited accuracy, because at that time, the calculations were not performed with digital
computers. More accurate results of elliptic integrals are presented, for instance, in [88,89].
Furthermore, to obtain highly accurate numerical results, these problems may also be
solved using the shooting-optimization technique. The aforementioned two methods for
solving large deflections of beams are presented in [90], where an inextensible elastic beam
is hinged at one end, while the other end is assumed to be a frictionless support where the
beam can slide freely. Additionally, the beam is under a moment gradient and the moment
at each end of the beam can be varied from zero to a full moment by a scaling parameter.
In [90], the elastica theory serves to formulate the elliptic-integral method, and the results
are obtained by an iterative process, while the governing set of differential equations are
needed for the shooting-optimization technique and are numerically integrated using the
fourth-order Runge–Kutta method. The results obtained from both methods are in close
agreement to each other. The paper [91] continues in this line of research, but considers the
double curvature bending of the elastica under two applied moments in the same direction
applied at the supports, and complements earlier studies that confined bending to one of
the single curvature-type bendings. The two aforementioned methods are used. The elliptic
integral technique provides analytical solutions to the governing non-linear differential
equation for elasticas, while the shooting optimization method numerically integrates the
equation using the fifth-order Cash–Karp Runge–Kutta method. Both methods provide al-
most the same stable and unstable equilibrium solutions and, for some cases of the unstable
equilibrium configuration, the elastica can form a single loop or snap-back bending.

Continuing in this line of investigation, the paper [92] considers the large deflection
problem of variable deformed arc-length beams, also with a uniform flexural rigidity,
but under a point load. In [92], the ends are partially elastically supported against rotation
(it covers both the cases of hinged or clamped ends). Both previously mentioned methods
are also used, and the results obtained are in close agreement. This kind of problem
highlights the possibility of two equilibrium states for a given load, implying the possibility
of a snap-through phenomenon, the existence of a critical load, and a maximum arc-length
for equilibrium. The analytic elastica solution of slightly curved cantilever beams, fixed at
one end, while being deflected under couples and forces of various directions, is evaluated
in [93] using elliptic integrals. It has been shown that for some cases, the solution is very
sensitive to small errors in the calculation of elliptic integrals. An analytic elliptic solution
for the post-buckling response of a linear-elastic and hygrothermal beam, subjected to an
increase in temperature and/or moisture content, is presented in [94]. In [94], the beam
is pinned at both ends, and therefore the extensibility of the beam cannot be ignored.
Additionally, it shows that the critical load is a maximum and, in the post-buckling regime,
the magnitude of the load decreases. The beam theory can be extended to more complex
structures [95].

Other methods using the elastica approximation are useful for more complex loadings.
The paper [96] determines a parametric solution to the elastic pole-vaulting problem,
where the pole is taken to be a thin uniform elastic column with the upper end being
subjected to lateral and transverse forces and a bending moment at the same time as
the bottom end is free to pivot during the vaulting. The parametric solution is given in
terms of tabulated elliptic integrals. The investigation [97] gives a closed-form solution
for the problem of a non-linear elastica and buckling analysis of a straight bar, due to
concentrated and uniformly distributed loads, while the flexural rigidity varies along the
bar. It achieves an integral closed-form solution of the equation governing the equilibrium
of the bar, by applying successive functional transformations. The paper [98] presents
the buckling analysis of an elastic continuous bar on several rigid supports subjected to
end-compressive forces, and assumes that the compressive forces and flexural rigidities
vary from one span to the next. The closed-form solution expressed by elliptic integrals is
derived for each span. The same authors presented an analytic solution for the problem
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of non-linear elastic buckling of a straight bar subjected to bending compression due to
forces and couples at the ends superimposed to a uniformly applied transverse load along
its length in [99], by applying functional transformations. Additionally, the same authors
analysed the problem of non-linear buckling for a straight uniform bar, fixed at its base
and free at its upper end, due to the bar’s own weight in [100]. It yields reliable results in
agreement with the physical problem. The same procedure was used in [101] to study the
problem of non-linear buckling for a straight bar of uniform cross-sections and flexural
rigidity, lying on a continuous elastic medium, and subjected to terminal point-loads and
bending moments. In all the works described above, the effects of transverse deformation
due to axial, lateral, and transverse forces are negligible.

The paper [102] constructs an exact parametric analytic solution for the full non-linear
differential equations of the cantilever elastica due to end loads, end couples, and also
including the effects of transverse deformation, completing, for instance, the work [96].
Translational or rotary springs may be used [103] to brace a beam increasing its critical
buckling load, or to have the opposite effect of decreasing the critical buckling load to
facilitate demolition. The buckling can also be facilitated or opposed by supporting the
beam on a continuous bed of springs [66]. A beam of variable cross-sections can taper
in two directions [104], for example, in the case of a pyramidal beam representing an
airplane wing with chords much larger than the thickness affecting the natural frequencies
of bending modes.

Following this introduction (Section 1) to the Euler–Bernoulli theory of beams, the core
of the paper focuses on geometric non-linearities associated with a large slope of the elastica.
The equation of the elastica of a uniform beam (Section 2) is obtained without restriction
on the slope of the elastica (Section 2.1). The well-known solutions for the linear case of a
small slope are briefly recalled (Section 2.2) because they supply the harmonics for non-linear
corrections (Section 2.3). The linear and non-linear cases are also compared, as concerns the
boundary condition with small and large slopes, respectively, at the free end of a cantilever beam
(Section 2.4). The cantilever beam is considered first (Section 3) to obtain the non-linear shape of
the elastica (Section 3.1) and to compare the linear approximation with non-linear corrections
of all orders (Section 3.2). The non-linear effects on the shape of the elastica are illustrated
using the representation as a superposition of linear harmonics, by truncating the series in
an analytic approximation (Section 3.3), and adding a larger number of terms in a numerical
computation (Section 3.4). The non-linear buckling is also considered for clamped and pinned
beams (Section 4), starting with the non-linear effects of a large slope (Section 4.1), that do
not affect the critical buckling load (Section 4.2), but do change the shape of the elastica by
the generation of harmonics (Section 4.3), illustrated by numerical calculations (Section 4.4).
The conclusion (Section 5) highlights the use of linear buckling harmonics to specify the shape
of the elastica for non-linear buckling with a large slope.

2. Non-Linear Bending of a Beam with Large Slope

The non-linear bending of a beam with a large slope is considered to specify the relation
between the axial tension, bending moment, and transverse force or shear stress (Section 2.1).
The resulting equation of the elastica is solved readily in the linear case of a small slope
(Section 2.2), specifying the harmonics to be used in the non-linear case (Section 2.3). The linear
and non-linear cases of small and large slopes, respectively, are also compared, as concerns
the boundary condition at the free end of a cantilever beam (Section 2.4).

2.1. Bending Moment, Transverse Force and Shear Stress

The transversal distributed and punctual forces F at the end sections, with the longitu-
dinal tension T, cause a bending moment M (denoted in the Figure 4). The variation of the
bending moment −dM along the arc length ds of the elastica is balanced by the transverse
force F, plus the vertical component Ty of the tangential tension T:

− dM =
(

F + Ty
)
ds. (10a)
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The tangential tension and its vertical component are related (Figure 5) by

Ty = T sin θ = T
dζ

ds
, (10b)

where dζ = dy is the vertical displacement. Substitution of the last equation in (10b) yields
the balance of bending moment, transverse force and tangential tension:

F + T
dζ

ds
= −dM

ds
. (10c)

x

y

−M −M− dM

F

T

Figure 4. The bending moment M of a beam is associated with the axial tension T and transverse
force F. Buckling can occur only for compression.

R = 1/k T

Tx

Ty
dy

dx

ds
θ

Figure 5. Sketch of the tangential force and its components with respect to the (x, y) reference frame
of the undeflected beam. The dotted line represents the elastica of the beam.

Using (4), which has the minus sign because the y axis points downwards, leads to:
(i) the transverse force equal to

F =
d
ds

(EIk)− T
dζ

ds
; (11)

(ii) the shear stress defined by the transverse force per unit length

f =
d

dx
d
ds

(EIk)− d
dx

(
T

dζ

ds

)
. (12)

Substituting (5) and (8) in (10c), it follows that the transverse force is related to the
shape of the elastica by

F =
∣∣∣1 + ζ ′

2
∣∣∣−1/2

(
EIζ ′′

∣∣∣1 + ζ ′
2
∣∣∣−3/2

)′
− Tζ ′

∣∣∣1 + ζ ′
2
∣∣∣−1/2

, (13)

and (12) leads to the relation between the shear stress and the shape of the elastica by

f =

[∣∣∣1 + ζ ′
2
∣∣∣−1/2

(
EIζ ′′

∣∣∣1 + ζ ′
2
∣∣∣−3/2

)′]′
−
(

Tζ ′
∣∣∣1 + ζ ′

2
∣∣∣−1/2

)′
. (14)
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The case considered in this paper is of uniform axial tension,

T(x) ∼ const, (15a)

and constant bending stiffness
E(x)I(x) ∼ const. (15b)

A constant bending stiffness (15b) applies: (ii-a) to a homogeneous beam E ∼ const
with uniform cross-section I ∼ const; or (ii-b) to an inhomogeneous beam whose Young
modulus varies along the length inversely to the moment of inertia of the cross-section.
Since buckling occurs only for axial compression T < 0, the buckling parameter p is
defined by

p2 ≡ − T
EI

, (15c)

and has the dimensions of inverse length. It is real for a compression when T < 0 because
p2 > 0; otherwise, it is imaginary for a traction with T > 0 because p2 < 0. For a uniform
beam, the buckling parameter p is constant because EI and T are also constants for that case.

Simplifying the Equation (13) for a uniform beam, the buckling parameter appears in
the transverse force, specifically in the form

F
EI

=
∣∣∣1 + ζ ′

2
∣∣∣−1/2

(
ζ ′′
∣∣∣1 + ζ ′

2
∣∣∣−3/2

)′
+ p2ζ ′

∣∣∣1 + ζ ′
2
∣∣∣−1/2

(16a)

=
∣∣∣1 + ζ ′

2
∣∣∣−1/2

k′ + p2η (16b)

=
∣∣∣1 + ζ ′

2
∣∣∣−1/2

η′′ + p2η. (16c)

It is the first fundamental equilibrium equation for a uniform beam. Simplifying the
Equation (14) for the same type of beams, the buckling parameter also appears in the shear
stress expression, in the form

f
EI

=

[∣∣∣1 + ζ ′
2
∣∣∣−1/2

(
ζ ′′
∣∣∣1 + ζ ′

2
∣∣∣−3/2

)′]′
+ p2

(
ζ ′
∣∣∣1 + ζ ′

2
∣∣∣−1/2

)′
(17a)

=

(∣∣∣1 + ζ ′
2
∣∣∣−1/2

k′
)′

+ p2η′ (17b)

=

(∣∣∣1 + ζ ′
2
∣∣∣−1/2

η′′
)′

+ p2η′. (17c)

It is the second fundamental equilibrium equation for a uniform beam. In both
equations, there are two different types of linearity: (i) all terms are non-linear with respect
to the slope of the elastica ζ ′, given by (2a); (ii) one term is linear if the sine of the angle of
inclination θ is used as a variable,

sin θ =
dy
ds

= ζ ′
∣∣∣1 + ζ ′

2
∣∣∣−1/2

≡ η. (18a)

The curvature (6) is related to (18a) by

k =

(
ζ ′
∣∣∣1 + ζ ′

2
∣∣∣−1/2

)′
= η′, (18b)

that is a non-linear function of the slope of the elastica. Thus, the equation of the elastica for
the transverse force F is: (i) of the third order in terms of the shape of the elastica ζ and has
all non-linear terms in (16a); (ii) of the second order involving some terms linear with an
auxiliary variable η in (16c), namely, the sine of the angle of inclination θ whose derivative
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is exactly the curvature k, as indicated in (18b). Furthermore, the equation of the elastica
for the shear stress f is: (i) of the fourth order in terms of the shape of the elastica ζ and has
all non-linear terms in (17a); (ii) of the third order involving some linear terms with the
sine of the angle of inclination θ in (17c). Thus, the non-linearity does not lie entirely in the
auxiliary variable η, and is preferred to solve the non-linear differential equation in terms
of η, since the degree of the equation is reduced by one.

The third fundamental Equation (4)≡(8) is

M(x) = −EIk = −EIζ ′′
∣∣∣1 + ζ ′

2
∣∣∣−3/2

= −EI
(

ζ ′
∣∣∣1 + ζ ′

2
∣∣∣−1/2

)′
= −EIη′. (19)

The bending moment can be evaluated, again, as a function of ζ or as a function of η.
The linear case of a small slope is reviewed briefly, in Section 2.2, for comparison with the
non-linear case of a large slope, that is the main focus of and occupies the remainder of
the paper.

2.2. Linear Buckling for Small Slope

The linear bending corresponds to the small slope (2a) and leads to the following
consequences: (i) the angle of inclination of the elastica in (18a) simplifies to

η = ζ ′ = θ, (20a)

where the inclination is equal to the derivative of deflection of the beam; (ii) the curvature
k of the elastica, from (18b), simplifies to

k = ζ ′′; (20b)

(iii) the simplification of the curvature leads to the bending moment

M = −EIζ ′′; (20c)

(iv) the transverse force (13) and shear stress (14) simplify, respectively, to

F =
(
EIζ ′′

)′ − Tζ ′, (20d)

f =
(
EIζ ′′

)′′ − (Tζ ′
)′. (20e)

To deduce the last three equations (the constitutive and equilibrium equations),
the only simplification regarded was to consider linear bending, and thence they can
be applied to any type of beam (for instance, it is not necessary to be uniform).

In the case of linear deflection, when (2a) is taken into account, and simultaneously
of a uniform beam, when the Equation (15a,b) are considered (again, when it is valid the
assumptions EI ∼ const and T ∼ const), the transverse force and shear stress simplify
further, respectively, to

F = EIζ ′′′ − Tζ ′, (21a)

f = EIζ ′′′′ − Tζ ′′. (21b)

The beam is elastically stable if, and only if there is no deflection in the absence of
shear stress. Otherwise, the beam is elastically unstable if, and only if there is deflection in
the absence of shear stress. For a uniform beam, considering again the assumptions that T
and EI are both constants, in the absence of shear stress, f = 0, instability is possible only
if the buckling parameter is positive, p2 > 0, in (17c), that is, under compression T < 0,
corresponding to

T = −|T| ⇒ p2 =
|T|
EI

, (22a)



Appl. Mech. 2021, 2 391

and leading to the linear differential equation of fourth order with constant coefficients

ζ ′′′′ + p2ζ ′′ = 0 (22b)

for the shape of the elastica, whose solution is

ζ(x) = A + Bx + C cos(px) + D sin(px), (22c)

where A, B, C and D are the four arbitrary real constants. However, there is also a fifth
indeterminate constant, namely, the buckling parameter p, that is intrinsically related to
the critical axial tension.

For subsequent comparison with the non-linear theory, two sets of well-known results
are quoted from the literature [3,4,7,66] on linear buckling of beams: (i) firstly, the critical
buckling load, that is, the magnitude of the compressive axial load at the onset of buckling,
is highest for a clamped beam,

−T1 =
4π2EI

L2 , (23a)

lowest for a cantilever beam,

−T3 =
π2EI
4L2 , (23b)

and for a pinned beam, the value is in between, because

−T1 > −T2 =
π2EI

L2 > −T3; (23c)

(ii) secondly, the shape of the buckled elastica in the linear approximation is, re-
spectively, ζ1 for the clamped, ζ2 for the pinned, and ζ3 for the cantilever cases, given,
respectively, by

ζ1(x) = b
[

1− cos
(

2πx
L

)]
, (24a)

ζ2(x) = b
[
sin
(πx

L

)]
, (24b)

ζ3(x) = b
[
1− cos

(πx
2L

)]
, (24c)

where the arbitrary real constant b is an amplitude, and L is the length of the beam. The last
results are deduced for the fundamental mode of buckling, that is, for the lowest possible
value of T that buckles the beam. The linear results will be compared in the sequel with
the lowest-order non-linear theory in the next subsection. The fundamental mode shapes
of the buckled elastica using the linear approximation are plotted in the Figure 6.



Appl. Mech. 2021, 2 392

T

L

T

T

T

L/2

L

T

T

L/2

L

Figure 6. The critical buckling load for a beam under compression (Figure 2) is the same in the linear
and non-linear cases of small and large slope, respectively, and depends on the type of support. It
is largest for clamping at both ends (bottom beam), intermediate if both ends are pinned (top-right
beam), and smallest for a cantilever beam clamped at one end and free at the other (top-left beam).

2.3. Lowest-Order Non-Linear Buckling for Large Slope

In the linear case of a small slope without forcing, the elastica satisfies a linear differ-
ential equation with constant coefficients of fourth order for the transverse displacement,
as stated in the Equation (22b). However, in the non-linear case of a large slope without
forcing, regarding the definition (18a) that is equivalent to

ζ ′ = η
∣∣∣1− η2

∣∣∣−1/2
, (25a)

used to derive the non-linear variable ζ as a function of η, the elastica satisfies a non-linear
differential equation with constant coefficients of order three, using the Equation (17c) with
f = 0, (∣∣∣1− η2

∣∣∣1/2
η′′
)′

+ p2η′ = 0, (25b)

using the sine of the angle of inclination as a dependent variable that is non-linear. The last
two expressions are valid for small or large deflections and can be linearised for small
deflection, as in the Section 2.2. However, although the relation (25a) is valid for any type of
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beam because it is a definition, the Equation (25b) is only correct for uniform beams, in the
absence of shear stress (to study the buckling phenomenon). Indeed, only uniform beams
will be studied in the remainder of this paper, and therefore, the comparison between
different theories will be made only for that type of beams.

The differential Equation (25b), for

p2 ∼ const (26a)

because the beam is uniform, has a first integral(
A
2
− p2η

)∣∣∣1− η2
∣∣∣−1/2

= η′′ = η′
dη′

dη
, (26b)

where A is an arbitrary constant. Re-arranging the last expression in the form

2η′dη′ = A
∣∣∣1− η2

∣∣∣−1/2
dη − 2p2|1− η|−1/2ηdη, (26c)

it can be integrated (p. 500 of [105]) as

η′
2
= B + A arcsin η + 2p2

∣∣∣1− η2
∣∣∣1/2

, (26d)

where B is another arbitrary constant. The last equation is still exact for a uniform beam
without shear stress. Henceforth, there are two distinct approximations that can be done.
The linear approximation of a small slope (2a) implies η2 ≤ ζ ′2 � 1 in (18a). Otherwise,
the lowest-order non-linear approximation implies

ζ ′
3 ∼ η3 � 1, (27a)

and if it is applied to (26d), then it results in

η′
2
= B + 2p2 − p2η2 + Aη, (27b)

using only the leading terms of the power series for the square root or binominal
(p. 384 of [65]) and for the arc of circular sine (p. 508 of [84]). The integration of (27b)
introduces another arbitrary constant C in

x + C =
∫ ∣∣∣B + 2p2 + Aη − p2η2

∣∣∣−1/2
dη, (27c)

which relates to the sine of the angle of inclination with the longitudinal coordinate of the
beam, and is valid only for the lowest-order non-linear approximation (27a) and for the
uniform beam (15a,b).

The shape of the elastica, derived without any simplification, is given by the defini-
tion (25a) involving another constant of integration D in

ζ(x) = D +
∫ x

η(ξ)
∣∣∣1− [η(ξ)]2

∣∣∣−1/2
dξ. (28)

Thus, in the linear case of a small slope (2a) and for a uniform beam, the shape of
the elastica is given by (22c), while otherwise, in the lowest-order non-linear approxima-
tion (27a) also for a uniform beam, the shape of the elastica is given by (27c) and (28),
in both cases involving four arbitrary constants plus the indeterminate value p. The four
boundary conditions, two at each end of the beam: (i) specify three constants in terms
of one, that is an arbitrary amplitude; and (ii) determine the eigenvalues p, of which the
smallest specifies the critical buckling load, according to the definition (15c). It will be
investigated in the sequel whether (i) the critical buckling load and (ii) the shape of the
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elastica are equal or different in the linear and non-linear cases of small (2a) and moder-
ate (27a) slopes, respectively. This will be ascertained by considering three classical cases
of support by order of increasing critical buckling load, namely: (i) cantilever beam in the
Section 3; (ii) pinned and clamped beams, both in Section 4. In the case (i) of the cantilever
beam, there is a boundary condition at the free end that is compared next (Section 2.4) in
the linear and non-linear cases of small and large slopes, respectively.

2.4. Linear and Non-Linear Boundary Conditions at a Free End

A cantilever beam, represented in the top-left scheme of the Figure 6, is clamped at
one end, and free at the other end. Four boundary conditions must be known to evaluate
the critical buckling load and the shape of the elastica. For a cantilever beam, the bending
moment at the end of the beam is zero, M(L) = 0, and the transverse force must also
vanish at that point, F(L) = 0. To obtain the force boundary condition at the free end, the
Equation (16a–c) are used. The two aforementioned boundary conditions, regarding (16c)
and (19) respectively, lead to the non-linear boundary conditions in terms of η

η′(L) = 0, (29a)∣∣∣1− [η(L)]2
∣∣∣1/2

η′′(L) + p2η(L) = 0. (29b)

In the linear case of a small slope (2a), the boundary conditions become

ζ ′′(L) = 0, (30a)

ζ ′′′(L) + p2ζ ′(L) = 0. (30b)

On the other hand, in the non-linear case of an unrestricted slope, the free-end bound-
ary condition of a zero-bending moment (19) is in terms of the sine of the inclination of
the elastica

η′(L) = 0 (31a)

or, regarding (18a), in terms of the displacement of the elastica

ζ ′′(L)
∣∣∣1 + [ζ ′(L)

]2∣∣∣−3/2
= 0. (31b)

The free-end boundary condition of transverse force, again (16c) with (25a) for the case of
an unrestricted slope, is

η′′(L) + p2
∣∣∣1− [η(L)]2

∣∣∣−1/2
η(L) = 0, (32a)

or in terms (16a) of the displacement of the elastica

p2ζ ′(L) +
∣∣∣1 + [ζ ′(L)

]2∣∣∣−5/2{
ζ ′′′(L)

(
1 +

[
ζ ′(L)

]2)− 3ζ ′(L)
[
ζ ′′(L)

]2}
= 0. (32b)

The passage from (31a) to (31b) uses the Equation (18a), while the passage from (32a)
to (32b) uses the next relation

η′′ =

(
ζ ′′
∣∣∣1 + ζ ′

2
∣∣∣−3/2

)′
=
∣∣∣1 + ζ ′

2
∣∣∣−5/2[

ζ ′′′
(

1 + ζ ′
2
)
− 3ζ ′ζ ′′

2
]
. (33)

The boundary conditions for the displacement at the free end in the linear and non-
linear cases of small and unrestricted slopes, respectively, of a uniform beam (when the
Equation (15a–c) are valid): (i) coincide for the vanishing of the bending moment because
(30a)=(31b); (ii) however, do not coincide for the transverse force because (30b) 6=(32b),
since the second term in (32b) differs from the first term in (30b).
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3. Non-Linear Buckling of a Cantilever Beam

The non-linear equation of the elastica is integrated first for a cantilever beam (Section 3.1)
specifying the linear approximation (in agreement with Section 3.2). The non-linear corrections
are considered analytically for the lowest-orders (Section 3.3) and numerically for higher orders
(Section 3.4).

3.1. Non-Linear Elastica of a Cantilever Beam

The first integral of the differential equation for the elastica is (26b), arising from the
integration of (25b), that is valid only for a uniform beam (and therefore the parameter p
is constant because T and EI are also constants); however, it can be applied not only for
linear, but also for the non-linear case. It involves a constant A and is rearranged in the
next form: ∣∣∣1− η2

∣∣∣1/2
η′′ + p2η = A/2. (34)

In the case of a cantilever beam, the transverse force must vanish at the free end,
leading to the boundary condition (29b). Comparing to the last expression, then A/2 = 0,
or A = 0. Consequently, the last condition simplifies the second integral (26d). Hence-
forth, in this section, the results are deduced with the lowest-order non-linear approxima-
tion (27a). With this approximation, the Equation (27c) with A = 0 simplifies to

(x + C)
√

B + 2p2 =
∫ ∣∣∣1− q2η2

∣∣∣−1/2
dη =

1
q

arcsin(qη), (35a)

involving the constant

q =
p√

B + 2p2
. (35b)

The primitive (35a) can be written in the form

η(x) =
1
q

sin
[

q(x + C)
√

B + 2p2
]
=

√
2 +

B
p2 sin[p(x + C)]. (36)

Up to this point, two assumptions were used: uniform beam and lowest-order non-
linear approximation. The clamping boundary condition at the fixed end, ζ ′(0) = 0
(the slope of the elastica at that point must be zero), from (18a) which is an exact relation,
implies η(0) = 0, and hence,

0 = η(0) =

√
2 +

B
p2 sin(pC) (37a)

leading to the second result from the boundary conditions,

C = 0. (37b)

One could set 2 + Bp−2 = 0 to verify the last boundary condition, but in that case, η
would be equal to zero along the beam, and we are interested only in non-zero solutions of
η and ζ. Substituting (37b) in (36) and introducing another arbitrary constant,

G ≡
√

2 +
B
p2 , (38a)
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lead to

η(x) = G sin(px). (38b)

In spite of C = 0 being valid, the more general solution of the last boundary condition
would be sin(pC) = 0, and consequently, η = G sin(px) cos(pC). However, in that case,
the successive buckling loads and the shape of the elastica are the same as setting C = 0,
which is simpler. The boundary condition stating that the bending moment vanishes at the
free end, M(L) = 0, repeated here for convenience, is η′(L) = 0 in the non-linear case, and
applied to (38b), we have

η′(x) = pG cos(px), (39a)

that leads to

cos(pL) = 0. (39b)

Thus, the successively buckling loads that make the beam unstable are

p3,nL =

(
n− 1

2

)
π, (39c)

where the first subscript 3 stands for the cantilever case, and the second subscript n stands
for the n-th mode of the buckling.

Consequently, the critical buckling load is evaluated with the lowest possible value of
the buckling parameter, and it is equal to

p3,1 =
π

2L
⇒ −T3 =

π2EI
4L2 , (39d)

which is the same in the linear (23b) and lowest-order non-linear (39d) cases for a cantilever
beam that is free to move at the free end. Knowing the sine of the slope of the elastica η,
the non-linear slope ζ ′3 is obtained substituting (38b) in the exact kinematic relation (25a):

ζ ′3(x) = G sin(px)
∣∣∣1− G2 sin2(px)

∣∣∣−1/2
. (40)

To compare with the linear case, a relation between the constant G and another
constant from the linear results is needed. In the linear case, (ζ ′3)

2 � 1, the factor with the
square root can be omitted. Then, the Equation (40) in the linear case concerning the first
mode of buckling (the results for this mode are shown in the Section 2.3) leads to

ζ ′3(x) = G sin(p3,1x) = G sin
(πx

2L

)
. (41a)

In agreement with the linear result (24c), the arbitrary constants G and b are related by

G =
πb
2L

, (41b)

but generally, the relation must be G = pb.
In the non-linear case, the square root in (40) cannot be omitted. The assumption that

the slope does not exceed unity,
∣∣ζ ′3∣∣ < 1, leads, considering the exact relation (18a), to

G = |η3(x)|max =
∣∣ζ ′3∣∣∣∣∣1 + ζ ′3

2
∣∣∣−1/2

<
∣∣ζ ′3∣∣ < 1, (42)
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and thus, the inverse square root in (40) can be expanded (p. 384 of [84]) in a binomial series∣∣∣1− G2 sin2(px)
∣∣∣−1/2

=
∞

∑
m=0

amG2m sin2m(px) (43)

with coefficients

am ≡ (−1)m
(
−1/2

m

)
=

(−1)m

m!

(
−1

2

)(
−1

2
− 1
)

. . .
(
−1

2
−m + 1

)
=

1
m!

1
2

3
2

. . .
2m− 1

2
=

(2m− 1)!!
m!2m =

(2m− 1)!!
(2m)!!

=
(2m)!

[(2m)!!]2
=

(2m)!
(m!)222m . (44)

The double factorial is used in the coefficients, and its definition with some properties
are reviewed in the next equations:

(2m− 1)!! ≡ (2m− 1)(2m− 3) . . . 5 · 3,

(2m)!! ≡ 2m(2m− 2) . . . 4 · 2 = m!2m,

(2m− 1)!! =
2m(2m− 1) . . . 3 · 2 · 1

2m(2m− 2) . . . 4 · 2 =
(2m)!
(2m)!!

=
(2m)!
m!2m .

(45)

The first seven coefficients are indicated in Table 1.

Table 1. Numerical values for the first seven coefficients of the Equation (44).

Coefficient a0 a1 a2 a3 a4 a5 a6

Numerical value 1
1
2

3
8

5
16

35
128

63
256

231
1024

The Equation (44) applies for m = 1, 2, . . ., and a0 = 1. Thus, the slope of a uniform
cantilever beam under axial compression is given by substituting the Equation (43) in (40)
that is equivalent to

ζ ′3(x) =
∞

∑
m=0

amG2m+1 sin2m+1(px) =
∞

∑
m=0

ζ ′3,m(x). (46)

The leading term m = 0 is the linear slope (deduced from the linear approximation)
by comparing the last result with the Equation (41a). The following terms (Table 1) are
non-linear corrections of increasing order. Furthermore, the displacement can be obtained
by integration of (46), and thus consists of the lowest-order linear approximation plus
non-linear corrections of all orders that are evaluated next. At this point, in spite of having
four boundary conditions for a cantilever beam, only three of them were used: the bending
moment vanishes at x = L, the transverse force also vanishes at the same position, and the
derivative of the elastica (its slope) at the beginning of the beam is zero.

3.2. Linear Approximation and Non-Linear Corrections of All Orders

There is one last boundary condition that was not used yet: the beam is fixed at
its beginning, and hence, the transversal displacement at that point is zero, ζ(0) = 0.
Integrating the Equation (46), the displacement is given by a sum,

ζ3(x) =
∞

∑
m=0

ζ3,m+1(x), (47a)

of terms

ζ3,m+1(x) ≡ amG2m+1
∫ x

0
sin2m+1(pξ)dξ. (47b)
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Note that in the Equation (47a), there is no arbitrary constant of integration that is
equal to zero, because of the boundary condition ζ(0) = 0. Therefore, at this point, all four
boundary conditions were used. The zero-order term is the linear approximation

ζ3,1(x) = a0G
∫ x

0
sin(pξ)dξ =

G
p
[1− cos(px)] =

2GL
π

[1− cos(px)]

= b[1− cos(px)] = 2b sin2
( px

2

)
, (48)

where (39d) and (41b) were used to prove the third and fourth equalities successively in
agreement with (24c). The lowest-order non-linear correction is

ζ3,2(x) = a1G3
∫ x

0
sin3(pξ)dξ =

G3

2

∫ x

0
sin(pξ)

[
1− cos2(pξ)

]
dξ

=
G3

2p

{
1− cos(px) +

1
3

[
cos3(px)− 1

]}
=

G3

6p

{
2− cos(px)

[
3− cos2(px)

]}
(49)

=
G3

12p
{4− cos(px)[5− cos(2px)]} = G3

24p
[8− 9 cos(px) + cos(3px)]

=
G3

12p

[
9 sin2

( px
2

)
− sin2

(
3px

2

)]
where the value of a1, indicated in Table 1, and some elementary trigonometric rela-
tions [105] were used in the determination of ζ3,2.

The two lowest-order terms in (47a) have been evaluated explicitly in (48) corre-
sponding to the first term, and (49) corresponding to the second term, in the case of a
lowest-order non-linear approximation

∣∣ζ ′3∣∣� 1. To estimate the error of the truncation of
the series (47a), the higher-order terms in (47b) may be considered. In order to explicitly
evaluate the m-th order, the expansion of the odd power of sine (p. 335 of [105]) is used as
a sum of sines of multiple angles:

sin2m+1(pξ) = (−1)m2−2m
m

∑
j=0

{
(−1)j

(
2m + 1

j

)
sin[(2m− 2j + 1)pξ]

}
. (50)

Substituting the last expression in the m-th order, the non-linear correction (47b) becomes

ζ3,m+1(x) = amG2m+1
∫ x

0
sin2m+1(pξ)dξ

=
am

p
G2m+1(−1)m2−2m

m

∑
j=0

{
(−1)j

(
2m + 1

j

)
1− cos[(2m− 2j + 1)px]

2m− 2j + 1

}
(51)

=
am

p
G2m+1(−1)m21−2m

m

∑
j=0

{
(−1)j

2m− 2j + 1

(
2m + 1

j

)
sin2

[(
m− j +

1
2

)
px
]}

;

it can be confirmed that substituting m = 0 and m = 1 in the last expression leads, respec-
tively, to (48) and (49). The maximum deflection at the tip, considering the fundamental
mode of buckling and regarding (39d), is given by

ζ3(L) =
2L
π

∞

∑
m=0

{
amG2m+1(−1)m2−2m

m

∑
j=0

(−1)j

2m− 2j + 1

(
2m + 1

j

)}
(52)

that relates the constant G to the maximum deflection.

3.3. Truncation of the Series in the Shape of the Elastica

The exact shape of the buckled cantilever beam is given by the sum of the series (47a),
having infinite terms. The series converges when G < 1 and diverges when G > 1.
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Therefore, G < 1 is a necessary condition to evaluate the series (47a). To obtain accurate
results, only the first terms ζ3,m need to be evaluated, and m can be small. The Table 2
shows the number of iterations (the number of terms of the series) needed to calculate
the sum (47a) with absolute and relative errors smaller than 10−15; that is, the iterations
stop when the difference between two consecutive terms, ζ3,m and ζ3,m+1, is smaller than
10−15, and when the ratio between that difference and the last term evaluated ζ3,m+1 is
also smaller than 10−15. To have an error with such a small order of magnitude, few terms
are needed, for instance, with respect to the fundamental mode of buckling (with n = 0,
for a beam with length L = 0.8, only the first 10 terms are needed). Furthermore, one can
conclude that the number of iterations is intrinsically related to the value G for each case.
When G becomes closer to 1, which is the boundary of convergence of the series, more
iterations are needed to converge with the same error. For instance, looking at the data
of Table 2, the case when more iterations are needed is when n = 2 and L = 0.8, because
it is the case when G is closest to 1. The parameter G is equal to pb = (n− 1/2)πb/L.
Consequently, for the same parameter b, more iterations are necessary to obtain accurate
results for shorter beams and for higher modes of buckling, corresponding to larger slope
and stronger non-linearity, as highlighted in Table 2.

Table 2. Number of terms necessary to evaluate the sum in (47a) with absolute and relative errors
smaller than 10−15, for each length L of the beam and for the first two orders of the buckling load. It
also shows the constant G for each case. The parameter b is equal to 0.1.

Number of Terms | Parameter G

Order n Length L
0.8 1 2 3 4 5 6 7

1 10 | 0.196 9 | 0.157 7 | 0.079 6 | 0.052 5 | 0.039 5 | 0.031 5 | 0.026 5 | 0.022
2 30 | 0.589 21 | 0.471 11 | 0.236 9 | 0.157 8 | 0.118 7 | 0.094 7 | 0.079 6 | 0.067

One specific example of the non-linear theory of buckling is illustrated next in the case of
a cantilever beam, for which the linear approximation to the shape of the elastica (47a) is just
the first term of the sum, substituting m = 0 in (51), or equivalently, the result (48). However,
the exact shape using the lowest-order non-linear approximation is given by the infinite sum
in (47a), and the Table 2 highlights that when G is close to 1, the number of necessary terms
increases very rapidly, possibly requiring a larger computational effort to obtain accurate results.
Therefore, in the case of an arbitrary amplitude, the value G = 0.8, that satisfies (42) being
close to the limit, is chosen to understand if the shape can be deduced with very few terms.
The linear approximation (m = 0) of the shape of the elastica is

pζ3,1(x) = 0.8[1− cos(px)] = 1.6 sin2
( px

2

)
. (53)

The dimensionless variables pζ and px are used for plotting the successive iterations
of the sum (47a) in the Figure 7, to make the results not dependent on the explicit values
of the order of buckling n and the length L. Considering now the non-linear terms,
the corresponding lowest-order non-linear correction (m = 1) is

pζ3,2 = 0.02133[8− 9 cos(px) + cos(3px)]

= 0.04266
[

9 sin2
( px

2

)
− sin2

(
3px

2

)]
, (54)

that is also plotted in the Figure 7.
The total non-linear deflection of the buckled cantilever beam, using the lowest-order

non-linear approximation (also plotted in the Figure 7), shows that the maximum deflection
of the fundamental mode of buckling, that occurs at pL = π/2, is

pζ3,1 = 0.8 (55a)
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in the linear approximation, to which the first non-linear correction adds pζ3,2 = 0.1707,
leading to the total value

p(ζ3,1 + ζ3,2) = 0.9707. (55b)

The linear approximation (53), over its whole length, 0 ≤ px ≤ π/2, leads to a
monotonic shape of the elastica because

dpζ3,1

dx
= 0.8 sin(px) > 0. (56)

The lowest-order non-linear correction (54) is also monotonic, since

dpζ3,2

dx
= 0.064[3 sin(px)− sin(3px)] > 0, (57)

thus increasing the deflection everywhere, and consequently, the maximum deflection
is at the end of the beam. It is at that point where the difference between the linear
approximation and the lowest-order non-linear correction is at its maximum.

The non-linear corrections of all higher orders (47a) are specified by (51), including
the maximum deflection at the tip (52), and since they go beyond the hypothesis

∣∣ζ ′3∣∣� 1,
they serve only as order-of-magnitude estimates of the error caused by truncating the
non-linear series after the first non-linear term. The second-order non-linear correction,
setting m = 2 in (51), would introduce the factor a2 = 3/8 multiplied by a term, giving the
result of order 3G5/64 = 0.015, that is a correction of less than 2% compared with (55b).
This would be hardly visible in the plot of the Figure 7 that is limited to the sum of the linear
approximation (53) plus the lowest-order non-linear correction (54). Thus, the buckled
shape of a cantilever beam, for 0 ≤ px ≤ π/2, is given exactly by (51) to all orders in
the amplitude G, with the lowest-order non-linear approximation consisting of the linear
approximation (48) and lowest-order non-linear correction (49). The higher-order terms
go beyond the approximation

∣∣ζ ′3∣∣ � 1 and apply only as an indication of the order
of magnitude of the error due to stopping at the lowest-order non-linear correction; for
example, the order of magnitude of the lowest-order non linear approximation is sufficient,
summing (53) with (54) in the case G = 0.8 to obtain the shape of the elastica using only
the first two iterations (Figure 7) with less than 2% in the accuracy error.

0.1707 0.8 0.9707

π/2
pζ3,2 pζ3,1

p(ζ3,1 + ζ3,2)

pζ

px

Figure 7. Different mode shapes of the buckled elastic cantilever beam for the fundamental mode
of buckling.

The non-linear shape of the buckled elastica in the post-buckling regime can be
represented as a superposition of harmonics of the elastica in the linear approximation.
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In the case illustrated of a cantilever beam with moderate non-linearity, the buckled shape
is approximated by a superposition of the fundamental and first harmonic with a suitable
ratio of the amplitudes of the two terms, calculated using the method detailed in this paper.

3.4. Numerical Results for the Buckling of a Cantilever Beam

The Figures 8–10 are obtained using many more iterations of the series (47a) than the
first two terms; they are obtained with 30 terms, that is, calculating the first 30 terms of
the series, to obtain more accurate results, although the difference is not as significant as
using only the first two terms. The figures show a solution for each case of the differential
equation that specifies the shape of the elastica of a cantilever beam. To obtain the solution,
it was assumed that C = 0; however, a more general condition would be sin(pC) = 0,
leading to η = G sin(px) cos(pC) with cos(pC) = ±1. The plots of the figures are obtained
with cos(pC) = 1, but one can assume cos(pC) = −1, meaning that −η is also a valid
solution, and consequently, −ζ. Therefore, ζ and −ζ are the two possible solutions for each
case (in the plots, only one of them is sketched), meaning that the beam can buckle on one
side or on the opposite side with equal probability.

The Figure 8 shows the effect of varying the indeterminate real constant b on the
several mode shapes of the buckled elastic cantilever beam for the first four orders of
buckling. The constant b only serves to obtain numerical results of ζ and does not influence
the shape of the elastica. The effect of b is only on the magnitude of the elastica, not altering
the positions of maximum and minimum deflection of the beam. These observations are
valid independently of the order n and length of the beam L. For the fundamental mode of
buckling, the shape of the beam increases monotonically, leading to a maximum amplitude
at the tip, and for higher modes of buckling, the shape oscillates along the beam, leading to
alternate peaks and nulls of the oscillation. Increasing the order n leads to more peaks and
nulls because the period of the trigonometric functions is shorter.

The effect of length L on the shapes of the buckled elastic cantilever beam for the
first four orders of buckling is shown in the Figure 9. Changing the length L does not
significantly influence the values of maximum deflection, although this effect is more
significant for higher modes of buckling. For longer beams, the maximum deflection of the
buckled beam is lower. The reason is because according to the Equation (51), each term
of the series (47a) is proportional to G2m = (pb)2m, and consequently, is proportional to
L−2m. The length L has a more significant effect in the positions of maximum deflection
of the beam. While L is increasing, the period of the sine functions also becomes longer,
and therefore, looking at the plots of Figure 9 in a down-top approach, one can conclude
that the first maximum occurs for the shorter beam, while the last maximum occurs for the
longer beam.

In the Figure 10, the difference between the linear approximation (m = 0) and the
higher-order terms of the non-linear approximation (m ≥ 1) is shown for several lengths
and for the first four orders of buckling. The linear approximation is less accurate for
shorter beams and for higher orders of buckling. It is the same conclusion of Table 2.
According to the Table 2, more iterations are needed for shorter beams and for higher
values of n, and therefore, the difference induced by the non-linear terms of the series (47a)
is higher for these cases. A shorter beam and higher-order modes lead to “ripples” with a
large slope (see Figure 2), and thus, larger non-linear effects. Furthermore, the maximum
difference between the two levels of approximation occurs at the extreme amplitudes of
the deformation of the beam, independently of the parameters n and L. The maximum
difference therefore occurs when the derivative of ζ is zero, and is again more noticeable
for shorter beams and higher values of n. For the fundamental mode of buckling (n = 1),
the difference is negligible, and therefore, one can use the linear approximation to obtain
accurate results. Moreover, comparing the two approximations, the beam buckles more
when the lowest-order non-linear approximation is used than the linear approximation;
that is, for the same axial tension and parameters of the beam, the value of the deflection
obtained with the linear approximation is lower than with the non-linear approximation.
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Consequently, the linear approximation underestimates the strength of the buckling loads,
and the rigidity of the beam appears to be higher in this case.
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Figure 8. Different mode shapes of the buckled elastic cantilever beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.
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Figure 9. Different mode shapes of the buckled elastic cantilever beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.
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Figure 10. Comparison of the mode shapes of the buckled elastic cantilever beam assuming a small
slope (thick lines), (ζ ′)2 � 1, or assuming the lowest-order non-linear slope (thin lines), (ζ ′)3 � 1,
for the four lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the
length of the beam is L = 2 or L = 3.

The lowest-order non-linear theory of the elastica of a buckled beam (Section 2)
is extended next from the cantilever beam (Section 3) to pinned and clamped beams
(Section 4).

4. Non-Linear Buckling of Clamped and Pinned Beams

The lowest-order non-linear theory of buckling (Section 4.1) applies not only to a
cantilever beam (Section 3), but also to clamped and pinned beams (Section 4.2), showing
that in all cases, the critical buckling load is the same as in the linear case (Section 4.3),
but the shape of the buckled elastic is not due to the generation of linear harmonics, that is
illustrated numerically (Section 4.4).

4.1. Non-Linear Effects of Large Slope

The critical buckling load for a cantilever beam was shown to coincide in the lin-
ear (23b) and lowest-order non-linear (39d) cases. Two possible explanations are that: (i) a
cantilever beam can move at the free end; or (ii) the buckling is a linear phenomenon, and
thus its onset is not affected by non-linear effects. The first explanation (i) can be tested
by determining the critical buckling load of non-cantilever beams using the lowest-order
non-linear theory. For a non-cantilever beam, the simplification A = 0 does not hold,
because F(L) = 0 is not a boundary condition for pinned nor clamped beams. In the Equa-
tion (27c), valid for uniform beams and simultaneously using the lowest-order non-linear
approximation, the argument of the square root is written as

2p2 + B + Aη − p2η2 = 2p2 + B +
A2

4p2 −
(

pη − A
2p

)2
. (58)

The constant G is now defined by

G2 ≡ 2 +
B
p2 +

(
A

2p2

)2
, (59a)
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so that in the case of a cantilever beam, A = 0 and then G coincides with the earlier
definition (38a), and in (58) appears the square of a new dependent variable

z = η − A
2p2 . (59b)

Substitution of (59a) and (59b) in (27c) leads to the integration (p. 501 of [84]):

p(x + C) =
∫ dη√

G2 − z2
=

1
G

∫ dz√
1− z2/G2

= arcsin
( z

G

)
. (60)

Inverting (60) and using the new variables (59a,b) specifies the sine of the slope,
given by

η = H + G sin[p(x + C)], (61a)

and specifies the respective curvature and the bending moment, using (18b), given by

M = −EIGp cos[p(x + C)] (61b)

with amplitudes

H =
A

2p2 , (61c)

G2 = 2 +
B
p2 + H2. (61d)

The three arbitrary constants (A, B, C) may be replaced by (H, G, C), and the
Equation (61a–d) are valid for uniform clamped and pinned beams, considering the lowest-
order non-linear approximation. Although H and G can simultaneously be zero, η would
also be equal to zero and be a valid solution, but we are interested in only non-zero
solutions of η and ζ.

4.2. Coincidence of Linear and Non-Linear Critical Buckling Loads

In the case of a beam clamped at both ends (bottom beam of the Figure 6), from (18a)
follow the boundary conditions

η(0) = 0, η(L) = 0, (62a)

stating that the slope is zero at the start and end of the beam, and the two boundary
conditions imply by (61a) that

H + G sin(pC) = 0, (62b)

H + G sin(pC + pL) = 0. (62c)

The compatibility of (62b,c) requires

sin(pC) = sin(pC + pL), (63a)

that leads to the next buckling forces:

p1,nL = 2nπ, (63b)
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where the subscript 1 stands for a clamped beam; thus, the critical buckling load for a
clamped beam is determined by substituting the lowest possible value, n = 1, to the
last expression,

p1,1 =
2π

L
. (63c)

By comparing the results (23a) and (63c), the critical buckling load for the uniform
clamped beam is the same in the linear theory and in the lowest-order non-linear theory.

From (61a), the curvature of the elastica (18b) is given by

k(x) = pG cos[p(x + C)]. (64a)

In the case of a beam pinned at both ends (top-right beam of the Figure 6), the vanish-
ing of the curvature at the start and end of the beam,

k(0) = 0, k(L) = 0, (64b)

leads to

cos(pC) = 0 (65a)

and

cos(pC + pL) = 0 (65b)

that are compatible for

p2,nL = nπ, (65c)

where the subscript 2 stands for a pinned beam; thus, the critical buckling load for a pinned
beam is obtained by substituting the lowest possible value n = 1 in the last expression, and
is the same in the linear (23c) and lowest-order non-linear theories,

p2,1 =
π

L
. (65d)

This dismisses the conjecture (i) and supports the conjecture (ii) at the beginning of
this section, showing that the critical buckling load coincides in the linear and lowest-order
non-linear theories because buckling is an instability triggered at linear level. The results
for the linear theory are indicated in (23a–c). The coincidence of the critical buckling loads
does not extend to the shape of the buckled elastica (Section 4.3) because the square of the
slope appears in the curvature in (8).

4.3. Non-Linear Effect of the Generation of Harmonics in the Shape of the Buckled Elastica

The lowest-order non-linear approximation for the slope suggests (27a) includes one
order beyond the linear approximation, for the shape (28) of the elastica

ζ(x) =
∫ x

0
η(ξ)

{
1 +

1
2
[η(ξ)]2

}
dξ. (66)

The constant D can be omitted either for clamped or pinned beams, because the
transversal displacement is zero at the start of both beams, ζ(0) = 0. The substitution
of (61a) leads to



Appl. Mech. 2021, 2 406

ζ(x) =
∫ x

0

[
H
(

1 +
H2

2

)
+ G

(
1 +

3H2

2

)
sin(pξ + pC)

+
3HG2

2
sin2(pξ + pC) +

G3

2
sin3(pξ + pC)

]
dξ. (67)

The change of variable

Ψ = pξ + pC (68a)

leads to

pζ(x) =
∫ px+pC

pC

[
H
(

1 +
H2

2
+

3G2

4

)
+ G

(
1 +

3H2

2
+

G2

2

)
sin Ψ

− 3HG2

4
cos(2Ψ)− G3

2
sin Ψ cos2 Ψ

]
dΨ. (68b)

Some trigonometric relations [105] are used to allow immediate integration:

ζ(x) = H
(

1 +
H2

2
+

3G2

4

)
x +

G
p

(
1 +

3H2

2
+

G2

2

)
[cos(pC)− cos(px + pC)]

+
3HG2

8p
[sin(2pC)− sin(2px + 2pC)] +

G3

6p

[
cos3(px + pC)− cos3(pC)

]
. (69)

To deduce the last equation, valid for uniform clamped or pinned beams and using the
lowest-order non-linear approximation, only one boundary condition was used, ζ(0) = 0,
when there was a total of four boundary conditions to be used. The shape of the elastica (69)
involves the buckling parameter or eigenvalue p and the constants G, H and C that are
four values to be determined, while there are three boundary conditions to be applied.
Consequently, with four unknowns and three boundary conditions, there is always an
arbitrary constant in the final results of the elastica, and thus it is only possible to determine
its shape, but not explicit values.

In the case of the clamped beam, the possible buckling loads are given by the Equa-
tion (63b), and using those values on the Equation (69), two boundary conditions have
implicitly been used because the value of p is deduced from two boundary conditions,
as demonstrated in the Section 4.2. The fourth and last boundary condition to be used
for the clamped beam is ζ(L) = 0. For the successive values of p in the case of a
clamped beam, sin(pL) = 0 and cos(pL) = 1. Consequently, for the clamped beam,
cos(pL + pC) = cos(pC) and sin(2pL + 2pC) = sin(2pC). These two results are impor-
tant to apply the last boundary condition. Substituting it in (69) and knowing the last two
results, the first relation between constants is

H
(

1 +
H2

2
+

3G2

4

)
= 0; (70a)

the second relation is one of (62b) or (62c), for example, the first one which is simpler and
is repeated here,

H + G sin(pC) = 0. (70b)

The two previous relations express two constants in terms of the third constant.
The pair of equations has two solutions other than the trivial case G = 0 = H, namely: (i)
choosing H = 0, then, from (70b) follows sin(pC) = 0; (ii) otherwise, from (70a), one can
set G2 = −4/3− 2H2/3, and consequently, the Equation (70b) implies csc(pC) = −G/H.
However, in the case (ii), independently of the value H, the real constant G2 is negative,
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which is an impossible condition. Therefore, only the case (i) is possible, setting H = 0,
and consequently, sin(pC) = 0 with cos(pC) = ±1. Regarding these last conditions in the
Equation (69), the shape of the elastica for a clamped beam, assuming cos(pC) = 1, is

ζ1(x) =
G
p

(
1 +

G2

2

)
[1− cos(px)] +

G3

6p

[
cos3(px)− 1

]
. (71)

Assuming cos(pC) = −1 would lead to the solution −ζ2, that is also a valid shape of
the elastica.

In the case of a pinned beam, the successive valid buckling loads (65c) were inferred
from two boundary conditions, as explained in the Section 4.2. The fourth and last bound-
ary condition to be used is again ζ(L) = 0. Knowing that the buckling parameter is
p = nπ/L, then sin(pL) = 0 and cos(pL) = 1; consequently, sin(2pL + 2pC) = sin(2pC),
and therefore the last boundary condition leads to

0 = H
(

1 +
H2

2
+

3G2

4

)
+

G
p

(
1 +

3H2

2
+

G2

2

)
[cos(pC)− cos(pL + pC)]

+
G3

6p

[
cos3(pL + pC)− cos3(pC)

]
; (72)

the condition (65a,b) (the other boundary conditions indicated in the Section 4.2) sim-
plify (72) to (70a), and for the same reason as in the clamped beam, H is also zero for
the pinned beam. Hence, the shape of the elastica for this case is (69) with H = 0 and
cos(pC) = 0, and then simplifies to

ζ2(x) =
G
p

(
1 +

G2

2

)
sin(px)− G3

6p
sin3(px). (73)

To deduce the above expression, it was assumed that sin(pC) = 1, but it is also possible
to assume sin(pC) = −1, meaning that not only ζ3, but also −ζ3 are valid solutions of the
differential equation.

Thus, the shape of the buckled elastica in the lowest-order non-linear theory, therefore
assuming (27a), is given by (69) for a uniform beam clamped or pinned at the two ends,
and then the sine of the slope (18a) of the buckled elastica in both beams is given by (61a).
The critical buckling load is the same in linear and lowest-order non-linear theories, and is
equal to (23a) or (23c) for a beam clamped or pinned, respectively. With respect to the
shape of the elastica, the three constants (G, H and C), for a clamped beam, satisfy H = 0
and sin(pC) = 0; for a pinned beam, they satisfy H = 0 and cos(pC) = 0. In all the cases,
there is one undetermined constant, namely G, and in both situations the parameter can be
related to the parameter of linear approximation, b. The absence of non-linear effects on
the critical buckling load and the presence of non-linear effects on the shape of the elastica
can be explained in terms of the non-linear generation of harmonics, as shown next.

In the simplest case of a cantilever beam (39c), the fundamental mode (24a) is the
particular case n = 1 of the succession (39c) of buckling harmonics

ζ3,n(x) = Q
{

1− cos
[

πx
L

(
n− 1

2

)]}
, (74a)

using the linear approximation in the last equation and with increasing loads of buckling

−T3,n =
π2EI

L2

(
n− 1

2

)2
= −4T3,1

(
n− 1

2

)2
. (74b)

The critical buckling load (23b) is the lowest load that corresponds to the fundamental
buckling mode (24c). The non-linear theory (47a) leads to the generation of harmonics (51),
changing the shape of the buckled elastica, but not the lowest critical buckling load.
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In the case of clamped beams, where the equation (63b) can be used, and considering
the linear approximation, there is also a succession of buckling harmonics,

ζ1,n(x) = Q
[

1− cos
(

2πnx
L

)]
, (75a)

with increasing loads

−T1,n =
4π2EIn2

L2 = −n2T1,1, (75b)

defining again the critical buckling load being the lowest load, which is equal to (23a) and
corresponds to the fundamental buckling mode (24a).

In the case of pinned beams, using in this case the equation (65c) and again the linear
approximation, a succession of buckling harmonics also exists,

ζ2,n(x) = Q sin
(nπx

L

)
, (76a)

with increasing loads

−T2,n =
π2EIn2

L2 = −n2T2,1, (76b)

and the critical buckling load in this type of beam is equal to (23c) that corresponds to the
fundamental buckling mode (24b).

Otherwise, although the critical buckling loads are the same, the shape of the elastica
changes if the linear approximation is not used. Considering the lowest-order non-linear
approximation, for the clamped beam, the shape of the elastica (71), for instance when
assuming n = 1 to deduce the fundamental mode of buckling, is given by

ζ1(x) =
GL
2π

(
1 +

G2

2

)[
1− cos

(
2πx

L

)]
− G3L

12π

[
1− cos3

(
2πx

L

)]
. (77a)

For the pinned beam, the shape of the elastica (73), assuming again the fundamental
mode, therefore using in this case the Equations (65d), is given by

ζ2(x) =
GL
π

(
1 +

G2

2

)
sin
(πx

L

)
− G3L

6π
sin3

(πx
L

)
. (77b)

For the cantilever beam, and assuming again the fundamental mode, the lowest-order
non-linear approximation is the sum of (48) and (49), ζ3(x) = ζ3,1(x) + ζ3,2(x), leading to

ζ3(x) =
2GL

π

[
1− cos

(πx
2L

)]
+

G3L
π

[
1− cos

(πx
2L

)
+

cos3(πx
2L
)
− 1

3

]

=
2GL

π

(
1 +

G2

2

)[
1− cos

(πx
2L

)]
− G3L

3π

[
1− cos3

(πx
2L

)]
, (78)

that coincides with the case equivalent to (75a) of clamping at x = 0 with the free end
at x = L implying A = 0 and H = 0, hence following the conditions A/2 = 0 and
H = A/

(
2p2).

4.4. Numerical Results for the Buckling of a Clamped and Pinned Beams

The Figures 11–13 are obtained using the exact expression (71) and show the shape
of the elastica using the lowest-order non-linear approximation for the clamped beams.
To obtain the solution, it was assumed that cos(pC) = 1; however, a more general condition
would be cos(pC) = ±1, leading to ζ = ±ζ1 with ζ1 given by the expression (71). The plots



Appl. Mech. 2021, 2 409

of the figures are obtained with cos(pC) = 1, but cos(pC) = −1 can also be assumed,
meaning that −ζ1 is also a valid solution. Therefore, ζ1 and −ζ1 are the two possible
solutions for each case (in the plots, only one of them is sketched), meaning that the beam
can buckle on both sides with equal probability.

The Figure 11 shows the effect of varying the indeterminate real constant b on the
several mode shapes of the buckled elastic clamped beam for the four first orders of
buckling. The constant b, as in the case of a cantilever beam, only serves to specify the
amplitude of ζ1 and does not influence the shape of the elastica. The effect of b is only
on the magnitude of the elastica, not altering the positions of maximum and minimum
deflection of the beam. These observations are valid independently of the order n and
length of the beam L. However, for the fundamental mode of buckling, the shape of the
beam does not increase monotonically, and the maximum amplitude is not at the tip, but is
at the middle span of the beam. Not only for the fundamental mode, but also for higher
modes of buckling, the shape oscillates along the beam, leading to alternate peaks and
nulls of the oscillation. Increasing the order n leads to more peaks and nulls because the
period of the trigonometric functions is shorter. The number of peaks and nulls (with nulls
meaning points where there is no deflection) are, respectively, n and n + 1, where n is the
order of the mode (two nulls are at the beginning and end of the beam due to the imposed
boundary conditions on the displacement).

The effect of length L on the shapes of the buckled elastic clamped beam for the first
four orders of buckling is shown in the Figure 12. As in the case of the clamped beam,
changing the length L does not significantly influence the values of maximum deflection,
although this effect is more significant for higher modes of buckling. For longer beams,
the maximum deflection of the buckled beam is higher. According to the equation (71),
and in agreement to the linear approximation, the relation between the constants G and p
is given by the relation

G
(

1 +
G2

2

)
= pb (79a)

and therefore the Equation (71) can be simplified to

ζ1 = b[1− cos(px)] +
G3

6p

[
cos3(px)− 1

]
. (79b)

Keeping constant the variables n and b, from (79a) for G2 � 1, then G ∼ p, and thus
G3/p ∼ p2 ∼ 1/L2 decreases with increasing length of the beam. Thus, the coefficient in
the second term on the right-hand side of (79b) decreases for increasing L, and since the
term in square brackets is negative, the value of ζ1 increases. Therefore, the non-linear
correction in the second term on the right-hand side of (79b) leads to a larger maximum
deflection for the increasing length of the beam, as seen in Figure 12. The length L has a
more significant effect in the positions of maximum deflection of the beam. As in the case
of a cantilever beam, while L is increasing, the period of the sine functions also becomes
longer, and therefore, looking at the plots of Figure 12 from a down-top approach, one
can conclude that the first maximum occurs for the shorter beam, while the last maximum
occurs for the longer beam.

In the Figure 13, the difference between the linear approximation and the lowest-order
non-linear approximation is shown for several lengths and for the first four orders of
buckling. The linear approximation is less accurate for shorter beams and for higher orders
of buckling. It is the same conclusion as in the case of a cantilever beam. Furthermore,
the maximum difference between the two levels of approximation occurs at the extreme
amplitudes of the deformation of the beam, independently of the parameters n and L.
The maximum difference therefore occurs when the derivative of ζ is zero, and again is
more noticeable for shorter beams and higher values of n. For the fundamental mode
of buckling (n = 1), the difference is negligible, and therefore, one can use the linear
approximation to obtain accurate results. Moreover, comparing the two approximations,
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the beam buckles less when the lowest-order non-linear approximation is used than the
linear approximation; that is, for the same axial tension and parameters of the beam,
the value of the deflection obtained with the linear approximation is higher than with
the non-linear approximation (it is opposite in the case of cantilever and clamped beams).
Consequently, the linear approximation overestimates the strength of the buckling loads,
and the rigidity of the beam appears to be lower in this case.
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Figure 11. Different mode shapes of the buckled elastic clamped beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.
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Figure 12. Different mode shapes of the buckled elastic clamped beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.
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Figure 13. Comparison of the mode shapes of the buckled elastic clamped beam assuming small
slope (thick lines), (ζ ′)2 � 1 or assuming a lowest-order non-linear slope (thin lines), (ζ ′)3 � 1,
for the four lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the
length of the beam is L = 1 or L = 2.

The Figures 14–16 were obtained using exactly the expression (73), and show the
shape of the elastica using the lowest-order non-linear approximation for the pinned beams.
To obtain the solution, it was assumed that sin(pC) = 1; however, a more general condition
would be sin(pC) = ±1, leading to ζ = ±ζ2 with ζ2 given by the expression (73). The plots
of the figures are obtained with sin(pC) = 1, and assuming instead sin(pC) = −1 means
that −ζ2 is also a valid solution. Therefore, ζ2 and −ζ2 are the two possible solutions for
each case (in the plots, only one of them is sketched), meaning that the beam can buckle on
the one side or in a symmetric way with equal probability.

The Figure 14 shows the effect of varying the indeterminate real constant b on the
several mode shapes of the buckled elastic clamped beam for the four first orders of
buckling. The conclusions about the effect of varying b are the same as in the case of
clamped beams. The number of peaks is equal to n, and the number of nulls (points where
there is no deflection) is equal to n + 1, where n is the order of the mode.

The effect of length L on the shapes of the buckled elastic pinned beam for the first
four orders of buckling is shown in Figure 15. In this case, changing the length L does
not significantly influence the values of maximum deflection, even for higher modes of
buckling. By increasing the length of the beam, the maximum deflection of the buckled
beam remains almost constant. As in the case of a cantilever and clamped beams, while L
is increasing, the period of the sine functions also becomes longer, and therefore, looking at
the plots of Figure 15 from a down-top approach, one can conclude that the first maximum
occurs for the shorter beam, while the last maximum occurs for the longer beam.

In the Figure 16, the difference between the linear approximation and the lowest-order
non-linear approximation is shown for several lengths and for the first four orders of
buckling. The linear approximation is less accurate for shorter beams and for higher orders
of buckling. Moreover, comparing the two approximations, the beam buckles more when
the lowest-order non-linear approximation is used than the linear approximation; that is,
for the same axial tension and parameters of the beam, the value of the deflection obtained
with the linear approximation is lower than with the non-linear approximation (it is similar
to the case of the cantilever beam and opposite to the case of a pinned beam). Consequently,
the linear approximation underestimates the strength of the buckling loads, and the rigidity
of the beam appears to be higher in this case. These conclusions are the same as in the
cantilever beam and opposite to the pinned beams.
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Shorter beams and higher-order modes lead to “ripples” with larger slope (Figure 2)
and stronger non-linear effects for all cases of support (cantilever, pinned or clamped).
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Figure 14. Different mode shapes of the buckled elastic pinned beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the indeterminate constant b. The length of the beam is L = 5.
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Figure 15. Different mode shapes of the buckled elastic pinned beam for the four lowest buckling
forces, n = 1, . . . , 4, as functions of the length L of the beam. The indeterminate constant is set as
b = 0.1.
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Figure 16. Comparison of the mode shapes of the buckled elastic pinned beam assuming a small
slope (thick lines), (ζ ′)2 � 1 or assuming a lowest-order non-linear slope (thin lines), (ζ ′)3 � 1,
for the four lowest buckling forces, n = 1, . . . , 4. The indeterminate constant is set as b = 0.1, and the
length of the beam is L = 1 or L = 2.

5. Conclusions

For a cantilever or pinned or clamped beam, the linear buckling (using the linear
approximation) corresponds to a succession of increasing axial loads, given, respectively,
by (74b), (75b), and (76b), and corresponding harmonics, given, respectively, by (74a), (75a),
and (76a) for the buckled shape of the elastica. Buckling first occurs for the smallest axial
load corresponding to the fundamental buckled shape. The non-linear effect is to add
harmonics to the fundamental mode; therefore, the first consequence is: (i) not changing the
critical buckling load, that remains the lowest; (ii) changing the buckled shape of the elastica
by superimposing on the linear fundamental mode its harmonics with specified amplitudes.
The non-linear shape of the buckled elastica has been illustrated: (a) for cantilever, pinned
and clamped beams, respectively, in the Figures 8–16; (b) each figure consists of four panels,
one each for the fundamental mode n = 1, and for the next three modes n = 2, 3, 4; (c) the
first of each set of the three figures, namely, the Figures 8, 11 and 14, shows the effect of
changing amplitudes among four values; (d) the second of each set of the three figures,
namely, the Figures 9, 12 and 15, shows the effect of changing the length of the beam
among four values; (e) the last of each set of three figures, namely, the Figures 10, 13 and 16,
indicates the magnitude of non-linear effects relative to the linear approximations. In all
cases, the non-linear effects are larger for higher-order modes of shorter beams, leading
to “ripples” with a large slope (Figure 2) compared with the smoother or less undulated
fundamental mode (Figure 1).

The Table 3 compares the values of the successive loads (the first five orders) that can
buckle the beam for the three cases studied, between the linear and lowest-order non-linear
approximations. Because the expressions to deduce the buckling loads are exactly the
same in the two approximations, the Table 3 shows that the critical values obtained in this
paper are exactly the same as that in the literature [3,4,7,66] which considers linearisation
of the equations.
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Table 3. Successive buckling orders for clamped, pinned and cantilever beams, and comparison of
numerical values between the method proposed on this paper and the cited literature [3,4,7].

Buckling orders
(
×EI/L2)

Beam Reference 1st 2nd 3rd 4th 5th

Clamped Present method 39.478 157.914 355.306 631.655 986.960
Literature [3,4,7] 39.478 157.914 355.306 631.655 986.960

Pinned Present method 9.870 39.478 88.826 157.914 246.740
Literature [3,4,7] 9.870 39.478 88.826 157.914 246.740

Cantilever Present method 2.467 22.207 61.685 120.903 199.859
Literature [3,4,7] 2.467 22.207 61.685 120.903 199.859

The critical buckling load can be changed by using translational or rotational springs
that favour or oppose buckling [103], and the shape of the buckled elastica is further
modified by transverse concentrated or distributed forces [65]. The two aspects of (i) the
critical buckling load and (ii) the shape of the buckled elastica are implicit in the vast
literature on non-linear buckling of beams, and have been made explicit using the theory of
Euler–Bernoulli beams in its simplest form. The Tables 4–6 show the maximum numerical
absolute errors between the linear approximation, used in the vast literature, and the
lowest-order non-linear approximation, used in this paper, for several lengths L of the
beam, for the first four orders of buckling n and for each type of beam. For all the three
types of beams, the difference is more significant for shorter beams and for higher orders
of buckling.

Table 4. Maximum difference between the linear and lowest-order non-linear approximations of
the deformation of the buckled clamped beam for several lengths of the beam and for the first four
orders of the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

Order n Length L

1 2 3 4 5 6 7

1 0.866 0.288 0.137 0.079 0.051 0.036 0.027
2 1.909 0.866 0.469 0.288 0.193 0.137 0.102
3 2.612 1.423 0.861 0.563 0.392 0.286 0.217
4 3.131 1.909 1.252 0.866 0.626 0.469 0.363

Table 5. Maximum difference between the linear and lowest-order non-linear approximations of the
deformation of the buckled pinned beam for several lengths of the beam and for the first four orders
of the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

Order n Length L

1 2 3 4 5 6 7

1 0.144 0.040 0.018 0.010 0.007 0.005 0.003
2 0.433 0.144 0.069 0.040 0.026 0.018 0.013
3 0.0714 0.283 0.144 0.085 0.056 0.040 0.029
4 0.955 0.433 0.235 0.144 0.096 0.069 0.051
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Table 6. Maximum difference between the linear and lowest-order non-linear approximations of the
deformation of the buckled cantilever beam for several lengths of the beam and for the first four
orders of the buckling load. The parameter b is equal to 0.1. The results are multiplied by 100.

Order n Length L

1 2 3 4 5 6 7

0 0.083 0.021 0.009 0.005 0.003 0.002 0.002
1 1.716 0.383 0.167 0.093 0.059 0.041 0.030
2 6.975 1.135 0.477 0.263 0.167 0.085 0.079
3 - 2.484 0.976 0.528 0.332 0.229 0.167

The solution of (8) shows that the exact non-linear shape of the elastica is a superposi-
tion of harmonics of the linear problem (9) where: (i) the fundamental buckling mode is
determined from the linear approximation (ζ ′)2 � 1; and (ii) the generation of harmonics
is a non-linear effect. The present approach to the non-linear theory of bending with a large
scale of Euler–Bernoulli beams thus uses an approach that is different from the classical and
more recent research, in that it represents non-linear effects as a generation of harmonics.

The representation of the non-linear buckled elastica by a series of linear harmonics is
an alternative to the classical solutions in terms of elliptic functions. This is an example
of the fact that the solution of the same problem can have quite different representations.
Two equivalent representations can be quite different in terms of the information they
highlight, and this is the case here. There are three main differences: (i) the use of a
series of elementary functions is simpler than the use of special functions; (ii) the elliptic
functions are difficult to visualize, whereas the linear harmonics are more intuitive; (iii) the
decomposition into linear harmonics shows, through their amplitudes, which are excited
most, and give a greater contribution to the final shape of the elastica. The latter information
(iii) is totally missing from the solution in terms of elliptic functions. Among the different
solutions of the same problem, it is often the simplest one that is most illuminating.
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