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Abstract: Explainable Artificial Intelligence (XAI) has emerged as a crucial research area to address
the interpretability challenges posed by complex machine learning models. In this survey paper,
we provide a comprehensive analysis of existing approaches in the field of XAI, focusing on the
tradeoff between model accuracy and interpretability. Motivated by the need to address this tradeoff,
we conduct an extensive review of the literature, presenting a multi-view taxonomy that offers a new
perspective on XAI methodologies. We analyze various sub-categories of XAI methods, considering
their strengths, weaknesses, and practical challenges. Moreover, we explore causal relationships
in model explanations and discuss approaches dedicated to explaining cross-domain classifiers.
The latter is particularly important in scenarios where training and test data are sampled from
different distributions. Drawing insights from our analysis, we propose future research directions,
including exploring explainable allied learning paradigms, developing evaluation metrics for both
traditionally trained and allied learning-based classifiers, and applying neural architectural search
techniques to minimize the accuracy–interpretability tradeoff. This survey paper provides a compre-
hensive overview of the state-of-the-art in XAI, serving as a valuable resource for researchers and
practitioners interested in understanding and advancing the field.

Keywords: explainable AI survey; interpretable image classification; cross-domain explainers; causal
explanations; posthoc explanations; antehoc explanations; concept-based explanations; natural
language explanations; counterfactual explanations; model-agnostic explanations

1. Introduction

Image classification has undergone significant advancements, transitioning from
simple hand-crafted feature extractors [1,2] to the use of deep models [3,4] that can au-
tomatically extract relevant features, resulting in improved classification performance.
However, as models become more complex, they also become more opaque, hindering
interpretability. Unlike earlier models that were transparent in their working mechanism,
state-of-the-art deep models achieve high accuracy at the cost of interpretability. The field
of explainable AI (XAI) has emerged to address this trade-off between performance and
interpretability. XAI aims to unravel the decision-making process of complex black box
models in a human-interpretable manner [5]. By providing explanations, XAI techniques
can enhance user trust and enable the adoption of opaque models in safety-critical domains
such as healthcare [6] and finance [7], where transparency is essential.

This survey paper focuses on organizing XAI approaches that explain the working
of Convolutional Neural Networks (CNNs), which are state-of-the-art models for image
classification. While there exist various surveys in the literature [6–10] with different aims
and scopes, our paper aims to provide a multi-view taxonomy of XAI approaches by
carefully analyzing the existing literature. The taxonomy considers the incorporation of
explainability during the training phase (antehoc) and approximating the black box’s work-
ing mechanism without disturbing the deployed model (posthoc). We also discuss other
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bases of categorization where applicable to provide a comprehensive understanding of the
taxonomy. For instance, we discuss XAI approaches that consider the causal relationships
between the input and output. Explaining image classifiers based on causal relationships
poses a challenge due to the limited knowledge of the underlying causal structure between
image features. Some approaches [11–14] aim to extract the causal relationships exhibited
by model representations and compare them with available proxy domain knowledge in
a posthoc manner, without disrupting the black box classifier being explained. Another
category of approaches [15–17] enforces the classifiers to adhere to the existing causal
relationships, similar to the antehoc or explainability-by-design approaches, in order to
make predictions.

While the XAI community has primarily focused on explaining traditionally learned
in-domain classifiers trained on a single data distribution, deep models trained using such
traditional paradigms require large amounts of labeled data to achieve better generaliza-
tion. However, collecting extensive labeled data is challenging in real-world scenarios.
To leverage the power of deep models in data-sparse scenarios, cross-domain classification
paradigms [18,19] have emerged, where the model is expected to handle the distribution
from which the sparse data is sampled, leveraging knowledge acquired from publicly
available voluminous data sampled from a different distribution. This phenomenon,
a crucial factor in the widespread adoption of deep models, necessitates explanation, and
initial efforts [20,21] have been made in this direction. Given the limited applicability and
the complexity of explaining the black box introduced in explaining the cross-domain
classifiers, recent approaches [22,23] have leveraged antehoc explainability to build self-
explaining cross-domain classifiers. Analyzing this direction opens up future research
possibilities, such as devising suitable evaluation metrics and extending the benefits of
explainability to classifiers utilizing allied learning paradigms.

The organization of this paper is as follows. Section 2 lists the common terms prevalent
in XAI literature. Section 3 discusses the methodology adopted to collect relevant articles
surveyed in this paper. The discussion on the survey is begun with a walk-through of the
object recognition models (Section 4), shedding light on the accuracy–interpretability trade-
off observed as the community marched from leveraging low-performing interpretable
models to high-performing opaque models for the task. After motivating the need to
address this tradeoff (Section 5), and a thorough review of the existing literature (Section 6),
a multi-view taxonomy (Section 7) has been proposed, and the relevance of the categoriza-
tion with respect to existing general XAI taxonomies has been put forth. This is followed by
a detailed discussion of the different sub-categories of methods analyzing their strengths,
weaknesses, and challenges associated with the practical realization of the approaches.
While most approaches highlight the correlational aspects between the input variables,
some approaches bring in the aspect of causal relationships to be verified or enforced in
the model’s representation. Section 8 is dedicated to the discussion of such approaches.
Section 9 aims to shift the readers’ attention towards the under-explored sub-direction of
explaining cross-domain models whose training and test data are sampled from different
distributions unlike a traditionally learned classifier where all data points are sampled
from a single distribution. Based on a thorough analysis carried out in these sections, the
final section of the paper (Section 10) discusses open research directions for future XAI
research. Specifically, three directions have been envisioned pertaining to explainable allied
learning, devising evaluation metrics to validate the approaches dealing with classifiers
trained traditionally as well as using allied learning paradigms, and ideas to automatically
search for architectures that minimize the long-existing problem of the XAI community
regarding mitigating the accuracy–interpretability tradeoff.

2. Basic Definitions

This section lists a glossary of various terms necessary to understand the language
prevalent in the Explainable AI research community.
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• Black Box refers to the model whose working needs to be explained. This is also called
the Explanandum in XAI literature. In this survey focussing on the image classification
task, the Convolutional Neural Networks (CNNs), among the state-of-the-art image
classifiers, are the black boxes whose explanation is sought.

• Explainer refers to the approximator or the algorithmic procedure that explains the
working mechanism of the black box.

• Classifier refers to the model that maps the instance to one of the pre-defined
categories called classes.

• In-domain classifier refers to a classifier that is trained and tested on data sampled
from the same distribution, while Cross-domain classifiers would be trained and
tested on data sampled from different distributions.

• Explanation refers to a simplified illustration of the working mechanism the black
box model under consideration employs.

• Inherently Interpretable Models refer to the family of Machine Learning models
whose working mechanism can be summarized in a user-friendly manner.
For example, Decision trees whose working can be viewed as a disjunction of conjunc-
tions of various constraints on the input variables, Linear Regressors whose linear
combination weights provide an assessment of the priority the model gives to each
input variable, are among the inherently interpretable models.

• Faithfulness refers to the extent to which the explainer mimics the working
mechanism of the black box it explains.

• Local Explanations refers to the category of explanations whose reliability is limited
to a small neighborhood around the instance of interest to be explained. On the other
hand, Global Explanations are reliable anywhere in the entire instance space.

• Posthoc Explanations refer to the category of explanations that approximate the work-
ing mechanism of the black box without making any modifications to its architecture
or parameters. On the contrary, the other family of explanations called the Antehoc
Explanations enforce changes to the black box under consideration so that it gains the
ability to explain itself analogous to that of the inherently interpretable models.

• Counterfactuals refers to the hypothetical instances that steer the prediction of the
black box towards the desired class of interest

• Counterfactual explanations refer to the family of explanatory methods that aim to
generate hypothetical counterfactuals that alter the prediction to a desired class.

• Deliberative explanations aim to extract input features that help justify a
given prediction.

• Visual Explanations bring out the working mechanism of the black box through
visual cues in a human-understandable format, while Textual explanations leverage
natural language phrases to bring out the working mechanism of the classifier.

• Concepts refer to an abstract vector representation that can be mapped to interpretable
input regions.

• Relevance refers to an estimate of the importance of a concept towards predicting a
given class.

3. Survey Methodology

The methodology employed to conduct the survey was systematic and comprehensive,
ensuring a thorough review of the literature on explainable image classification. The
survey encompassed various search engines, digital libraries, and reputable conferences
in the field of AI and Computer Vision. Search engines such as Google Scholar and
digital libraries such as IEEE Xplore, ACM, Springer, MDPI, and Elsevier were extensively
searched to gather relevant literature. Additionally, conference proceedings from NeurIPS,
CVPR, AAAI, ICML, and other relevant conferences were reviewed to identify suitable
research contributions.

Carefully selected keywords and their combinations were used to construct effec-
tive search queries. These queries underwent an iterative refinement process, consider-
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ing variations in terminology and synonyms to ensure a comprehensive search strategy.
General and specific keywords related to explainable AI, interpretability, interpretable ML,
and explainable image classification, among others, were utilized.

The literature search and review process focused on publications from 2015 to the
present, allowing for the inclusion of recent and up-to-date research. To enhance coverage,
relevant articles spawned by the initial search results were accessed and added to the
review list.

During the review process, the retrieved papers’ titles, abstracts, and keywords were
assessed for their relevance to the survey’s objectives. Selected papers were then thoroughly
read to extract valuable insights, methodologies, and findings. This methodology ensured a
systematic approach and the inclusion of high-quality papers that contributed significantly
to the field of explainable image classification. The selection of papers was based on their
relevance to the survey objectives and the quality of their contributions. By employing
this methodology, the survey aimed to provide a comprehensive overview of the literature,
presenting valuable insights into the field of explainable image classification.

4. Trajectory Traversed by Object Recognition Models

Object recognition is the task of identifying objects present in an image, for instance,
a computer, an animal, or a bird. This is a task that a human can easily accomplish. How-
ever, it is challenging to automatically recognize an object through computers. Computer
Vision techniques realize the object classification task as choosing the category of the object
contained in an image from a given set of object categories [24]. A typical image classifica-
tion model has two major steps: feature extraction and classification. Feature extraction
is the process of extracting relevant attributes called features from the image that contain
traces enabling identification of the object class. The classifier combines the extracted
features to predict the object class.

Traditional Computer Vision techniques focused on developing hand-crafted features
such as the Scale Invariant Feature Transform [1], Histogram of Oriented Gradients [2], etc.,
to extract features whose aggregation would yield the prediction. However, using hand-
crafted features yielded limited results with the growing complexity of data [25].
The advent of deep Convolutional Neural Networks (CNN), since the AlexNet [26], brought
in a paradigm shift in the community’s notion of feature extraction, as these models were
able to extract the discriminative features automatically from the data. With time, deeper
architectures with more hidden layers [3,4] demonstrated higher performances.

However, the increased accuracy with the increased number of parameters comes
at the cost of decreased transparency. Traditional machine learning models, for instance,
a decision tree, are interpretable by nature as their working mechanism can be summarized
by means of if–then–else rules. Summing up the working mechanism of a CNN in a similar
manner is not trivial. It is well recognized that the initial layers closer to the input detect
rudimentary features such as edges or contours while the latter layers closer to the output
layer process complex image components such as object parts [27,28]. Gaps persist in the
community’s understanding of how an image is decomposed, and the extracted features
are aggregated to deduce an instance’s class.

This opacity of CNNs can limit their widespread use in many safety-critical paradigms
such as medicine [29], judiciary [30], where transparency regarding the working mechanism
of the deployed model is sought. Hence, it becomes important to develop mechanisms to
explain the working of these deep black boxes. Moreover, The Right to Explanation Act by
the European Union (EU) [31] has made it mandatory for businesses leveraging Artificial
Intelligence (AI) in their work processing pipeline to explain why certain decisions made by
the AI model was carried out. This has led to a spurt in the development of Explainable AI.

5. Need for Explaining the CNNs

Firstly, it is important to clarify what it means to explain a CNN. A CNN takes
an image as an input, extracts features using the convolutional and pooling layers, and
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combines them using the fully connected layers to classify the instance into one of the
several categories. Considering the example of the previously stated classical machine
learning model, namely the decision tree, translating the path traversed from the root to
the leaf node into if–then–else rules yields the features that led to the prediction. Similarly,
an explanation that unravels a CNN’s working mechanism to classify a given image is
expected to highlight the significant image features the CNN uses to arrive at the prediction.
We illustrate the benefits of an explanation through a motivating example.

Consider a CNN model that recognizes birds in images and classifies them as either
an albatross, hummingbird, or pelican. If a test image of an albatross is misclassified as a
pelican, one may be curious to know why the instance is misclassified. One may turn to
XAI algorithms to analyze the feature in the albatross image that is misjudged as that of a
pelican. A good explanation that can justify the misclassification may be that in the given
image, the beak of the albatross looks similar to that of the pelican, resulting in the albatross
instance being misclassified as a pelican.

While misclassification is one scenario where understanding the CNN’s working
mechanism is sought, explanations may also be needed for correct classifications. Such
explanations can reveal what features the model relies on to make predictions and enlighten
the correctness of the model’s working. Moreover, explanations can highlight spurious
biases [32–34] that the model relies on, helping to assess the model’s deployability in
real-world scenarios. For example, in the bird classification task, a model may rely on the
presence of a water background to distinguish pelicans from other birds. This correlation
may enhance accuracy in the given dataset, but the model cannot be deployed in a real-
world bird recognition task, where the background need not always contain water, as the
model had encountered during the training time.

To improve the user’s trust in the deep model and to ensure their ethical deployment
for real-world tasks, the XAI research community aims to develop methods that explain the
internal working mechanism of the learned CNN models, which are essentially black boxes.

Explainable AI refers to the set of techniques and methodologies used to make AI
systems more transparent, interpretable, and understandable to humans [35]. These tech-
niques can be used to help humans understand how an AI system makes a decision, what
factors are considered, and how confident the system is in its decision. In traditional models
such as linear regressors, the coefficients reveal the importance the model gives to a certain
input feature. Similarly, the working logic encoded in a decision tree can be translated into a
set of if–then–else rules. XAI algorithms are developed to unravel the working mechanisms
of complex, accurate models such as random forests, neural networks, etc., whose working
is difficult to summarize in a similar human-interpretable manner.

6. A Brief Overview of the Previous Attempts in Explainable AI

There have been several notable attempts to explain the workings of various types of
black box models employed across different data modalities, including tabular data [36],
text [37], and images [5]. Explainable AI (XAI) methods that unveil the internal mechanisms
of these black box models offer several benefits for both users and developers of AI systems.

For users, XAI can foster trust in AI systems by providing a clear understanding
of their functioning and the rationale behind specific decisions. This aspect is partic-
ularly critical in high-stakes domains such as healthcare and finance, where the deci-
sions made by AI systems can have significant consequences. Chaddad et al. [6]
reviewed the use of XAI in healthcare and discussed the threats with respect to pri-
vacy, confidentiality, and bias that need careful examination in a medical AI system.
They analyze the satisfaction rate recorded by medical professionals for posthoc explana-
tions and re-ascertain the need for developing models that can explain themselves [38].
Salahuddin et al. [39] review the evaluation metrics tailored to validate a proposed trans-
parent medical XAI system. The authors identify a void in the approaches to process
the multimodal data widely prevalent in healthcare applications, in an interpretable
manner and call for collaboration with the sub-community in XAI research that deals
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with explaining Graph Neural Networks, capable of processing multimodal data [40].
Weber et al. [7] review the application of XAI methods in finance systems and iden-
tify the skewedness in the distribution of leveragement of different XAI approaches.
They call for applying techniques to extract causal explanations in a privacy-preserving
manner, a crucial requirement that must be satisfied in finance. On the other hand,
Owens et al. [41] focus exclusively on the sub-domain of finance dealing with insurance
and advocate the need for attention of XAI researchers to tailor XAI techniques to cater
to the needs of the insurance sub-domain. In addition to fulfilling the critical desiderata
of financial systems, the approaches have to be vigilant about the imbalanced data [42]
concerning fraudulent practices, which need to be addressed promptly when encoun-
tered. For developers, XAI techniques can aid in system debugging and improvement
by revealing insights into decision-making processes and identifying areas for enhance-
ment [43,44]. Furthermore, Clement et al. [8] present a comprehensive survey that positions
various XAI methods with respect to software development principles. Researchers inter-
ested in applying XAI techniques to these application domains are encouraged to refer
to these surveys [6,7,39,41,45], which provide detailed reviews of methods tailored to
specific applications.

Our survey aims to shed light on the explanations of CNNs [46], as they represent
state-of-the-art deep architectures for image classification. This area demands a thorough
survey due to the rapid emergence of numerous techniques. The emphasis on explaining
Convolutional Neural Networks (CNNs) and thus focussing the scope of the survey on
this major sub-direction within XAI research sets our survey apart. While existing surveys
have primarily covered a broader range of black box models and data modalities, our
survey delves deeply into the explanations of CNNs, addressing their unique challenges
and advancements. By focusing on this specific area, we offer readers a comprehensive
tour of seminal contributions, identification of existing shortcomings, and potential future
directions to overcome current limitations. Moreover, existing surveys have predominantly
focused on classifiers trained using the traditional supervised learning paradigm, where
extensive labeled data are available to feed data-hungry deep models. In contrast, our
survey also explores the relatively under-explored terrain of explaining classifiers trained
with sparse data, leveraging allied learning paradigms such as transfer learning, few-shot
learning, incremental learning, and others.

The analysis of XAI approaches organically leads to the development of evaluation
metrics for these approaches, which is currently an active research area. Our survey
acknowledges this ongoing work and envisions the potential for devising metrics that
cater to the needs of explainable allied learning paradigms. Furthermore, we suggest
cross-pollinating ideas from the Neural Architectural Search [47] community, which aims
to identify the best architecture to model a given data distribution. This collaboration can
result in optimized, explainable-by-design architectures that achieve both accuracy and
interpretability objectives.

Overall, our survey fills a crucial gap in the literature by providing an in-depth
analysis of explaining Convolutional Neural Networks (CNNs), examining the unique
challenges they present, and exploring the potential of allied learning paradigms, eval-
uation metrics, and mechanisms to automatically devise architectures that minimize the
accuracy–interpretability tradeoff. We aim to provide researchers and practitioners with
valuable insights and perspectives, ultimately advancing the field of explainable AI in
image classification.

7. Taxonomy of XAI Methods

This section presents a condensed review of the state-of-the-art contributions in
the field of Explainable AI (XAI). It provides an overview of the underlying principles,
limitations, and improvements made to these seminal contributions. The XAI methods
are categorized into two broad families based on the stage at which the explanations are
incorporated: posthoc and antehoc.
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Posthoc techniques generate explanations without modifying the underlying
Convolutional Neural Network (CNN) architecture. The method may [48,49] or may
not assume access [32,50] to the intermediate layers of the CNN. Since the black box,
i.e., the CNN, remains undisturbed, there is no need to retrain the model to incorporate
explainability. This makes posthoc methods preferred for generating explanations from an
already deployed model. However, ensuring the faithfulness of the generated explanation
to the working mechanism of the CNN is a key challenge when employing posthoc meth-
ods to explain a CNN. Specifically, ensuring the consistency between the explanation’s
ranking of the features based on their significance to the prediction and the ranking by the
black box CNN being explained is a non-trivial requirement that the posthoc explanation
method must fulfill.

On the other hand, Antehoc methods incorporate the aspect of explainability and
maximize classification accuracy within the learning pipeline. They achieve this by either
modifying existing black-box architectures [51] or proposing novel architectures where
explainable artifacts are detected. These detections then guide the prediction [52,53].
Since explainability is integrated into the training pipeline, the generated explanations are
faithful to the CNN. In other words, the explanations reveal the true underlying mechanism
used by the CNN to arrive at its prediction. However, retraining the CNN or modifying
its architecture to extract faithful explanations comes at the cost of reduced accuracy.
It is challenging to achieve the classification accuracy of an unrestricted CNN in the
modified version with explanatory bottlenecks incorporated by design. Thus, as illustrated
in Figure 1, Explainable AI methods entail an accuracy–interpretability tradeoff.

Figure 1. Comparison of antehoc and posthoc explainability methods.

Based on the scope of their explanations, XAI methods can be categorized as either
local or global, depending on whether the generated explanation unveils the entire working
mechanism of the model or focuses on explaining the model’s behavior within a lim-
ited neighborhood surrounding an instance of interest. Global methods [54–58] explain
the CNN across the complete instance space and can be used to construct interpretable
proxies that mimic the workings of the CNN. Such proxies are valuable in safety-critical
applications where explainability is crucial. However, generating a global explanation
that faithfully captures the non-linear manifolds learned by the CNN can be challenging.
To address this challenge, local explanations [32,50,59–61] leverage the local linearity of the
data manifold to explain the CNN within a specific vicinity around an instance of interest.
An approximate global explanation can be obtained by aggregating local explanations over
a set of instances.

Methods in the field of XAI can be categorized into model-specific and model-agnostic,
based on the assumptions they make regarding the type of black box they query to gen-
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erate explanations. Model-specific methods assume architectural constraints to generate
explanations specifically tailored to the underlying model. In contrast, model-agnostic
methods generate explanations by analyzing the input and output interactions without
making any assumptions about the specific black box they aim to explain. Model-agnostic
explanations are particularly useful when the black box model is not publicly available
and can only be accessed through an API that allows input provision and output retrieval.
However, model-agnostic methods rely on certain underlying principles, such as the exis-
tence of interpretable features whose aggregation reveals the workings of the black box.
These principles may not always hold true, highlighting the importance of using model-
specific methods whenever complete access to the black box being explained is available.

Explanations can also be categorized based on the class label for which the explanation
is queried. Deliberative explanations provide justifications for the predictions made by
the black box model. They help identify any biases present in the learned model and offer
insights into the decision-making process. On the other hand, counterfactual explana-
tions support the ability to edit a given instance in order to change the predicted label.
These explanations are particularly useful in the context of Machine Teaching, where gener-
ating counterfactual instances helps humans better understand the distinctions between
different classes. By finding the closest instance belonging to an alternate class of interest,
counterfactual explanations provide valuable insights. A summary of the categorization
of explainable AI approaches, and the seminal contributions falling under each category
can be found in Table 1. Additionally, a visual representation of the taxonomy is provided
in Figure 2.

Table 1. Overall summary of various XAI methods as per the proposed taxonomy has been
tabulated, and the different situations where these categories of explanations are most suitable
has been discussed.

Categorization Basis Categories Suitability References

Incorporation Stage

Posthoc Suitable to explain an already deployed model [11–14,23,32,33,48–50,55–93]

Antehoc
Suitable when an application specifies the need
to build models that have interpretability built

into its design
[15–17,22,38,51–54,94–125]

Explanation Scope

Local
Useful in privacy-preserving applications as only
information around the vicinity of the instance is

explored

[32,33,48–51,59–61,65–70,73,75–
81,83,84,96,107–111,126]

Global

Useful to explain the complete working logic of
the AI system to business stakeholders who

decide to adopt the AI system into the business
pipeline

[20,52–58,71,72,74,81,82,85,87,89,91,94,97–
99,106,112,118–125,127]

Aim of the Method

Deliberative Justify the given prediction [32,50,53,59–61,65,71–73,76–
78,90,91,96,109,111,128]

Counterfactual

Useful to create close looking hypothetical
Machine Teaching examples so that learners
understand looking at minute discriminant

features

[17,85–89,129,130]

Explanation Modality

Visual Quickly summarize the CNNs’ working using
visual cues

[33,48,49,51–53,63,64,66–70,77–80,84,94,95,99–
106]

Textual Useful to explain users with special needs
through leveraging text modality [96,107–112,131]

Training Distribution
In-domain Explain CNNs trained on a single large dataset [32,50,51,59–61,65,71–73,76–78,91,96,107–112]

Cross-Domain Explain CNNs generalizable to multiple datasets [21–23,116,117,132]
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Figure 2. [Best viewed in color] Proposed Taxonomy of XAI Methods. The categorization as antehoc
and posthoc methods based on the stage of incorporating the explanation is bounded inside a blue
rectangle. The green rectangle bounds the categorization as visual and textual explanations based
on the explanation modality. The purple box bounds the categorization based on the aim of the
XAI method as to deliberative explanations that justify a prediction and counterfactual explanations
that produce hypothetical instances that flips the prediction. The categorization based on the ex-
posed training distribution is bounded by the red bounding box, where in-domain classifiers are
trained on a huge data pool belonging to a single distribution, while cross-domain classifiers are
exposed to different distributions from which a varied number of samples are presented to it. The
proposed taxonomy considers this perspective to drive home the attention of the XAI community to
propose techniques to explain the relatively underexplored black boxes, namely the cross-domain
classifiers. The orange box bounds the categorization based on explanation scope where Global
methods are applicable in the entire instance space, while Local methods are applicable only in a
small neighborhood.

It is to be noted that an XAI method can fall under multiple categories based on the
aspect used for categorization. Our forthcoming discussions are structured by considering
the stage of incorporation of explainability as the basis for sub-categorization. We would
like to note that this is just a choice we have made for coherent discussion of sub-categories.
A reader may view the methods categorized based on any of the aspects and the discus-
sions consider highlighting the differences/sub-categorizations based on other aspects
whenever feasible.

We also acknowledge the other taxonomies prevalent in the literature. For instance,
Schwalbe & Finzel [10] propose a multi-level taxonomy covering XAI methods for different
black boxes and data modalities. Cabitza et al. [9] propose a taxonomy based on the
explanandum–explanatory relationship–explanans triad and justify their categorizations
to be in accordance with the existing taxonomies. One may see that the categorization of
Global and Local in terms of the explanandum in these taxonomies has been considered
in our taxonomy as the categorization based on the Explanation Scope. Similarly, the
categorization based on the explanans (explainer) has been subcategorized in our proposed
taxonomy under broad categories of Posthoc and Antehoc methods based on the stage
at which explainability is incorporated into the black box. The sub-categories discussed
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as pertaining to the explanatory relationship, namely epistemological methods, which
are derived from the principles of knowledge theory (neuro-symbolic methods [125]) and
cognitive methods drawing inspiration from historical ideas of explanations in the cog-
nitive science sub-domain have been discussed in our survey article, driving home the
supremacy of a specific category of explanations (concept-based explanations) in repre-
senting the working mechanism of a model such that it is easier for humans to diagnose
the black box [71]. In a nutshell, the proposed taxonomy covers the approaches to ex-
plaining image classifiers covered in the prevalent taxonomies for general XAI approaches.
Given that the focus is specifically on image classification, detailed analyses of the strengths
and weaknesses of the methods have been carried out, inferring the suitability of the
methods to different situations.

7.1. Posthoc Methods

Posthoc XAI methods refer to techniques and methodologies used to explain the
behavior of an AI system after it has been trained to make a decision. These methods do
not necessarily modify the AI system itself but rather analyze the output generated by the
system to provide explanations for the decision-making process. A major advantage of
using these methods is that they do not require any architectural modification or black-
box retraining. They probe the trained black-box model to understand its working. The
posthoc methods can be subcategorized under four major heads: Saliency Map, Model-
agnostic, Counterfactual, and Concept-based approaches, as discussed in the following
subsections. Table 2 provides a quick summary of the key strengths, weaknesses, and
complexity involved in training the explainer for various sub-categories.

Table 2. A summary of contributions explaining the CNNs in a posthoc manner is presented with a
discussion on the strengths, weaknesses, and challenges in training the explainer corresponding to
the individual categories.

Sub-Category Strengths Weaknesses Training
Complexity References

CAMs

These mechanisms can be used as a Plug & Play
module to an already deployed model due to

simpler definition of an explanation being a linear
combination of intermediate activation maps

The heatmaps exhibited are
almost always coarse

(Figure 3), rendering them
unable to provide finer

explanations

Low [33,48,49,66–70,83,84]

Model-agnostic
These explanations are interpretable when applied
to images since the images are segmented using a

human-friendly mechanism

It is not necessary that the
CNN also employs a similar
segmentation mechanism to

process images

Moderate [32,50,55–61,65,133]

Counterfactual

These explanations are pedagogical in nature since
hypothetical counterfactual instances which are

closer to the data in hand govern the explanation
so that the human learners look at finer

discriminative features to better distinguish
related classes

Realistic image generation is
challenging High [85–89,134]

Concept-based The concepts extracted are based on examples
provided by humans and hence interpretable

To obtain faithful
explanations, the examples

provided have to be
sampled from the same

distribution on which the
CNN is modelled

Moderate [63,64,71–74,90,91,97,135]
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Figure 3. [Best viewed in color] CNN explanation in the form of a saliency map localizing the image
region contributing to the prediction.

7.1.1. Class Activation Maps

The most common outlook for explaining a CNN is identifying the key image regions
contributing to the predictions [33,48,49,66,67]. These key regions are often displayed
using a saliency map, where the image regions are color-coded based on their importance.
A few examples of these saliency maps are shown in Figure 3.

Class Activation Maps assume that the region salient toward the prediction of a class
can be obtained from a weighted combination of the activation maps from the convolutional
layer filters. Inspired by the observation that the latter layers encode complex parts [28],
most saliency estimation approaches extract activation maps from the last convolutional
layer closest to the output. Let the convolutional layer of interest have n filters. Let Ai
be the activation map from the ith filter. The explanation algorithms assess the salient
regions that the CNN focuses on by means of a saliency map S that can be expressed as a
weighted combination of the activation maps from each of the n filters, i.e., S = ∑n

i=1 wi Ai.
This formulation stems from the understanding that the features extracted are combined to
arrive at the prediction. The low dimensional saliency map obtained through the weighted
combination of the activation maps from the individual filters is then upsampled to the
full image size to generate an explanation showing the image region that the CNN focuses
on to arrive at the prediction. Various mechanisms have been proposed to estimate the
weights {wi}n

i=1 that combine the activation maps from the filters. These approaches can
be bifurcated based on leveragement of gradients, as will be discussed below.

Gradients capture the direction along which the value of a function increases.
Thus gradients propagated back to the convolutional layers from the output layer carry
a signal indicating the features whose presence steers the model towards making a de-
sired prediction. This signal is leveraged to estimate the weights and combine the acti-
vation maps using gradient-based saliency approaches. Grad-CAM (Gradient-weighted
Class Activation Mapping) [33] generates a saliency map highlighting the regions of the
input image that were most relevant for the neural network’s prediction. It works by
computing gradients of the output prediction with respect to the activations of the final
convolutional layer. The activation maps are combined based on the weights obtained
by averaging the gradients with respect to the corresponding filter over all the spatial
locations. No additional modifications to the neural network architecture are needed to
generate explanations and thus can be leveraged to explain any CNN. The following year
Chattopadhyay et al. [48] observed that having the averaged gradients as weights to com-
bine the activation maps does not localize well in images where multiple instances of
the same class are present. They proposed applying different weights to gradients ob-
served at each spatial location to uncover all regions steering the prediction; thereby, the
observed limitation of Grad-CAM [33] in localizing more than one instance of the class
can be overcome. The weights to these spatial locations were deduced to be obtained from
higher-order derivatives whose computation could be demanding in complex architectures.
Integrated gradients [75] consider a reference input and traverses the instance space across
the path from a reference input to reach the given instance. The attributions with respect to
the intermediate instances along the path are integrated to obtain a robust saliency map
depicting the salient pixels in the given instance. Excitation backpropagation [76] utilizes a
probabilistic winner take all strategy where the attribution being propagated to a down-
stream neuron is probabilistically determined. Guided backpropagation [77] proposes
propagating attribution only to those neurons which were active during the forward pass,
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thereby generating finer pixel-level saliency maps compared to the vanilla backpropaga-
tion [78] that propagated gradients as attribution irrespective of the contribution of the
neuron until arriving at the output layer.

Various quantitative metrics [48] have been proposed to assess the faithfulness of the
generated explanations. The proposed metrics are based on the requirement that removing
a salient region must lower the model’s prediction confidence while its presence has to
amplify the confidence. Viewed differently, these metrics observe the effect of perturbing
the regions deemed salient on the model’s prediction probability. The proposal of these
metrics is inspired by the first principles of generating explanations that a region whose
perturbation impacts the prediction is salient. Instead of going through the voluminous
possibilities of all image perturbations, Chattopadhyay et al. [48] propose to use derivatives
to localize salient regions and verify if the regions localized to be salient are truly salient by
observing the effect of perturbing those regions on the CNN’s prediction probability.

Wang et al. [136] empirically showed that the gradient-based saliency maps obtained
do not vary with respect to the queried class, thereby questioning the faithfulness of these
explanations. Adebayo et al. [137] proposed litmus tests that a posthoc XAI method has to
pass towards its proof of faithfulness to the underlying black box model. There are two
basic tests that an explanation method has to pass, namely the parameter randomization,
which observes the change in explanations when the model weights are randomized,
and label randomization, which observes the change in explanations when the labels are
randomized, and the CNN model is retrained to model the altered distribution. It has been
observed that most of the gradient-based techniques fail to satisfy these proposed litmus
tests. The theoretical analysis by Sixt et al. [138] attributes the invariance in the saliency
map for the model parameters and query labels to the restriction of the explanatory model
to the positive subspace of the activations.

Following the issues found with using gradients to determine saliency, the XAI
community has proposed other methods to generate saliency maps. There have been
attempts [49,66,67] to incorporate the effect of perturbation at the level of filters to assess
the importance of the activation maps, which will, in turn, be the weights wi combining
the activation maps Ai. It is easier to manage the possible perturbations [79,80] with n
filters of the convolutional layer of interest than that of the input image of much higher
dimensions. Wang et al. [66] associate the importance weight wi to combine the activation
map Ai based on its effect on obtaining the prediction for the desired class. In other words,
the prediction probability obtained when the activation map Ai is present, and the other
activation maps are nullified, is the weight wi that combines the activation map Ai. Desai
& Ramaswamy [49] take a complementary route by considering the drop in prediction
probability when the activation map of interest Ai is ablated while forward propagating
other activation maps without any modification to determine the weight wi. A limitation of
these approaches is the need for multiple forward propagations to obtain a single saliency
map. In contrast, the previously proposed gradient-based approaches can generate the
saliency map in a single backward pass. To mitigate this issue, Salama et al. [67] propose
clustering similar activation maps and obtaining the ablation score for a cluster from which
the weights wi for each activation map Ai can be recursively determined. There have been
attempts to propagate a special signal called relevance [81,82] from the output layer back
to the input to determine the pixels salient to the prediction. However, the fact that these
pixel-level saliency maps are not class-discriminative has led to the cross-pollination of
ideas from these techniques to estimate the combination weights wi of CAM [68–70,83].
Layerwise Relevance Propagation [81] propagates the neural network output back through
the different layers to assign relevance scores to these input features. The forward pass
propagates the activation from the input layer and reaches the output layer. Relevance prop-
agation starts in the opposite direction from the output layer, and gradually the relevance
signal reaches the individual input pixels. The relevance propagation is based on the idea
of conservation, i.e., the relevance signal from a neuron is distributed across all neurons
that have contributed to it during the forward pass proportional to their contribution.
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Lee et al. [68] apply the idea of relevance propagation [81] to estimate the relevance of the
filters, which can act as the weights wi to combine the activation maps Ai. Deep-LIFT [82]
is a modified form of relevance propagation where differences between activations with
respect to a reference input are propagated to obtain the relevance of the different input
features. The input with zero in all its dimensions is mostly taken as the reference input.
Extending the idea from Deep-LIFT [82], Jung & Oh [69] estimate the filter weights wi to
combine the activation maps Ai through the differences of the combination weights ob-
tained with respect to a reference input. Sattarzadeh et al. [70] extend the idea of integrated
gradients [75] to integrate the attribution maps obtained across the path from the reference
input to the given input. Wang et al. [83] generate image patches [139] and use an attention
mechanism to estimate the salient regions in a given image. However, a major limitation of
these saliency map approaches is that they almost always highlight the region containing
the entire object to be salient [38,63,64]. While these explanations can ascertain whether
the model looks at the object to arrive at its prediction or relies on any non-object spurious
correlations [32,34], finer explanations depicting the contributions of image primitives such
as colors, textures, and parts cannot be obtained from the Class Activation Maps.

7.1.2. Model-Agnostic Explanations

Model-agnostic methods refer to the family of XAI methods, which explain the work-
ing of a black box model by observing input-output interactions. They can be applied to
any machine learning model, regardless of its type or architecture, and can work to explain
data of any modality such as text, images, tabular data, etc. The scope of these methods’
explanations can be local to a given instance or can globally explain the overall working of
the black box. These methods aim to construct an inherently interpretable pseudo classifier
that approximates the working mechanism of the black box classifier to be explained either
locally around a small neighborhood of an instance for which the explanation is sought or
globally, spanning the complete instance space of the classifier.

Local Interpretable Model-agnostic Explanations (LIME) [32] generates a simpler,
more interpretable model, for instance, a linear regressor or a decision tree whose complex-
ity is optimized such that the determined approximator mimics the behavior of the original
model in the local vicinity of the input space around the instance to be explained. This
simpler model can then be used to provide local explanations for individual predictions.
It can be observed that different explanations can be generated for the same instance de-
pending on the sampled neighbors based on which the local neighborhood is estimated.
Zafar & Khan [59] propose a deterministic approach to sampling neighbors utilizing ag-
glomerative hierarchical clustering and sampling k-nearest neighbors, using which an
interpretable approximator is constructed. Collaris et al. [65] hint at the possibility of sam-
pling fewer neighbors when sampling is performed independent of the queried instance
to be explained and propose to sample from a hypersphere around the instance to obtain
a robust local explanation. Anchors [50] generate explanations for individual predictions
using if–then rules constructed in a bottom-up fashion such that the rule precisely covers
the local neighbors of the instance to be explained. MAIRE [60] extends Anchors [50] to
handle continuous-valued attributes by learning to construct an optimal orthotope auto-
matically, unlike the prior approach [61] that requires the range of values to construct the
orthotope. Local explanation methods aim to extract explanations that are faithful in a local
neighborhood by means of special metrics such as coverage which estimates the fraction of
instances that lie within the explainer’s vicinity, and precision which denotes the fraction
of covered instances whose prediction by the explainer matches with the prediction by the
black box CNN. Constructing a MAIRE [60] explainer maximizes the coverage, ensuring
faithfulness to the underlying black box by satisfying a precision level set by the user.
Though these methods offer local explanations, a global understanding of the model can
only be obtained by aggregating the local explanations over a set of instances.

There have also been attempts to build an explainer that approximates the global be-
havior of the model as a whole. SHAP [55] uses the principles from game theory (Shapley
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values) to assign an importance score to each input feature, indicating how much each
feature contributes to the system’s output. These importance scores can be used to iden-
tify the most relevant features and understand their influence on the system’s decisions.
Computing Shapley values requires considering all possible subsets of the feature space
and assessing each subset’s perturbation effect on the output. This is computationally
exhaustive due to the exponential time complexity. Many approaches have been proposed
based on Shapley values approximated by considering only the perturbation of one feature
at a time. Permutation feature importance [57] calculates the importance of each input
feature by randomly permuting its values and measuring the decrease in the model’s per-
formance. Partial dependence plots [56] visualize the relationship between an input feature
and the model’s prediction while holding all other features constant. Despite approxima-
tions [58] to compute Shapley values efficiently, there has been a recent observation [140]
highlighting their inadequacy in faithfully capturing the global behavior of the black box
being explained. Huang & Marques-Silva [140] construct a boolean dataset where a set
of features relevant to determine the output are known. A global explanation is ideal
if it assigns zero importance to irrelevant features and non-zero importance to features
that correlate with the output. It was observed that there existed features that were truly
irrelevant to the prediction but had non-zero Shapley values. Also, when pairs of features
were analyzed such that one was actually a relevant feature and the other was irrelevant to
the prediction, Shapley values of the irrelevant features were higher compared to that of
the relevant features. Sometimes Shapley values for truly relevant features turned out to be
zero, contrary to the basic requirement that a global explanation must accurately capture
the feature importances. Huang & Marques-Silva [140] conclude that the Shapley values
are not always correlated with the actual relevance of features for the black box predictions.

Another important observation is that the model-agnostic methods are developed
to generate explanations for any black box model, and hence no assumption regarding
its architecture is made. The explanation is given in terms of input features that are
significant towards the prediction. In images, the pixels constitute the input features. As
pixel-level explanations are not easily interpretable for humans, a workaround suggested
using a collection of spatially closer pixels called the superpixels. These superpixels
serve as complex input features for the model-agnostic methods to generate explanations.
An example of how such an explanation would appear can be seen in Figure 4, where the
segments covering the ears, muzzle, legs, and black body are highlighted to be significant
to the prediction. For this, the existing model agnostic approaches [50,60] use different
predefined image segmentation algorithms [141,142] to obtain segments constituting the
superpixels on which model agnostic explanations are sought. On the surface, it may seem
that this workaround achieves satisfactory human interpretability when model-agnostic
explanations are sought on images. However, it is to be noted that CNN need not process
the image by segmenting it similar to that of the model-agnostic explainer [84]. This refutes
the preliminary necessity of the proposed approximator, aka the explainer, to be faithful to
the underlying black box, aka, the CNN being explained.

7.1.3. Counterfactual Explanations

The viewpoints on explaining a CNN discussed so far are deliberative, meaning
they intend to explain a given prediction. They are mostly used to justify a classifier’s
predictions and diagnose any spurious correlations it relies on. On the other hand, the
misclassification scenario, as discussed previously, involves comparing pairs of images
of different categories to justify/diagnose the misclassification. To address this concern,
the counterfactual perspective on explanations was introduced.

Counterfactual explanations involve generating alternative scenarios to explain the
behavior of an AI system. For example, if an AI system for processing loan applica-
tions denies a loan application, a counterfactual explanation might involve generating
a set of hypothetical inputs that would have resulted in an approved application [143].
These counterfactual explanations can help users understand the decision-making process
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and identify potential biases or errors in the system. They differ from deliberative explana-
tions that aim to justify why a certain prediction was made. Counterfactual explanations
go a step further to analyze the changes to the input to get another desired prediction. This
explanation can be applied to analyze a classifier that works with any data modality, be
it tabular, text, or image. The methods try to perform minimal edits to the given query
instance such that the prediction is steered towards an alternate desired class. This can
be thought of as perturbations intending to flip the prediction. In the case of tabular data,
where the efficacy of the counterfactual approaches has been mostly demonstrated [134],
the perturbations are manageable as the range of values the tabular features can take is
known, and the instance can be perturbed to generate another realistic instance that lies
within the manifold on which the classifier was trained. Determining this realistic manifold
is non-trivial in the case of images whose constituents, aka, the pixels, can theoretically
assume any real value. The objective of explaining using a perturbed instance is common in
adversarial learning, except that it does not have a target class towards which the prediction
has to be steered. The objective in generating an adversarial example is that prediction on
the generated instance must not be the same as that of the unperturbed instance. Caution
has to be observed as a random perturbation can generate an adversarial example [144],
which may flip a prediction towards the target class of interest but may not be an ideal
candidate to extract counterfactual explanations as the instance may be an outlier with
respect to the realistic training images’ manifold, thereby questioning the faithfulness of
the generated counterfactual explanation to the underlying model and data. To circumvent
this challenge, the existing approaches [85,86] either maintain an image bank from which
the closest counterfactual image is chosen, or a generative model [87] is used to sample
the counterfactual neighbors of the query instance from the distribution on which the
CNN is trained.

There have also been some deliberative explanation approaches that allow query-
ing explanation with respect to another class of interest [33], harnessable to generate a
counterfactual explanation for the alternate target class of interest. However, these ap-
proaches do not generate explanations that vary significantly with respect to the alternate
queried class [38].

The preliminary approach to generating counterfactual explanations through realistic
instances is by maintaining an image bank from which the closest counterfactual instance
to a given test instance is chosen. Various approaches have considered different ways to
estimate the closest instance. Wang & Vasconcelos[88] generate deliberate explanations for
the given test instance and all instances in the counterfactual image bank and chooses the
instance containing features supporting the counterfactual class and no information of the
predicted class as the closest counterfactual instance. Goyal et al. [85] simulate permuting
feature maps to obtain features closer to that of the counterfactual instances that steer
prediction towards the desired class. A main limitation of these approaches is the necessity
to skim through the image bank for every test instance to be explained. Additionally, the
image bank must be sampled from the same distribution as the data on which the CNN
is trained.

To maintain the distribution, an alternate set of approaches employed variants of Gen-
erative Adversarial Networks (GAN) [145] to learn the underlying distribution.
Singla & Pollack [87] sample instances that vary the prediction probability to navigate
through the manifold of the counterfactuals. Zhao [89] proposes using a Star-GAN [146] to
generate robust counterfactuals faster. However, it is to be noted that the generative models
employed to learn the underlying distribution are, again, black boxes whose working is
unknown. This complicates the problem at hand as techniques to interpret GAN [147] need
to be employed on top of the existing counterfactual explainers.

7.1.4. Concept-Based Explanations

Humans process images through the lens of concepts [148], which can be abstract
textures, colors, parts, etc. For instance, a zebra can be thought of as a horse having alternate



AI 2023, 4 635

black and white stripes throughout the body. Concept-based explanations
have been proposed to align the explanation algorithms closer to human-like
thinking [52,91,148–150], i.e., the explanations are generated in terms of abstract
vector representations that can be mapped to such human-interpretable concepts. Typically,
a set of examples where the concept is present (termed positive examples) and absent
(termed negative examples) is provided, from which the abstract vector representations
are learned. Koh et al. [97] proposed a family of classifiers called the concept bottleneck
models, which forces the classification to be completed through the set of known concepts,
which act as a bottleneck through which the processing pipeline has to pass. The basic idea
behind the concept bottleneck models is to insert a bottleneck layer between the feature
extractor and the classifier of the original model and then train the bottleneck layer to
capture the most important concepts from the features of the input data. This approach
allows for extracting the salient concepts from the original model, which can be used to
create a more interpretable approximator. The training of the concept bottleneck models
can be sequential, where the bottleneck layer that detects concepts enables the classifier
to use the detected concepts to arrive at its prediction or joint where weighted optimiza-
tion of the concept detection and classification objectives is carried out, or independent
where the training of concept detectors and classifier occurs independently of each other
using the available ground truth. At the test time, the model mimics the pipeline of a
sequential model. While the model proposed by Koh et al. [97] may require retraining,
Yuksekgonul et al. [74] suggest the usage of a dimensionality reducer as the bottleneck layer
that can faithfully map the space of the CNN features to an interpretable low-dimensional
concept space, keeping the CNN untouched. Kim et al. [71] leverage the given positive and
negative examples to extract representations from the CNN layer of interest. The boundary
that separates the positive examples containing a concept from the rest is learned using
these representations. The vector in the direction of the positive examples and orthogonal
to the learned decision boundary is chosen to be the representative vector denoting the con-
cept. This is illustrated in Figure 4 by means of a red bounding box in the middle column,
where the vector color-coded in blue, orthogonal to the linear decision boundary separating
the white-colored instances from others is chosen to denote the CNN’s representation of
the concept white. Once the concept representation is extracted, its relevance is estimated
by inducing perturbation of the concept captured by the directional derivatives. As di-
rectional derivatives approximate the inherent non-linearity in the CNN being explained,
Pfau et al. [72] propose propagating the perturbed concept through the rest of the CNN and
observing the impact of the perturbation on the probability as this could be a more faithful
measure due to accounting of the non-linearity of the CNN. However, a key challenge
associated with generating such concept-based explanations is the need for annotated
examples denoting the presence and absence of concepts. Ramaswamy et al. [135] observed
that the curated examples have to be sampled from the same distribution as that of the data
on which the CNN is trained so that the extracted concept representations faithfully capture
the internals learned by the CNN. Ghorbani et al. [73] propose to use segmentation to subdi-
vide the images at different granularities and curate them to extract examples depicting the
presence and absence of concepts automatically. This reintroduces the issue associated with
model-agnostic approaches for explaining a CNN regarding the questionable guarantee
of the CNN processing images in terms of segments [84], thereby raising a question on
the faithfulness of the generated explanation. Arendsen et al. [90] propose leveraging
natural language word vectors to learn additional concepts automatically. However, this ap-
proach leverages another black box whose working mechanism needs to be unearthed [151].
Yeh et al. [91] propose automatically extracting the complete set of concepts from the data,
thereby preventing a possible loss of faithfulness due to leveraging concepts sampled from
a different distribution [135]. Kumar et al. [63] extend the capability of this framework [91]
to unravel the complete blueprint of a class by formulating the concepts to be clustered in a
class-specific fashion [52]. However, while extracting the explanations, these frameworks
use multilayer nonlinear networks, which are also black boxes whose working could not
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be unraveled. Kamakshi et al. [64] propose demystifying the black boxes involved in the
automatic concept extraction pipeline by proposing the use of interpretable autoencoders.
The relevance estimation is tied to the concept extraction objective, so the extracted concepts
highly steer the prediction towards its class. However, this framework does not scale with
the number of classes into which the CNN categorizes an instance.

Figure 4. [Best viewed in color] Perspectives of explanations—an illustration. The leftmost column
shows the general processing pipeline of a CNN, which processes the given input image and predicts
its class. The middle column shows an illustration of different types of posthoc explanations, which
leaves the CNN undisturbed. The explanation labeled Heatmap bounded by a purple dashed box
localizes the regions the CNN focuses on to predict the given instance. The green dashed box
shows model-agnostic explanations, which divide the image into predefined segments and highlight
segments significant to the prediction. The cyan dashed box shows counterfactual explanations
where a hypothetical scenario of a minimally edited image flips the prediction to an alternate class of
interest. The red bounding box depicts concept-based explanations where from the given concept
examples, the concept representation from the lens of the CNN is extracted, and the relevance is
estimated by perturbing this representation. The right column shows the different types of antehoc
explanations. The pink bounding box shows models modified to incorporate explainability by basing
its predictions on the learned characteristic concepts detected in the given test image. The blue
bounding box shows the explanations which justify a prediction by generating natural language
phrases describing the detected characteristic concepts. The blue-dashed box encompasses the Neuro-
Symbolic Explanations, which leverage a knowledge graph to map the representations learned by a
CNN to existing knowledge.

7.2. Antehoc Explanations

Antehoc explainability, or explainability by design as it is popularly called, refers
to the practice of building AI systems with explainability and interpretability in mind
from the outset rather than as an afterthought. By incorporating explainability into the
design process, these methods aim to create AI systems that are inherently transparent,
interpretable, and trustworthy. Despite the advantages such as inherent interpretability
and trustworthiness that antehoc explanations can offer, designing such models can be
challenging and may require domain-specific knowledge and expertise. Additionally,
some interpretability methods may come at the cost of model performance, limiting their
usefulness in certain applications. To incorporate explainability, the architecture of existing
CNN architectures may be modified [51], or novel components may be devised that are
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interpretable by design. The explanation may be highlighting visual artifacts leading to
the prediction or providing textual descriptions justifying the predictions. Alternately
one may look up to existing knowledge bases to learn models whose working reflects
the real-world application requirements. Table 3 briefly summarizes the key strengths,
weaknesses, and complexity involved in training the antehoc models positioned under
various sub-categories.

Table 3. A summary of contributions explaining the CNNs in an antehoc manner is presented with a
discussion on the strengths and weaknesses and challenges in training the explainer corresponding
to the individual categories.

Sub-Category Strengths Weaknesses Training
Complexity References

Visual
The complete model pipeline from
training till testing only relies on

processing cues of a single modality

Possibility of misinterpretations due
to subjectivity associated with the

human analysis of visual cues
Moderate [51–53,94,95,98–

103,105,106]

Textual
Since visual cues are accompanied by

natural language phrases, ambiguity is
managed

Training language models, which are
also black boxes and are introduced

to make the CNNs transparent, is
hard and time-consuming

High [96,107–112,130,152,153]

Neuro-Symbolic

Since domain knowledge is referenced to
make inferences; there is a high chance

that the systems developed in this
paradigm reflect the business

requirements

It is difficult to devise such
explainers when domain knowledge

is unavailable
Moderate [118–125]

7.2.1. Visual Explanations

Similar to how CNNs learned to extract features automatically from the data, the XAI
community proposed enforcing the CNNs to learn interpretable concepts automatically
from the data and use them to predict the object category [52,53,98,99]. An illustration can
be seen in Figure 4, where the characteristic regions similar to that of the muzzle, ears, body,
etc., of a beagle, guide the shallow predictor to predict the given test instance as a beagle.
The discriminative interpretable concepts are learned automatically from the data, and
the detection of these concepts in test instances guides the prediction using an inherently
interpretable predictor such as a linear regressor or decision tree, allowing the complete
reasoning pipeline of the modified CNN to be unearthed. In such models, the ability to
provide explanations is incorporated in the training phase by design.

The earliest visual explanatory approaches used attention [101–104], which is a se-
lective retainment of features to classify the test instance. Attention can be hard or soft
in the sense that the selection of regions from the features may be deterministic or prob-
abilistic. The regions attended would be turned in as an explanation. However, there
have been observations [100,154] that an attention map visualized need not be an ideal
explanation. Extending the analyses of Jain & Wallace [100] unearthing the limitations
of attention-based approaches to explain natural language models, Akula & Zhu [154]
conduct extensive human subject experiments, which reveal the usefulness of non-attention
based approaches [71,85] compared to attention-based approaches [32,33,75,81] that explain
an image classifier. The authors conduct quantitative tests, which reveal the supremacy of
non-attention-based explanations in facilitating the user to think like the CNN as well as
qualitative analyses where the users are asked to rate the quality of explanations on various
parameters such as satisfaction, completeness, etc., as defined by Hoffman et al. [155] on a
10-point Likert scale, show that attention-based approaches are not suitable explanations.

Zhang et al. [105] propose to use mutual information to explicitly enforce the CNN
filters to encode distinct parts so that the filters can be visualized to understand the impact
of each part of the image. To facilitate the explanation generation, Zhou et al. [51] propose
to change the architecture of the CNN to replace the series of fully connected layers incorpo-
rating non-linearity by means of a single linear layer, which accumulates the average pooled
features to get a prediction. The weights that combine these average features are used to
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combine the feature maps and visualize the salient regions contributing to the prediction.
Li et al. [95] propose an autoencoder-based case-based reasoning [156] architecture that
looks at characteristic prototypical examples learned from the distribution of instances
whose proximity determines the class the test instance belongs to. Chen et al. [52] extend
this architecture to automatically learn class-specific concepts called prototypes from data
such that the learned concepts are class-discriminant and guide the interpretable classifier
following it to do the prediction. Many extensions to this approach have been proposed.
Hase et al. [106] propose to perform interpretable hierarchical classification by applying
the explainable ProtoPNet [52] at every level of the hierarchy. Wang et al. [94] propose
modeling instances as a member of class-specific orthogonal subspaces in the feature space.
Hoffman et al. [157] and Huang et al. [158] analyze the prospective shortcomings of the Pro-
toPNet variants. The assumption of class discriminativeness need not be completely true,
as concepts may be shared across classes. This idea of sharedness is exploited after training
by encouraging sharing of connections to different classes [99]. Nauta et al. [53] construct a
decision tree based on learned concepts that implement sharedness by design. However,
using decision trees induces negative reasoning, which is overcome by Protopool [98],
which enforces a Gumbel-Softmax distribution across prototypes to enforce sharedness
closer to real-world sharedness.

As the ability to explain has been incorporated during the training phase, and the
CNN is guided to use these explainable components to make predictions, the faithfulness
of these explanations is guaranteed. In other words, whatever information the explanation
reveals is truly what the model uses to arrive at the prediction. However, it needs to be
retrained from scratch to incorporate such explainability into a CNN. This perspective can
be leveraged when the model is yet to be deployed, and it is desirable to deploy a model
that can explain itself but cannot be employed for an already deployed model.

7.2.2. Natural Language Explanations

Natural language explanation approaches [96,107–109,111,112] aim to generate tex-
tual descriptions that provide insight into how an image classifier makes its predictions.
The key idea behind this approach is to leverage the vast amounts of linguistic knowledge
that has been accumulated over centuries of language use and incorporate it into the model.
This can help the model generate more coherent and natural-sounding explanations that
humans can interpret.

This approach assumes the availability of natural language description for the classes
under consideration and for individual instances from which the mapping between vi-
sual aspects and natural language phrases can be learned. A trained language model is
incorporated to act as an explainer into the classification pipeline to construct a CNN that
can justify it’s working through natural language phrases. The visual features extracted
from the feature extractor of the CNN are fed into the language model, which is trained
to generate captions describing the image’s content. A critic module then assesses the
correctness of the generated caption to the image content. To train the critic module, the
ground truth (image, caption) pairs are randomized, and the model is trained to provide
a low score for a randomized instance where the image and caption do not agree and a
high score on true instances where image and captions agree. The visual features and
generated captions from the test image are fed to the critic module, which outputs a score
denoting the goodness of the generated caption. To avoid multiple back-and-forth passes
through the CNN and caption generator based on the feedback from the critic module,
the top- k captions from the caption generator are considered, and the top-ranked cap-
tion from the critic is passed into a localization module to localize the corresponding
image region contributing to the generation of the caption. This can be seen in Figure 4,
where a given test instance classified as beagle is justified by localizing the characteristic
floppy ears and tricolor body through similarly color-coded bounding boxes.

The approach is mostly used to justify the predictions made in related computer vision
tasks, specifically vision-language tasks such as image captioning [159], visual question
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answering [152,153], etc. where the task involves understanding both visual and linguistic
aspects and can be preferably explained when the explanation mechanism also incorporates
both vision and language features. Wickramanayake et al. [110] incorporate the textual
embedding of the language model to guide the detection of characteristic concepts that
drive predictions. This is an explainable-by-design model that leverages both the vision
and language aspects.

However, designing effective natural language explanation approaches can be chal-
lenging and may require domain-specific knowledge and expertise. Additionally, the qual-
ity and effectiveness of the generated explanations can vary depending on the complexity
and accuracy of the underlying image classifier and the quality of the available linguistic
annotations. Another key challenge to be addressed when incorporating natural language
explanations is that the language model which facilitates justifying the prediction is another
black box whose working mechanism needs to be unearthed [151].

7.2.3. Neuro-Symbolic Methods

An alternative family of approaches, known as neuro-symbolic approaches [125],
leverages existing knowledge bases or ontologies to acquire the necessary concepts for
predicting a given instance, akin to utilizing domain knowledge curated by experts. This
phenomenon was initiated with the proposal by Maillot & Thonnat [118], who advocated
for collecting knowledge from domain experts and using it to train machine learning mod-
els that can base their predictions on the domain experts’ knowledge. Marino et al. [122]
propose a few-shot classification task by harnessing knowledge encoded in a graphical
format. The classifier is trained to traverse different nodes of the knowledge graph and
search for image features that match the descriptions associated with the investigated node.
As the model navigates through the knowledge graph, the explanation is generated by iden-
tifying the localized image regions with the highest degree of match. Alirezaie et al. [123]
aim to alleviate the problem of uninterpretable misclassifications by leveraging symbolic
knowledge. Daniels et al. [124] propose the design of a bottleneck model [97], which com-
pels the classifier to explore the available knowledge repository and base its predictions on
the acquired knowledge. The authors hypothesize that such a design, which enforces the
prediction to pass through the knowledge repository bottleneck, enhances the robustness
of the learned model. Liao & Poggio [120] investigate the reasons why machine learning
models lack the generalizability exhibited by humans. They hypothesize that models
adopt a feature-oriented perspective, processing images as a sequence of tensor operations,
which leads to variations in representation as objects manifest differently. In contrast,
human knowledge processes images in terms of objects and concepts [148–150], exhibiting
invariance to modifications in image manifestations. The authors propose mechanisms
to transform the operations performed by feature-oriented models into an object-centric
view, aiming to incorporate human-like processing. Ordonez et al. [119] propose a multi-
modal neuro-symbolic model that combines textual and visual knowledge to predict the
entry-level categories to which an image belongs. For example, a neuro-symbolic classifier
may have learned encyclopedic categories such as Trachypithecus johnii from the knowledge
base, which refers to a species of monkey commonly known as a langur among wildlife
enthusiasts. Ordonez et al. [119] address the challenge of mapping from encyclopedic
categories to common categories, initially approaching it as an instance of hypernym search
in a textual knowledge graph. Acknowledging the potential errors associated with visual
cues in the knowledge base due to images of different categories appearing visually similar
to humans, the authors propose a learning objective that combines cues from the visual
and textual knowledge base to predict the appropriate entry-level category for an image.
Icarte et al. [121] demonstrate the utility of a general-purpose ontology in retrieving realistic
images that are closest to a given natural language query.
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8. Causal Explanations

This section discusses the various attempts of the XAI community to generate causal
explanations. We discuss this explanation category separately because there have been
mechanisms proposed to extract causal explanations both during and after the deployment
of the black box. Furthermore, the idea behind these explanations is to unravel the causal
relationships modelled in the black box classifiers unlike traditional approaches that fall
under one of the two categories based on the stage at which explainability has been
incorporated which mostly unravelled the correlation between the different features.

In real-world data, the features are rarely independent, which can be observed by a
corresponding change in another feature when a feature is perturbed. This relationship
may be a mere correlation or causal, i.e., the features have a cause–effect relationship. For
instance, if the sales of pens increase with an increase in the temperature of the city, this
relationship is just a correlation, as there is no known relationship between a pen and
temperature. However, an increase in sales of an umbrella with an increase in temperature
has a causal relationship, as it is well-known that people tend to look for umbrellas with
increasing temperatures. Viewed differently, an increase in temperature causes an increase
in sales of umbrellas, where the increase in temperature is a cause, and the higher sales of
umbrellas as an aftermath is a result. Many such cause–effect relationships exist in nature. It
is of interest to the research community to see if the machine learning models capture such
causal relationships [11–14] and design models which work based on causal relationships
so that the spurious correlations [34] are not picked up to arrive at the prediction [15–17].

Frye et al. [113] leverage a causal graph depicting the causal relationship between
features to assign Shapley values respecting the causal order where source variables are
attributed more than the effects. While relationships may be intuitive in simpler tabular
datasets, such causal relationships are unclear to humans in images [160]. For instance,
the proposal by Kancheti et al. [16] to build models whose reasoning is aligned with the
prior knowledge of the underlying causal structure obtained from the domain experts based
on a specialized regularization scheme could not be demonstrated in any image dataset
due to non-availability of causal knowledge on image pixels. In the absence of a com-
plete causal structure existing between the pixels, which are the input features of images,
Watson et al. [114] suggest using eye-gaze data as a proxy for ground truth causal structure,
which can guide the model training to avoid picking up spurious correlations. Though the
inter-dependencies between image pixels are less intuitive to humans, inter-dependencies
at the level of concepts are known. For example, the presence of a car can be ascertained
only when it has wheels. The detection of a concept car causes an increase in confidence in
the detection of the concept of wheels [93]. Qin et al. [115] propose a causal interventional
training to incorporate such causal concept relationships. Bahadori & Heckerman [15]
propose using instrumental variables to debias concept representations learned by Concept
Bottleneck Models [97]; thereby, the effect of confounding or correlational concepts on the
prediction is mitigated. Dash et al. [17] propose leveraging the causal structure to uncover
biases learned by a CNN by generating suitable counterfactuals, which can then be used
to retrain the CNN in a regularized manner to debias the CNN. Singla et al. [54] leverage
vision-language models to associate concept descriptions to image regions and estimate
the causal relationships captured by the trained model by observing the effect of interven-
ing the concept. Yang et al. [11] and Goyal et al. [92] propose a specialized variational
autoencoder to facilitate concept-level intervention. Panda et al. [12] hypothesized that
the most sparse and class discriminant features are causal and that they leverage a neural
network to determine those causal superpixels that maximize the mutual information.
However, it is to be noted that these architectures are, again, black boxes whose working
needs to be explained, adding up to the problem at hand of explaining the CNN of interest.
To eliminate the introduction of another black box to provide a causal explanation, Causal
CAM [13] echoes the hypothesis of Panda et al. [12] that the class discriminant features
are causal by eliminating the context features that are salient for other classes from the
saliency maps generated by Grad-CAM [33], thereby yielding a saliency map highlighting
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the causal features. However, as noted in the paper, this approach cannot be scaled to a
multi-class classification scenario as it involves enumerating all possible subsets of the
set of all class labels except the class of interest to estimate the context features, whose
computation grows exponentially.

9. Explaining Cross-Domain Classification

Much effort of the XAI research community is towards explaining classifiers trained
and tested on the data sampled from the same underlying distribution, called the in-domain
classifiers. Cross-domain classification also plays an important role in extending the fruits
of the data-hungry deep models to be reaped for data-scarce applications by adapting
the models trained using large amounts of other related data to work on the scarce data
sampled from a different distribution. Specifically, domain adaptation refers to the process
of adapting a model trained on a data-rich source domain to a data-scarce target domain
where the distributions of the data may be different [18,19]. In this context, explainability
can help understand how the model adapts to the differences in the source and target
domains. Similar to the discussion in the previous section, there have been methods
proposed to explain cross-domain classifiers where explainability has been incorporated
both during and after training of the black box, leading us to dedicate a separate section for
this important under-explored research direction.

Zunino et al. [116] propose to leverage explainability approaches [33] to identify
common features across both domains. Once the domain-invariant features are identified,
the CNN is enforced to focus on these features to classify the instances. This, by design,
forces the CNN to pay attention to discriminative domain-invariant features; thereby, the
model would be accurate on any domain, and hence a domain-generalized classifier is built.

Szabó et al. [20] explores the temporal process of transfer learning. An Imagenet [161]
trained model is adapted to perform a face recognition task, and the features encoded by the
different filters of the CNN are analyzed using Activation Maximization (AM) [127], which
performs gradient ascent in the input image so that the activation of a desired neuron of
interest gets maximized. It was observed that the initial layers only adjust trivial features such
as color-space to adapt to the target domain, while the latter layer filters undergo significant
transformation. However, interpreting the results of AM requires expertise. It may not be
suited to explain to people with good domain expertise but limited deep learning expertise,
as the optimization process of AM may generate perturbed pixels from which abstracting the
underlying concept as similar to how humans process images [148] is challenging. Neyshabur
et al. [132] perform a detailed analysis to unearth the role of feature reuse and pre-trained
weights during the process of fine-tuning.

Zhang et al. [117] extend the idea of Li et al. [95] to learn characteristic source do-
main prototypes whose similarity would determine the class of the given test instance.
They propose building an unsupervised domain-adapted classifier with case-based rea-
soning [156] ability incorporated by design. As no labeled target domain instances exist in
unsupervised domain adaptation, the classifier is trained using the source domain instances
sampled from the same distribution from where prototypes are learned. To instill domain
invariance, GAN-based domain adaptation mechanisms [162,163] are employed to generate
domain-invariant features so that the target domain test instances may be classified using
the same classifier, which was trained to classify the labeled source domain instances based
on proximity to prototypes. A main drawback of this approach is that the prototypes are
complete images, unlike recent antehoc approaches [52,53] that offer part-level explana-
tions. Hence, this framework needs to use the framework proposed by Nauta et al. [164] as
an add-on to obtain finer information regarding the prototypes. Hao & Zheng [21] use a
GAN to understand features that help achieve domain invariance. However, using another
black box to explain the black box of interest makes the explanation less faithful.

Kamakshi & Krishnan [22] propose building a supervised domain-adapted classifier
that can explain itself. Class-specific characteristic prototypes are learned in each domain
whose detection guides the prediction of the proposed case-based reasoner [156]. The differ-
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ences between the domains are aligned by minimizing the highest intra-class prototypical
distance while simultaneously maximizing the least prototypical distance across different
classes [165]. This enables the learned explanatory backbone to pick up discriminatory
features to identify the class while ignoring the domain from which the instance is sampled.
However, the framework could not scale to common domain adaptation datasets with
many classes. Xiao et al. [23] attempt to build a posthoc approximator for an unsupervised
domain-adapted classifier based on ProtoPNet [52] whose prototypes are learned using the
labeled source domain instances, which, when visualized through the unlabelled target
domain instances, reveals the mapping between the source and target domain instances
leveraged to classify the unlabelled target domain instances. However, this approach has
challenges regarding the fidelity of the explanation as there is no consensus regarding
assessing the correctness of how the features are aligned across the source and target
domains. Furthermore, other frameworks [164] have to be applied to obtain additional
information on what is encoded by the class-specific prototypes learned from the source
domain instances.

10. Future Work

While several novel frameworks that advance the field of XAI have been discussed
with seminal contributions being summarized in Table 1, several open problems are avail-
able to be solved collectively by the community. Mainly, three possible research directions
are envisioned.

The preliminary direction shall be to extend the fruits of explainability to allied
learning paradigms. Traditional deep learning methods were data-hungry as they lever-
aged voluminous chunks of data. However, various allied learning paradigms have
been introduced to reap the fruits of deep learning to data-scarce scenarios. Transfer
Learning aims to extend a classifier trained on a related data set containing many in-
stances to work on the scarce data of interest by aligning the feature and label spaces.
Kamakshi & Krishnan [22] propose a framework that explains a supervised domain-
adapted classifier by design. Similarly, parallel works [23,117] explain an unsupervised
domain-adapted classifier. Extensions to explainable classifiers using heterogeneous trans-
fer learning and open-set domain adaptation paradigms can be a possible future avenue
to explore. Few Shot Learning [166,167] aims to learn classifiers from fewer examples
by leveraging features learned from related classes having a larger number of instances.
For instance, a zebra can be considered as an animal with a horse-like body and tiger-like
stripes. A motivating example from the medical domain would follow to distinguish it from
Transfer Learning. Few Shot Learning aims to leverage features learned by a pneumonia
detector to detect a related disease, say COVID-19, from fewer examples. Transfer Learning
may leverage COVID-19 data collected from another country where more examples are
available to learn a robust classifier that can be adapted to classify instances sampled
from a country having fewer positive cases. Wang et al. [168] propose an explainable by
design few-shot classifier which classifies an unseen novel test instance by matching the
features detected against characteristic patterns learned in the seen categories. Incremental
Learning [169,170] mimics how humans learn. For instance, a computer scientist does
not learn to build an application in a day. First, the programming principles are learned,
then he learns to implement the different data structures needed to manage the various
modules and finally learns to assemble the modules to get the end product. While learning
an intermediate skill, humans do not forget the preliminary skills acquired. However, this
is not the case in AI systems. When new classes are expected to be learned by a classifier
trained to classify an instance into a set of classes, they tend to forget the distinctions across
older classes already learned [171]. However, the reason for such behavior is unknown.
The paper envisions the application of explainability to help unravel the mechanism
behind the incrementally learned classifiers, thereby guiding the research community to-
ward building classifiers that can mimic human-level incremental knowledge expansion.
Rymarczyk et al. [172] propose building an antehoc model whose explainable components
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are learned such that catastrophic forgetting is managed by design. This model is an exten-
sion of ProtoPNet architecture [52] where the prototypes corresponding to the novel classes
are enforced to be closer to the seen classes so that catastrophic forgetting is minimized.
An extension using antehoc frameworks that encourage learning shared concepts [98]
similar to how concepts are shared in nature may enable minimizing catastrophic forgetting
as, despite sharedness in nature, humans expand their knowledge base without forgetting
knowledge they gathered in the past.

The secondary direction shall be to develop quantitative metrics to assess the goodness
of the learned concepts. In saliency map-based methods, the goodness of the explanations
is quantitatively assessed by simulating the effect on perturbation of the regions deemed
salient. Union of regions comprising the concepts may be unfair to assess the goodness
of the concepts as the union may cover up the entire image, nullifying the assessment.
Recent works [63,64] propose a new metric called agreement accuracy which assesses how
well the concept-based explainer approximates the working of the CNN to be explained.
Leemann et al. [173] propose using natural language models to assess the goodness of
the concepts. However, interpreting the language models [151] is needed on top of the
evaluation process to make it transparent. Zarlenga et al. [174] proposed metrics to assess if
the learned concept representations are pure with respect to a known oracle and suggested
using inter-concept disentanglement to measure if the learned representations capture
dissimilar concepts. Zhou et al. [175] analyze the taxonomy proposed by Arya et al. [176]
for AIX360, a popular explainability toolkit and focus on the evaluation metrics adopted by
the different approaches. The main idea inferred from this analysis is that the subjective
metrics such as trust, satisfaction, confidence, etc. [155] have to be evaluated involving hu-
man subject experiments. The quantitative metrics [177] evaluate the objective aspects such
as fidelity and soundness of the explanations. These can help select the subset of instances,
which, using the human subject experiments, can be conducted better. Agarwal et al. [178]
provides an open source framework to facilitate the evaluation of popular posthoc methods
to enable the stakeholders to choose the explanation that best suits the need of the applica-
tion. Lopes et al. [179] propose a taxonomy of various evaluation metrics and discuss the
aspects that help in designing the tasks to evaluate the XAI approaches better using human
subject experiments, as humans ultimately benefit the AI system. Herm et al. [180] bring
out the desiderata that XAI approaches have to fulfill for their pervasive utility through
human-centered experiments. We foresee that when explainability is reaped to allied
learning paradigms, metrics have to be developed to assess the correctness of the peculiar
aspects of those paradigms as encoded by the explainer. For instance, if a posthoc explana-
tory approach is developed to unravel the mapping of features across different domains;
an evaluation is needed to assess if what is being unraveled is true.

The tertiary direction suggests the cross-pollination of ideas from Neural Architecture
Search [47], which aims to identify the best architecture and parameters to model the
distribution from which the dataset of interest is sampled into XAI. There have been recent
proposals in this direction. Liu et al. [181] suggest using intrinsically explainable compo-
nents such as regressors to search for optimal configurations to achieve black-box level
accuracy. Hosseini & Xie [182] propose updating the search for a suitable neural architec-
ture based on feedback from posthoc saliency maps [33]. The paper envisions applying the
principles of neural architecture search to identify the optimal number of concepts so that
the accuracy–interpretability tradeoff inherent to antehoc frameworks can be minimized
eventually. This, when possible, shall have a greater impact on recent classifiers employing
allied learning paradigms [22,168,172] where explainability is incorporated by design.

While these are the possible future avenues with potential impact on the XAI field,
an alternate route that has been started and an active area of research currently [183–185]
is using the feedback from the explanation algorithm and introducing humans in the
loop [186] to edit the erroneous classifier. This can be an interesting direction one can focus
on, especially when working in safety-critical applications, where adhering to the working
mechanism laid by domain experts is essential.
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Another important direction that is a relatively under-explored area of Explainable AI
is in looking into the economic aspects associated with it. Adadi & Berrara [187] hint at
the importance of this analysis and discuss the preliminary attempts by the community to
quantify the cost associated with bringing transparency into an AI system and establish
a link between the well-studied discipline of Structural Econometrics and XAI [188,189].
Beaudouin et al. [190] analyze the possible expenses an organization has to incur when it
adopts explainability along with the possible threats of disclosure of private information to
cater to the needs of explainability approaches. Langer et al. [191] hint at the possibility
of the economic factors acting as a confounder for the user specifying the desiderata
expected from an explainable system, thereby giving rise to a possibility of springing
up of a tradeoff between the mental model of the users regarding the explainers and the
working mechanism of the explainers themselves. Despite being very important in shaping
transparent decision support systems, this aspect needs further exploration. This is an area
that requires the collaboration of XAI researchers who understand the science of extracting
the working mechanism of an accurate black box, HCI researchers who understand the
dynamics between humans and computing systems, and Economists who can act on the
threats which the introduction of the novel system could bring in the business.

The future avenues, especially incorporating explainability into black boxes leveraging
the allied learning paradigms, have great potential for developing models having human-
like learning capabilities. These models can be involved in machine teaching tasks where
humans and models can symbiotically create novel knowledge. Incorporating the machine
teaching feedback back and forth requires a mutual understanding between the model
explaining its outcomes faithfully and humans imparting domain knowledge to inculcate
real-world requirements better. On a concluding note, the research explored so far in
explainability is just the tip of the iceberg. We would like to inspire aspiring researchers
that the exploration of the envisioned future research avenues may open up many further
research avenues with the goal of marching towards Artificial General Intelligence faster.
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