
Citation: Chen, H.; Lindshield, S.;

Ndiaye, P.I.; Ndiaye, Y.H.; Pruetz,

J.D.; Reibman, A.R. Applying

Few-Shot Learning for In-the-Wild

Camera-Trap Species Classification.

AI 2023, 4, 574–597. https://doi.org/

10.3390/ai4030031

Academic Editors: Kenji Suzuki and

José Machado

Received: 5 May 2023

Revised: 26 July 2023

Accepted: 26 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Applying Few-Shot Learning for In-the-Wild Camera-Trap
Species Classification
Haoyu Chen 1 , Stacy Lindshield 2 , Papa Ibnou Ndiaye 3 , Yaya Hamady Ndiaye 3, Jill D. Pruetz 4

and Amy R. Reibman 1,*

1 Elmore Family School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907, USA; chen1562@purdue.edu

2 Department of Anthropology, Purdue University, West Lafayette, IN 47907, USA
3 Department of Animal Biology, University Cheikh Anta Diop of Dakar, BP 5005, Dakar 10700, Senegal
4 Department of Anthropology, Texas State University, San Marcos, TX 78666, USA; pruetz@txstate.edu
* Correspondence: reibman@purdue.edu

Abstract: Few-shot learning (FSL) describes the challenge of learning a new task using a minimum
amount of labeled data, and we have observed significant progress made in this area. In this paper, we
explore the effectiveness of the FSL theory by considering a real-world problem where labels are hard
to obtain. To assist a large study on chimpanzee hunting activities, we aim to classify various animal
species that appear in our in-the-wild camera traps located in Senegal. Using the philosophy of FSL,
we aim to train an FSL network to learn to separate animal species using large public datasets and
implement the network on our data with its novel species/classes and unseen environments, needing
only to label a few images per new species. Here, we first discuss constraints and challenges caused
by having in-the-wild uncurated data, which are often not addressed in benchmark FSL datasets.
Considering these new challenges, we create two experiments and corresponding evaluation metrics
to determine a network’s usefulness in a real-world implementation scenario. We then compare results
from various FSL networks, and describe how factors may affect a network’s potential real-world
usefulness. We consider network design factors such as distance metrics or extra pre-training, and
examine their roles in a real-world implementation setting. We also consider additional factors such
as support set selection and ease of implementation, which are usually ignored when a benchmark
dataset has been established.

Keywords: applied machine learning; few-shot learning; in-the-wild data processing; ecology
applications

1. Introduction

A conventional deep learning classifier requires massive amounts of training data for
each of the categories it attempts to classify, which can be difficult to obtain in many real-
world problems. Few-shot learning (FSL) has been proposed to deal with this challenge.
Ideally, an FSL network learns to extract generalized information that separates classes,
and is, therefore, able to adapt to any new task with only a small amount of labeled
data [1–3]. Many ideas to achieve this have been proposed and will be discussed further
in Section 2.2. Researchers have then constructed several benchmark datasets designed
to represent such scenarios, and applied these datasets for comparing results between
algorithms. We discuss more about benchmark datasets in Section 2.3.

In this paper, we present a real-world application for few-shot learning—species
classification for in-the-wild camera-trap data. Details of the project and associated pre-
vious work can be found in Section 2.1. By experimenting with traditional deep learning
classification models, we discovered two major challenges: (1) our data contains many
site-specific species (e.g., green monkey, patas monkey, red-flanked duiker, oribi, giant

AI 2023, 4, 574–597. https://doi.org/10.3390/ai4030031 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4030031
https://doi.org/10.3390/ai4030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-3744-7290
https://orcid.org/0000-0002-4507-1502
https://orcid.org/0000-0002-9978-564X
https://orcid.org/0000-0002-9151-8571
https://doi.org/10.3390/ai4030031
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4030031?type=check_update&version=1


AI 2023, 4 575

eland, etc.) that are not available with off-the-shelf models such as the species classifica-
tion tool (https://github.com/microsoft/SpeciesClassification (accessed on 1 May 2022));
and (2) there is a lack of clean and annotated data to train a large network from scratch.

Facing the challenge of not having an extensive amount of labels in a new environment,
we recognize that our classification task is a good application for few-shot learning. If we
apply the logic of few-shot learning to our case, we could utilize public datasets for training
a potent feature extractor. We could then apply that feature extractor on our novel camera-
trap data for species classification by (1) labeling relatively fewer images per species/class,
to create what is often referred to as the “support set”; and (2) classifying unknown images
by comparing the similarity of their features to those of the labeled images.

However, while benchmark datasets are often carefully selected, the same is not true
of real-world data. These impose many additional challenges, including:

1. Environmental/Imagery challenges: Images obtained from camera traps may be
very different from the generic images collected from the internet that are widely
used when constructing benchmark datasets. These differences include images with
much lower quality, incomplete objects, and smaller inter-class differences due to
(1) different animals being captured with the same background, or (2) inherently
similar appearances across species.

2. Presence of distractors: Because our data processing pipeline starts with unlabeled
raw videos, we have applied frame selection schemes and an off-the-shelf camera-trap
animal detection model in order to produce the cropped images that are input to a
classifier. Since we do not have a 100% accurate detector, we observe many cases
of false detection—cases where a non-animal object is detected as an animal and,
therefore, is considered for classification. Meanwhile, these “distractor” images are
typically ignored when using benchmark datasets, and they are also not considered
during typical FSL network design.

3. Unbalanced class distribution: The distribution of animals in nature is inherently
unbalanced, which causes some species to appear far more often than others; this has
also not been considered in most FSL benchmark datasets.

More detailed descriptions of these challenges can be found in Section 3.2.
To explore these issues, we constructed two datasets from our camera-trap data to

reflect these challenges. The first, Senegal-B (benchmark), follows the traditional few-
shot evaluation protocol, and is used to create a straightforward comparison to isolate
the issues related to our environmental and imagery challenges. The second, Senegal-I
(implementation), mimics a real-world scenario where the user annotates a few images
per species and builds an automated classification tool for the rest of the data. The second
dataset incorporates the latter two challenges that have not been considered by benchmark
datasets. Details of these two datasets can be found in Section 3.3.

Through preliminary explorations of these two datasets, we found that performance
on a benchmark setting does not necessarily reflect a network’s true usefulness in the more
complex implementation settings [4]. In short, our main contribution is to put the theory
of FSL to the test by exploring its role in addressing a real-world problem with the extra
challenges that are present. In this paper, we expand on our previous work [4] to make
further contributions:

• introducing additional evaluation protocols in the implementation settings to system-
atically quantify a network’s usefulness under the aforementioned challenges;

• conducting more comprehensive experiments with more FSL networks, and confirm-
ing our assumption that benchmark testing performance does not necessarily reflect
real-world usefulness;

• performing additional experiments that explore the real-world impact, considering
both factors involved in network design and factors not previously considered in
benchmark testing.

https://github.com/microsoft/SpeciesClassification


AI 2023, 4 576

2. Background
2.1. Species Classification for Camera-Trap Videos/Images

Our overall project aims to explore the ecological basis of hunting and meat sharing in
female savanna chimpanzees [5,6] by estimating the population density of several species
that are hunted by chimpanzees. The research team has placed hundreds of motion-
triggered camera traps across two major locations in Senegal—Assirik and Fongoli. The
current state of data collection can be found in Table 1.

Table 1. Data shipments we have received.

Shipment Videos Images Size (GB) Cameras

1 2998 106,283 187 48
2 25,606 10,433 1304 110
3 3489 2392 132 31
4 6894 1410 284 37
5 11,523 356 642 39
6 4759 1354 167 22

Total 55,269 122,228 2716 287

To conduct population estimation from the tens of thousands of videos we have
captured, we need a system that (1) samples frames from videos, (2) detects and localizes
animals in each frame, and (3) classifies each detected animal into its species. Various
studies from both ecology and machine vision researchers have begun to address the
detection and classification problem. Norouzzadeh et al. [7] utilize a deep neural network
to extract animal species information directly from the frames. Pavlovs et al. [8] implement
both one-stage detectors (RetinaNet) and two-stage detectors (Faster R-CNN) and compare
their performance when trained to detect and classify two ungulate classes—deer and
wild boar. In addition, Zhang et al. [9] focus on improving animal detection performance
with cluttered backgrounds by incorporating more temporal information. Singh et al. [10]
also address the problem of animal detection with complex backgrounds by constructing
background models under different lighting conditions throughout the day. In this paper,
we will limit our discussion to only the classification part.

2.2. FSL Methods

Few-shot learning aims to adapt to a new task with a small amount of labeled data,
and researchers have explored multiple ways of achieving that goal. Under the FSL
philosophy, the networks are usually trained with a relatively large amount of data and
then tested with new tasks. Due to the scope of this paper, which is focused on the
application of animal species classification, we will mainly discuss few-shot classification
studies. However, it should be noted that FSL has also been applied in several other fields,
such as detection [11] and image segmentation [12].

For few-shot image classification, the testing setup is usually described as an N-way
K-shot classification problem. “N” denotes the number of classes and “K” denotes the
number of support images per class. Under this framework, it is assumed that the user
would only need to label K images per class (to create a set of support images) for the FSL
algorithm to perform the classification. Each of the small sample problems, which consist
of N classes, K support images (per class), and several query images (which are assumed to
be unknown) is called an “episode”.

In general, an FSL algorithm usually contains two parts—a feature extractor and a
decision maker. In this paper, we categorize them into two major methods. Metric learning
aims to learn a robust feature extractor so that images from new classes will also follow
certain rules in the feature space (e.g., images from the same class will be closer in feature
space). Meta-learning aims to find a “best learner”, usually in the form of a set of hyper-
parameters, so that a model can be trained with a minimum amount of data when a new



AI 2023, 4 577

task arrives. Note that these two methods are not mutually exclusive, as many algorithms
combine both to achieve better results.

For metric learning, after a robust feature extractor is obtained, the classification stage
is rather straightforward. The Matching Network [2] and ProtoNet [13] can be considered
as two representatives of metric learning. During testing with new classes (or new tasks),
Matching Network compares the cosine similarity of an unknown image’s feature and the
few labeled samples (support images), and assigns the closest match as the classification
result. Similarly, ProtoNet compares the Euclidean distance between the unknown image’s
feature and the mean feature computed using the few labeled samples. Some other metric-
learning algorithms include RFS [14], which uses logistic regression fitted with the support
images as the classifier, and Baseline [15], which uses a single linear layer followed by the
softmax function as a classifier, also fitted with the support images.

One benefit of this type of decision rule is that it can be easily changed to fit a user’s
desired applications. For example, a network that is trained to perform 5-way classification
can be easily modified to perform 6-way or 11-way classification, without needing to
re-train the entire network.

For meta-learning, the idea is to find a network that can be trained with very little data.
This is usually achieved by having an “outer” optimizer on the hyper-parameters of the
network. Under one “meta-training” step, the network is trained to classify the N classes
using provided support images (a process known as “inner” training), and then it performs
the classification task on unknown query images. The performance of the network on those
queries will be used to compute a task loss to measure how well the network is at learning
to classify, and this loss is used to update the hyper-parameters of the network. MAML [16]
is one of the earliest works that introduced this idea.

In more recent work, many researchers choose to apply both metric learning and
meta-learning. For example, e3bm [17] has two training stages: a “pre-training” stage to
train a feature extractor, and a “meta-training” stage to train an ensemble of classifiers using
the meta-learning philosophy. However, from an implementation perspective, one problem
of this kind of meta-learning method is that it does not generalize well; for example, if a
user wants a six-way classifier, then the meta-training process must be repeated.

As the field has been growing rapidly, there are many other innovative FSL methods.
For example, Xiong et al. [18] use a graph neural network (GNN) to extract edge features
and compute edge similarity matrices to achieve few-shot classification. Jiang et al. [19]
propose a region-graph transformer (RGTransformer) to capture structural relationships
between regions of the image.

2.3. FSL Benchmark Datasets and Evaluation Protocols

Popular few-shot learning datasets include Omniglot [20], primarily designed for a
character recognition task, and mini-ImageNet [2], a subset of ImageNet primarily de-
signed for a general image classification problem. There also exist several alternatives to
construct a few-shot dataset from ImageNet, including tiered-ImageNet [21] and better-
tiered-ImageNet [22].

For testing and evaluation, the episode-based method is now the dominant protocol
after being proposed in [2] and further elaborated upon in [23]. Essentially, each “N-way
K-shot” episode mimics one FSL problem that involves N-way classification, given K
labeled images per class. For example, to construct a “5-way 5-shot” episode, one will first
sample five classes out of all possible classes, and then sample five images per class to be
considered as labeled images; this set of 5 × 5 = 25 images are known as the “support
set”. Then, several images per class will be sampled to serve as the “unknown images to
be classified”. This set of images is known as the “query set”. The images in the query
set will not overlap with images in the support set. The number of images in the query
set may vary, but we have found that 15 images per class is commonly used. The FSL
method then uses the knowledge of the support set to classify the query set by, for example,
training a lightweight model or applying a nearest-neighbor classifier. The top-1 accuracy



AI 2023, 4 578

of this episode will be recorded, and the process will be repeated many times to ensure
reliable results.

Two things to highlight are that (1) current FSL evaluation protocols sample an equal
number of query images per class, and (2) current protocols do not consider the case
where an image may not belong to any of the N classes. In Section 3.3.2, we present a new
dataset using real-world camera-trap data, which differs in these two aspects from bench-
mark datasets. We then propose additional evaluation protocols to quantify a network’s
performance under these challenges. In doing so, we hope to illustrate the difference be-
tween benchmark datasets and real-world data, and encourage researchers to look beyond
optimizing networks solely for benchmark purposes.

2.4. Applied FSL

Many researchers have already started to explore the gap between benchmark datasets
and realistic problems. Chen et al. [15] argued that despite disjoint classes, training and
testing on the same dataset does not necessarily replicate the domain difference likely to be
observed in real-world problems. The authors then created a cross-domain testing case by
training few-shot learning networks using a benchmark dataset (mini-ImageNet) and test-
ing on a fine-grained classification dataset (Caltech-UCSD Birds 200 [24]) re-partitioned to
fit the few-shot learning benchmark style. In [22], the authors criticized current benchmark
datasets for lacking realistic meaning between classes in each sub-task (i.e., an episode).
They proposed a relevance measure between classes using semantic structures, and used
that measure to create a dataset with more relevant class sampling.

Many researchers have also investigated FSL applications to real-world problems.
Nuthalapati et al. [25] focused on agricultural application of plant and pest classifications,
and set up an experiment for various cross-domain settings. Zhang et al. [26] used FSL
techniques for rolling bearing fault detection using vibration patterns. Yoo et al. [27]
compared several FSL methods for the task of classifying rare retinal diseases using OCT
images, including prototypical network [13], Siamese network [28,29], and data generation
with CycleGAN [30]. Prabhu et al. [31] applied FSL for dermatological disease classification;
they also point out the unbalanced class distribution between common and rare diseases,
and proposed to use mean per-class accuracy to quantify a network’s performance across
classes. Wang et al. [32] utilized few-shot learning to be able to add new classes for the task
of synthetic aperture radar (SAR) automatic target recognition (ATR).

In addition to classification tasks, FSL has also been explored in other fields. Zhong
et al. [33] used FSL to improve an image retrieval task with remote sensing images by
proposing a loss function designed to optimize mean average precision (mAP). Karami
et al. [11] trained a detection network using FSL techniques to fit the task of plant detection
from aerial photographs.

3. Materials and Methods

Real-world data are very different from benchmark datasets. Due to factors such
as camera condition, environment, and target class of interest, real-world data may pose
challenges that are not addressed in benchmark datasets. The overall experiment in
this paper is to train FSL networks using publicly available datasets, and evaluate their
performance with our data, where more realistic challenges are present.

We begin, in Section 3.1, by giving a big picture of our data collection and processing
pipeline. In Section 3.2.1, we describe the three major challenges with our data: environ-
mental/imagery challenges, presence of distractors, and unbalanced class distribution.
Two testing datasets based on our data are then introduced in Section 3.3 to reflect these
challenges. We also introduce additional evaluation protocols and performance metrics to
reflect these challenges. Finally, in Section 3.4, we present the details for the networks we
use and the training settings.



AI 2023, 4 579

3.1. Data Description

Our data are taken from motion-triggered camera traps around two major sites in
Senegal—Assirik and Fongoli. As of now, we have received 6 data shipments, totaling
55,269 videos and 122,228 images from 287 camera locations in a mosaic savanna woodland
environment; the entire data volume is 2716 GB (gigabytes). Details of our data collection
can be seen in Table 1; note that the term “CT days” (camera-trap days) is counted as days
between when a camera started to record and when it recorded its last video/image. We
evenly sample one frame per 3 s (90 frames), and apply an off-the-shelf animal detector
https://github.com/microsoft/CameraTraps (accessed on 1 May 2022)) to obtain 181,685
unlabeled bounding boxes of potential animal sightings.

For this paper, we consider 114 camera locations from data shipments 2 and 3, and ran-
domly sample about 8000 bounding boxes out of the total 63,569 detected bounding boxes
from these two data shipments. We have labeled these 8000 images to serve as a representa-
tive subset of our data. These images include both correctly detected animals as well as
false positives that were mis-detected.

3.2. Challenges
3.2.1. Environmental/Imagery Challenges

Unlike many benchmark datasets that obtain generic images from the internet, our
data that was captured in the wild suffers much more from poor image quality. Such factors
include, but are not limited to: low resolution: due to animals being detected far from the
camera; occlusion: due to plants or other animals; incomplete animals: due to animals
being detected too close to the camera or at the edge of the frame.

Additional challenges lie within the general context of the data, namely, separation
between classes, and variation within the same class. We observed many cases of small
inter-class (between class) separation. The cause of such small separation may be the result
of (1) inherent similarity (build, color, etc.) in species or (2) similar backgrounds, since our
data came from stationary camera traps in the same region.

Here, Figure 1 shows one case of small separation between classes due to the similar
build and color of the two animal species, and Figure 2 shows another case due to similar
background. The challenge is even more significant with lower-quality images, as shown in
Figure 3. For all three figures mentioned above, the images retain their original resolution
from camera trap videos. The low image quality is the true reflection of our real-world data.

(a) Crowned duiker (Sylvicapra grimmia
coronata) (b) Oribi (Ourebia ourebi)
Figure 1. Hard-to-distinguish species with similar build and color.

(a) Baboon (Papio papio) (b) Green monkey (Chlorocebus sabaeus)
Figure 2. Hard-to-distinguish species due to similar background.

https://github.com/microsoft/CameraTraps


AI 2023, 4 580

(a) Bushbuck (Tragelaphus scriptus) (b) Oribi (Ourebia ourebi)
Figure 3. Hard-to-distinguish species due to similar build and low image quality.

In the end, the aforementioned challenges can be seen as inevitable whenever applying
FSL to a new environment or new task, and each of the FSL applications cited above [25–27]
face their own environmental and imagery challenges. However, the challenges discussed
next are less well-investigated, as many people tend to view FSL classification as a stand-
alone problem, without considering its context within a large processing pipeline or its
general data context.

3.2.2. Presence of Distractors

As stated in the Background section, to compare results for few-shot learning networks,
most benchmark datasets simplify the problem. For each episode of the “N-way K-shot
classification” task, all the queries, or unknown images, are selected from the N classes.
This means these algorithms do not have to consider that an image might not belong to any
of the classes. However, real data does not fulfill this assumption. Our data contains many
images not belonging to any of the species we are interested in. Most of these images are
caused by false detections of background objects that are not animals. In addition, a few of
these images are of other animal species outside of our research scope.

Another key issue to note is that these “distractor” images do not actually belong to
just a single class, as they do not necessarily share common features. Hence, the problem is
more “identify images not belonging to any class” instead of “identify images that belong
to a single ‘distractor’ class”.

3.2.3. Unbalanced Class Distribution

FSL evaluation protocols also assume an equal number of images per class among the
unknown images, as stated in Section 2.3. However, that assumption does not always hold
with real-world data. As already mentioned by [31], real-world data are often long-tailed,
which means that there are usually some classes with more observed cases, as well as other
classes with fewer cases. During the initial screening and labeling of our data, we randomly
selected 8000 images to be labeled and found a heavily unbalanced class distribution, as
seen in Table 2. For example, the Guinea baboon is more common and represented in
1624 images, while the rarer patas monkey is captured in only 54 images.

Table 2. Images of each species used as query for our implementation-style dataset (Senegal-I).

Species Images Species Images

Baboon 1624 Hartebeest 21
Buffalo 566 Oribi 10

Bushbuck 46 Patas monkey 54
Duiker 212 Roan antelope 167

Green monkey 247 Warthog 245
Guineafowl 1831 Distractors 2586

3.3. Dataset Formation

Given these challenges, we formally evaluate a network’s performance on our data
by constructing two datasets from our images. Senegal-benchmark (Senegal-B) mimics



AI 2023, 4 581

a benchmark evaluation protocol and enables us to focus on easy and straightforward
comparisons between networks under our environmental challenges. In contrast, Senegal-
implementation (Senegal-I) enables an in-depth exploration of the differences between
benchmark datasets and potential real-world implementation, specifically the presence of
distractors and unbalanced class distributions.

3.3.1. Dataset 1: For a Benchmark-Style Evaluation

To begin, we constructed a small dataset containing a few images per species, entitled
Senegal-B (B stands for benchmark). The number of images per species can be found in
Table 3. Senegal-B follows the typical FSL benchmark evaluation protocol for straightfor-
ward comparison, and uses our images to reflect the aforementioned imagery/environment
challenges. The main purpose of this dataset is to compare a network’s cross-domain
performance when it has been trained with publicly available data but applied to our
specific environment.

Table 3. Images of each species for our benchmark-style dataset (Senegal-B).

Species Images Species Images

Baboon 108 Hartebeest 25
Buffalo 74 Oribi 22

Bushbuck 126 Patas monkey 30
Duiker 53 Roan antelope 97

Green monkey 99 Warthog 83
Guineafowl 86

In selecting images, we have also taken an extra step to eliminate visually similar
images to make the variations within each class larger; e.g., if an animal stays in the
same spot and is detected multiple times, only one image will be included. To apply our
benchmark-style evaluation protocol, we apply 5-way, 5-shot settings with 15 query images
per species. We conduct each testing process by randomly sampling 300 episodes. The
process is repeated five times with different random seeds.

3.3.2. Dataset 2: For an Implementation-Style Evaluation

For the second dataset, we mimic a real implementation process of few-shot learning,
and name it Senegal-I (I stands for implementation). Instead of carefully selecting images
with reasonable quality and avoiding visually similar images, we randomly sampled and
labeled 8000 detected animals from shipments 2 and 3 of our data, only excluding those
already selected for Senegal-B. Therefore, Senegal-I and Senegal-B have disjoint image
sets. This is important because in using Senegal-I for testing, we will treat all 8000 images
as unknown queries, and attempt to classify them based on a support set selected from
Senegal-B. In addition, while there may exist visually similar images due to animals re-
appearing in the same camera within the Senegal-I set, there are no exact duplicates.

As mentioned in the second part of the challenges with real data (i.e., “differences”),
several assumptions made in benchmark datasets do not hold with non-curated data. To
begin with, unknown image queries do not follow a nicely balanced distribution between
classes. As can be seen from Table 2, some of the species are more frequently detected
than others. In addition, a testing episode in the benchmark datasets’ evaluation does not
consider images that do not belong to any of the classes. However, in our case, we observe
about 30% distractor images that do not belong to any of the classes. These images are often
background objects, such as branches or rocks that have been mis-detected as an animal. As
these images are from multiple different object types, they do not share inherently similar
features to be regarded as one single class.

As mentioned earlier, the traditional few-shot learning evaluation protocol does not
consider distractor images (images not belonging to any class) and always assigns a class
to an unknown image. Therefore, for this implementation-oriented dataset, we need an



AI 2023, 4 582

extra step in our evaluation protocol to decide whether images should be classified into
one of the classes or not. In contrast to the benchmark evaluation protocol, we use a
different evaluation protocol on this dataset (Senegal-I), which we call the implementation
evaluation protocol.

First, in the implementation evaluation protocol, we mimic an implementation scenario
where all classes and all images need to be considered at the same time. We select 10 images
per class from the relatively higher-quality Senegal-B dataset, and treat them as the support
images for each class. The 8000 images from the Senegal-I dataset are then treated as
queries. Second, since we have many distractor images, an additional decision rule must
be applied. In this paper, we choose to use a group of k-nearest neighbor (KNN) classifiers
to serve as the decision rule for eliminating distractor images; the details of the KNN rules
used can be found in Section 4.1.2.

For comparing results on this dataset, we will examine two performance metrics,
each corresponding to one of the aforementioned challenges (presence of distractor and
unbalanced class distribution). To quantify a network’s ability to reject distractor images
and to admit correct animal images, we define the following true positive rate (TPR) and
false positive rate (FPR), and plot them to form the ROC curve.

• False positive rate (FPR) is the number of distractor images that pass the decision
rule divided by the total number of distractor images. The FPR measures a network’s
effectiveness at eliminating distractor images.

• True positive rate (TPR) is the number of animal images that passes the decision
rule and are correctly classified, divided by the total number of animal images. TPR
measures a network’s effectiveness at admitting correct animal images. Due to the
very low quality on some of the animal images, we do not expect all animal images to
be classified. In other words, we do not expect the TPR to reach 100%.

Note that our definition of TPR reflects the fact that we are not considering traditional
binary classification, and this influences the ROC curve as well.

To quantify a network’s classification accuracy across classes, we use the top-1 match
to compute the mean per-class accuracy (MCA), as used in [31]. The MCA computes a top-1
accuracy for each class separately, and then forms the arithmetic mean across classes; this
way, classes with more images are not favored in the accuracy comparison. It is expressed
formally as

MCA =
1
C ∑

c

∑Tc
t=1[ŷ

t
top1 = yt]

Tc
(1)

for a dataset with C classes and Tc samples in each class; the ŷt
top1 = yt is an indicator

variable that is 1 only if the top-1 prediction is correct.

3.4. Network Training Settings

For our experiment, we will examine the performance of various FSL algorithms
on our data. We have selected nine FSL networks: ProtoNet [13], RFS [14], Baseline and
Baseline++ [15], R2-D2 [34], e3bm [17], RENet [35], SSL-FEW-SHOT [36], and P > M > F [37].
These selections include both classic algorithms that have paved the way, as well as more
recent ones that have achieved better performance on benchmark datasets. As we follow
the FSL philosophy of minimizing human labor when labeling new data, we will train
each network with a publicly available dataset, but will test on our data, Senegal-B and
Senegal-I, each corresponding to certain real-world challenges. Since the public training
data and our own test data inevitably have different environments and different classes,
this is inherently a cross-domain problem. We will see the effect of domain gaps when we
compare the results.

In this paper, we choose two public datasets for training. The first one is the mini-
ImageNet dataset, which is designed for few-shot learning. We will use the train/val split
proposed in [23] https://github.com/gitabcworld/FewShotLearning (accessed on 1 August
2022), which provides 38,400 images from 64 classes for training (600 images per class).

https://github.com/gitabcworld/FewShotLearning


AI 2023, 4 583

The second dataset we use is a camera-trap dataset named Snapshot Serengeti [38]. For
convenience purposes, we may refer to this dataset as “S.S.” in places such as tables or plots. To
date, the Snapshot Serengeti project has collected more than 7 million images from camera-trap
sites across Tanzania’s Serengeti National Park, totaling more than 5710 GB of data https://
lila.science/datasets/snapshot-serengeti (accessed on 1 August 2022). These images are then
labeled by thousands of “citizen scientists” with the help of an interactive species identification
tool https://www.zooniverse.org/projects/zooniverse/snapshot-serengeti (accessed on 1
August 2022). In this paper, we only utilized the first four seasons from the Snapshot
Serengeti dataset, which contains 1243 GB of data. We extracted 85,542 bounding boxes in
total using official metadata, which belong to 48 species. The distribution of these bounding
boxes can be seen in Figure 4.

Figure 4. Number of bounding boxes for each species.

As we can see, the class distribution is very unbalanced. For example, class 11 (ele-
phant) has 16,101 images, whereas class 12 (aardvark) has only 297 images. If we directly
take all these data into training, the result might be heavily biased towards the few classes
with an overwhelming number of images. Therefore, we establish a more balanced training
set with 8558 images in total, where we randomly select 200 images if a species has more
than 200 images, and take all available images if a species has fewer than 200 images.

Unless specified, we choose ResNet-12 as the backbone for the feature extractor,
and train with a 5-way 5-shot setup. For few-shot training, all networks use cross-entropy
as the loss function. In addition, RENet [35] uses a combination of an “anchor loss” based
on an additional fully connected layer, as well as a “metric loss” based on cosine similarity;
both are still cross-entropy losses. As for the decision rules used to obtain a prediction
during training, four of the nine networks use a simple closest neighbor rule. Among
these three, ProtoNet [13] and SSL-FEW-SHOT (SSL for short) [36] use Euclidean distance,
while P > M > F [37] and Baseline++ [15] use cosine similarity. Baseline [15], RFS [14],
and R2-D2 [34] all use a form of linear classifier for their decision rule, while RENet uses
a novel cross-correlational attention (CCA) module and e3bm [17] uses a more complex
ensemble of classifiers. To evaluate the networks, we use a compute server with four
NVIDIA TITAN Xp GPUs (12 GB memory each) for both training and testing.

Three networks (e3bm, SSL, and P > M > F) require a pre-trained network. For result
reporting in tables and graphs, the dataset used for pre-training will be indicated in
parenthesis. e3bm [17] uses a few-shot dataset for pre-training; in our case, therefore,
we use either Mini-ImageNet or Snapshot Serengeti (S.S.) for pre-training. SSL-FEW-
SHOT [36] uses two larger subsets of ImageNet for its self-supervised pre-training (which
means no labels are provided, and only the images themselves are used); Mini80 includes
48,000 images from 80 classes, and ImageNet900 (abbreviated as IN900 in tables and graphs)

https://lila.science/datasets/snapshot-serengeti
https://lila.science/datasets/snapshot-serengeti
https://www.zooniverse.org/projects/zooniverse/snapshot-serengeti


AI 2023, 4 584

includes about 1 million images from 900 classes. P > M > F [37] uses a pre-trained vision
transformer DINO [39]. It is also trained using self-supervised learning on ImageNet,
but since it does not vary, we will not specify it.

4. Results and Discussions

In this section, we conduct testing on each of our datasets, Senegal-B and Senegal-I,
to determine the usefulness of an FSL network when it faces the more realistic challenges
our datasets impose.

The section is organized as follows. First, we explore each of the networks on each
individual dataset. In Section 4.1.1, we report the networks’ performance on Senegal-B
using top-1 accuracy. In Section 4.1.2, we report the networks’ performance on Senegal-I
using the ROC curve and an MCA score, as described in Section 3.3.2. Then, in Section 4.1.3,
we present a discussion about the gap between the benchmark and implementation settings
by comparing the results across the two datasets.

Next, we explore individual factors that could influence a network’s performance
under more realistic implementation settings. In Section 4.2, we discuss the assumption
that self-supervised pre-training with extra data is the key to a robust feature extractor.
Finally, in Section 4.3, we consider additional design choices associated with applying FSL
networks in the implementation setting.

4.1. Overall Comparison of FSL Network Performance under Challenging Environments
4.1.1. Results Part 1: Benchmark-Style Evaluation

For testing with Senegal-B (benchmark-style), we follow the traditional FSL episode
construction and randomly create 3000 episodes, each representing a 5-way 5-shot problem
with 15 queries, and we report the top-1 accuracy. Using the benchmark-style dataset
and top-1 accuracy enables a straightforward comparison among the underlying FSL
networks in the context of our environment, which can be considered to be a cross-domain
FSL problem.

We also compare here the results of training on two datasets: a subset of Snapshot
Serengeti and mini-ImageNet. The goal is to understand the implications of training data
selection on FSL performance. Recall that the Snapshot Serengeti training set we con-
structed (49 classes, 8558 images) is smaller than mini-ImageNet’s training set (64 classes,
38,400 images); Snapshot Serengeti also has less variation within class when compared to
mini-ImageNet, because its images are taken from stationary cameras rather than internet
images from various sources. However, Snapshot Serengeti is more similar to our data,
both because it has more similar camera settings (stationary camera traps) and it has a
similar classification problem (animal species classification, albeit different species).

The results are shown in Table 4, where the performance of each network when tested
on mini-ImageNet is also shown, to provide a reference for how well these FSL networks
perform on typical benchmark datasets and settings.

When comparing the networks’ performances, we see that P > M > F significantly
outperforms all other networks in all scenarios. One potential reason for this may be
the advantage of using a vision transformer backbone that was pre-trained with a large
amount of data. Behind P > M > F is SSL-FEW-SHOT, which also employs self-supervised
learning with extra training data. We will discuss more about pre-training with extra data
in Section 4.2.

Next, we look at all other networks that do not use extra training data (e3bm’s pre-
training stage is limited to the same FSL dataset and, thus, it does not involve extra
data). First, we see that Baseline++ has the worst performance when trained and tested
on Mini-ImageNet; Baseline++ also performs the worst when tested on our Senegal-B
dataset, regardless of which training dataset is used. However, the ordering of the other
networks is not consistent between the two testing datasets. RENet and e3bm are the two
best-performing networks on the mini-ImageNet benchmark, but they are not the best on
Senegal-B (where Baseline and RFS perform best).



AI 2023, 4 585

As a result, it appears difficult to extrapolate results from one dataset to another.
Network improvements that result in better performance on mini-ImageNet may not lead
to similar improvements on our datasets.

Next, we consider the implications of the training data by comparing the columns in
Table 4. To begin with, as indicated by the bold numbers, six out of the nine networks (RFS,
Baseline, Baseline++, R2-D2, e3bm, SSL) performed better when trained with Snapshot
Serengeti than when trained with mini-ImageNet. ProtoNet and RENet are the only
networks that performed better when trained on mini-ImageNet than Snapshot Serengeti,
while P > M > F had equal performance in both cases.

Based on these observations, we conclude that generally, training on more similar
data is likely to be helpful when applying FSL to a cross-domain problem such as ours.
However, for ProtoNet, having a larger, more extensive training set leads to better cross-
domain performance. Moreover, the feature extractor of P > M > F, whose backbone
vision transformer was pre-trained on an impressive amount of data, provides a powerful
framework for FSL learning in general.

In addition, we see that when trained on mini-ImageNet and tested on our Senegal-B
dataset, overall these networks do not have as high a top-1 accuracy as when tested on
mini-ImageNet. This indicates that our Senegal-B is a more difficult dataset overall.

Table 4. Top-1 accuracy (%) when trained on mini-ImageNet (mini-I) and Snapshot Serengeti (S.S.)
and then tested on Senegal-B. The performance of each network when tested on mini-ImageNet
provides a reference for a typical benchmark dataset and setting.

Network Train on Mini-I
Test on Mini-I

Train on Mini-I
Test on Senegal-B

Train on S.S.
Test on Senegal-B

ProtoNet [13] 74.19 62.16 60.97
RFS [14] 79.74 62.96 71.56

Baseline [15] 76.18 67.54 71.98
Baseline++[15] 66.36 54.39 56.49

R2-D2 [34] 74.35 63.93 67.63
e3bm [17] (pre: Mini) 80.60 67.01 68.59
e3bm [17] (pre: S.S.) - - 59.69

RENet [35] 82.23 69.81 66.62
SSL [36] (pre: Mini80) 81.21 66.69 71.81
SSL [36] (pre: IN900) 90.79 71.90 76.32

P > M > F [37] 97.30 92.10 92.10

4.1.2. Results Part 2: Implementation-Style Evaluation

For testing with Senegal-I (implementation-style), our goal is to quantify and compare
the performance of different underlying FSL networks with the additional challenges of
the presence of distractors and an unbalanced class distribution. We will use the two
performance metrics described in Section 3.3.2.

The first metric is an ROC curve that quantifies a network’s ability to reject distractors
and to correctly classify admitted images. To generate these ROC curves, we implement
various k-nearest-neighbor (KNN) decision rules with different Ks and thresholds M.
Consider the example of K = 5 and M = 3—for each query (unknown) image, we find the
closest five (K) support images in the feature space. The image is only classified if at least
three (M) out of these five nearest neighbors are from the same class, in which case this
class will be assigned to the query image. This way, for each K and M pair, we calculate
a TPR and FPR based on our aforementioned definitions, and we plot an ROC curve that
describes the TPR/FPR at different operating points. To reduce confusion and improve
visual clarity, we consolidate all the points into one “best” ROC curve. Because of our
definition of TPR, the ROC curve should not be interpreted the same as an ROC curve of a
binary classification problem.



AI 2023, 4 586

The second performance metric, mean cross-class accuracy (MCA), has been proposed
by [31], and aims to solely focus on a network’s ability to perform the task across classes.
Additional details of these two performance metrics can be found in Section 3.3.2.

To begin with, we compare each network’s performance when trained with mini-
ImageNet against when trained with Snapshot Serengeti. The MCA scores for each network
are reported in Table 5. As was the case for Senegal-B in Table 4, we observe that most
networks, except for P > M > F and ProtoNet, perform better when trained on Snapshot
Serengeti. At first glance, it may seem that the MCA is quite low. However, considering
that the underlying problem is unbalanced 11-way classification both with difficult envi-
ronments and a large number of distractors (that do not belong to any class), these low
numbers are reasonable.

Next, detailed ROCs for each network are shown in the Appendix A, Figure A1, when
each is trained on either mini-ImageNet or Snapshot Serengeti. The best results for each
network are shown in Figure 5, where the legend indicates for each network which training
scenario performed best. Our observations are similar to above. Except for P > M > F, all
other networks achieve better performance in the implementation setting when trained
with Snapshot Serengeti instead of mini-ImageNet.

Table 5. MCA (mean cross-class accuracy) when trained with mini-ImageNet (mini-I) and Snapshot
Serengeti (S.S.), and then tested on Senegal-I.

Network Train on Mini-I
Test on Senegal-I

Train on S.S.
Test on Senegal-I

ProtoNet 21.70 21.20
RFS 27.70 35.00

Baseline 27.20 35.80
Baseline++ 24.30 28.80

R2-D2 22.30 31.10
e3bm (pre: Mini-I) 24.80 29.90

e3bm (pre: S.S.) 33.10
RENet 27.00 37.80

SSL (pre: Mini80) 33.90 41.00
SSL (pre: IN900) 40.50 46.60

P > M > F 70.70 46.80

Figure 5. Best ROC curves for each network when testing on Senegal-I. The datasets used for training
(e.g., mini-ImageNet or Snapshot Serengeti) are included in parentheses. Full results are shown in the
Appendix A, Figure A1.



AI 2023, 4 587

4.1.3. Discussion: Performance Difference between Benchmark and Implementation Settings

Here, we discuss detailed findings regarding individual networks’ performances
across benchmark settings and implementation settings. This explores whether using
benchmark settings in general enables meaningful conclusions to be drawn about applying
these networks to our real-world problem.

First, as previously observed on Senegal-B (Table 4), ProtoNet trained with mini-
ImageNet outperformed its counterpart trained with Snapshot Serengeti. However, when
tested with the more realistic Senegal-I, we observed mixed results (Table 5 and Figure A1e).
Although it obtained a slightly better MCA when trained with mini-ImageNet, it obtained
a better ROC curve when trained with Snapshot Serengeti. Similar results can also be
observed with RENet. When tested on Senegal-B, RENet trained with Mini-ImageNet
outperforms its counterpart trained with Snapshot Serengeti, but when tested on Senegal-I,
RENet trained with Snapshot Serengeti achieved better performance in both MCA and the
ROC curve.

Second, the two versions of P > M > F, trained with mini-ImageNet and Snapshot
Serengeti, respectively, achieve the same performance (top-1 accuracy) on benchmark
settings (Table 4). However, under implementation settings, the network trained with
mini-ImageNet performed dramatically better than the same network when trained with
Snapshot Serengeti (Figure A1d).

A third interesting finding is made when we compare performance across different
networks. For example, RFS and Baseline showed similar performances on benchmark
settings (Table 4), with Baseline being slightly better. However, in implementation settings,
RFS obtained a significantly better ROC curve than Baseline (Figure 5). Nevertheless,
the two networks that come with extra training data (P > M > F and SSL-FEW-SHOT) are
still the two best performing networks when applying the implementation settings.

Finally, the case of e3bm [17] is a bit more complicated, as it consists of two training
stages—a pre-training stage and a meta-training stage. As briefly mentioned in Section 2.2,
its pre-training stage aims to train a general feature extractor, and the meta-training stage
trains an ensemble of classifiers with trainable hyper-parameters, so that the classifiers can
adapt to a new task easily. To begin with, we observe that during benchmark testing, pre-
training with Snapshot Serengeti (S.S.) yields much worse performance than pre-training
with mini-ImageNet, regardless of which dataset the meta-training stage uses. However,
the same trend does not persist when we test with the more realistic implementation
case (see Figure A1c for ROC curves and Table 5 for MCA). For ROC curves, pre- and
meta-training with S.S. performed similarly to pre-training with mini-ImageNet and meta-
training with S.S., and much better than pre- and meta-training with mini-ImageNet. For
MCA, pre- and meta-training with S.S. outperformed the other two completely. We do
notice that e3bm performed rather poorly under implementation settings when compared
to other methods, and this is discussed further in Section 4.3.4.

The aforementioned observations are all examples where conclusions drawn from
results on a benchmark dataset may not be valid for all aspects of implementation.

4.2. Benefit of Extra Training Data and an Effective Feature Extractor

It is clear that P > M > F [37] and SSL-FEW-SHOT [36] perform better than all other
networks. Our assumption is that extra self-supervised pre-training leads to a more robust
feature extractor and, therefore, better FSL performance in real-world data. In this section,
we explore this hypothesis.

Unlike most FSL networks, that take a generic ResNet [40] or WRN (wide residual net-
work) [41] as backbone for the feature extractor part, these two incorporate self-supervised
learning frameworks as the feature extractor. SSL-FEW-SHOT uses AMDIM [42], which is
based on mutual information maximization. P > M > F takes advantage of a more advanced
vision transformer (ViT) named DINO [39] as the backbone. The rest of P > M > F is quite
straightforward; it uses a ProtoNet-style training process and a simple closest neighbor



AI 2023, 4 588

decision rule. This means its massive performance advantage over the other networks is
mostly likely due to the pre-trained backbone.

To demonstrate the effectiveness of the vision transformer backbone, we conduct
the same implementation testing using pre-trained DINO as a feature extractor directly,
without any further FSL-style training on mini-ImageNet or Snapshot Serengeti. Figure 6
shows the results using the pre-trained backbone compared to training it further with
mini-ImageNet or Snapshot Serengeti in FSL style. Compared to the results in Figure 5, we
can see that even without any training, simply using the pre-trained vision transformer as
a feature extractor still outperforms any other FSL network. This demonstrates the benefit
of a powerful feature extractor pre-trained with external data.

Figure 6. ROC curves for using pre-trained backbone only and P > M > F further trained on mini-
ImageNet/Snapshot Serengeti. Testing is on Senegal-I.

This may seem like an unfair advantage in benchmark testing, as none of the other
networks use external training data. However, in a real-world setting, we believe it is
important to exploit all possible benefits in order to help the end user. In this case, self-
supervised pre-training has been shown to be very effective under our implementation
settings. It is especially valuable in our cross-domain problem, both because we want to
minimize the labeling effort, and because our available training data (Snapshot Serengeti
or mini-ImageNet) still have a considerable domain gap when compared to the real-
world data.

Another interesting observation regarding P > M > F is that when we train the network
further using Snapshot Serengeti, its performance in implementation actually degrades,
suggesting that training with a domain-restricted and potentially heavily unbalanced
dataset (see Figure 4) may be detrimental to the effectiveness of the general purpose feature
extractor. Incidentally, in 2020, Tian et al. [14] have already suggested that a robust feature
extractor is all FSL needed. The fact that P > M > F performs so well as a robust general
purpose feature extractor further supports this assertion.

4.3. A Deeper Look into FSL Classification in Implementation Settings

In general, the implementation process is straightforward: extract features and com-
pare their similarity to known species classes. However, there are still components that may
affect the results. In this section, we consider additional aspects of applying an FSL network
to a real-world scenario. Therefore, the experiments here are limited to the implementation
settings using Senegal-I.



AI 2023, 4 589

First, we discuss three design aspects that are not necessary to consider when using
a benchmark dataset. The first two focus on how extracted query features (assumed to
be unknown) are compared to support features (assumed to be labeled). Specifically, we
consider (1) the distance metric used to characterize similarity between features, as well
as (2) if additional feature transformations can help the process. The third concerns how
the choice of support images affects the performance of networks under more complex
implementation settings, which is often ignored when a benchmark dataset is in place.
Then, we will then discuss the question “how easily can a network be changed to perform
a different task?”.

4.3.1. Distance Metrics

The choice of distance metric affects the computation of distances in high-dimensional
feature space to compare the extracted features to the features of known classes. Here,
we explore the impact of two of the most commonly used distance metrics for feature
comparison—cosine similarity and Euclidean distance. For each network, we select its
“best-performing” version based on our previous observations using the implementation
dataset, and we apply either Euclidean distance or cosine similarity to measure the distance
between query and support features.

A summary of the results is shown in Table 6, while the ROC curves for each network
are included in the Appendix A, Figure A2. As can be seen, for three of the nine networks
(e3bm, P > M > F, ProtoNet), the distance metric does not affect the result significantly,
with less than a 0.01 change in the area under the curve (AUC). Interestingly, ProtoNet’s
authors found empirically that using Euclidean distance significantly outperformed cosine
similarity when tested on benchmark datasets [13], but under our implementation settings,
the choice between cosine similarity and Euclidean distance does not make a difference.

For five out of the remaining six networks (except RENet), using cosine similarity
clearly improves the implementation testing result compared to using Euclidean distance.
Therefore, in our implementation setting, cosine similarity is more likely to perform better
at comparing high-dimension features for classification.

Table 6. AUC (area under curve) when using Euclidean distance and cosine similarity for feature com-
parison.

Network AUC Using
Euclidean Distance

AUC Using
Cosine Similarity

ProtoNet 0.22 0.22
RFS 0.34 0.36

Baseline 0.29 0.32
Baseline++ 0.13 0.17

R2-D2 0.27 0.32
e3bm 0.19 0.19

RENet 0.25 0.23
SSL 0.39 0.45

P > M > F 0.67 0.67

4.3.2. Additional Feature Transformation

Researchers in the FSL field have also investigated the effectiveness of additional fea-
ture transformation methods applied after a given feature extractor but before classification.
SOT (self-optimal-transport) [43] is a parameterless (not learned) feature transformation
that helps to cluster feature points in high-dimensional space; it has been shown by the
authors to improve networks’ performance for both FSL and re-identification tasks.

To verify its effectiveness under our more realistic few-shot classification settings, we
compare network performance with or without the SOT module. We conduct the same
implementation test for the three representative networks (P > M > F (Mini-I), RFS (S.S.),
R2-D2 (S.S.)), and the resulting comparisons are shown in Figure 7. For RFS, the SOT



AI 2023, 4 590

transformation indeed improved the matching results, although only by a small amount.
The effect is not significant with R2-D2, and in the case of P > M > F it actually degrades
the performance slightly.

Therefore, while this additional feature transformation consistently improves a net-
work’s performance on the benchmark datasets [43], it does not necessarily improve the
result in a more complex setting. The user may need to conduct additional evaluations
before deciding whether to incorporate SOT or another feature transformation into the
feature matching pipeline.

(a) P > M > F (Mini-I) (b) RFS (S.S.)

(c) R2-D2 (S.S.)
Figure 7. Effect of self-optimal-transport.

4.3.3. Support Data Selection

When we follow the FSL philosophy in a real-world implementation scenario, a few
images per class need to be labeled to serve as the support set. Unknown images are then
compared against the support set in order to be classified. Therefore, a question arises when
we consider a real-world implementation scenario without a pre-defined dataset—which
images should serve as the support set? Should we pick the most high-quality images,
or should we pick the most diverse set?

As stated in Section 3.3.2, when conducting the implementation experiment, we first
randomly select 10 images per class to serve as the support set. To verify that the selection
of the support set does influence system performance, we repeat the experiment using
different random seeds when selecting these 10 images. The results are shown in Figure 8.
We can clearly see that the different random selections of the support images do affect
performance; hence, we investigate next how strategies to choose the support images might
help improve the performance.



AI 2023, 4 591

Figure 8. Different random selections of support images, using RFS trained on S.S.

From an intuitive standpoint, there are two potential selection strategies besides just
random selection. The first method, named the “maximum separation” method, tries to
find the most diverse set of images within that class. We implement this strategy by starting
with one random image as an “anchor”, and then finding the next image whose feature
is furthest from the initial anchor image’s feature. Subsequently, the third image should
have the furthest average distance to the two previously enrolled images. We repeat the
process until all ten images have been enrolled. The general idea of this selection scheme is
to obtain the “most different-looking” images for a specific class.

The second method has the goal of finding the most common set of images within
that class; we will call it the“maximum likelihood” method. For this method, we first
apply PCA to reduce the feature dimension to a relatively small number D (D = 10 in
this experiment) in order to reduce computational cost. We then assume the images
follow a multivariate Gaussian distribution and compute the mean and covariance of the
distribution. In this way, we compute a likelihood score for each image, and the ten images
with the highest likelihood scores are selected. The general idea of this selection scheme is
to obtain the “most common-looking” images for a specific class.

We also include the default random selection scheme as a reference point.
Next, we evaluate these two selection methods along with random selection by ap-

plying them using the three representative networks in implementation settings, namely,
P > M > F (Mini-I), RFS (S.S.), and R2-D2 (S.S.). The results are shown in Figure 9. Overall,
maximum separation is the worst and degrades the performance by a large margin. The
maximum likelihood selection scheme shows noticeable improvements for RFS, but fails to
show any significant advantage over random selection for the other two networks. Never-
theless, we believe the experiment demonstrates the necessity of considering which images
should be selected to form the support set when dealing with raw data, and we encourage
further investigation of this aspect.



AI 2023, 4 592

(a) P > M > F (Mini-I) (b) RFS (S.S.)

(c) R2-D2 (S.S.)
Figure 9. Effect of three selection schemes for selecting the support set.

4.3.4. Ease of Implementation

One final aspect to discuss is how easily a network can be modified and applied to a
real-world system, particularly related to its flexibility when the task requirement changes.
This issue arises when incorporating e3bm in our implementation settings. For every other
network we considered in this paper, the feature extractor is trainable, and the decision
making applies a deterministic feature comparison method such as closest match or k-
nearest-neighbor. In contrast, e3bm’s decision making involves a sophisticated ensemble of
classifiers with trainable hyper-parameters, which poses major challenges when applying
it to a different task than it was originally designed for.

To elaborate further, for the results presented in this paper, we have trained each
network using “5-way 5-shot” settings, which is quite common in FSL benchmark protocols.
However, during implementation on real data, we are interested in applying an 11-way
classification problem, with the additional challenge of rejecting distractor images. For
every other network, we can simply take the trained feature extractor and apply the feature
comparison mechanism. However, for e3bm, its sophisticated ensemble of classifiers is
constrained to perform a 5-way classification problem. As a result, when we take out the
feature extractor and apply a deterministic classifier, the trained parameters and hyper-
parameters associated with the complex classifier are lost. That is one reason why e3bm
performs poorly in the implementation setting.

It is clear that few-shot learning was proposed to help practitioners adapt to new
tasks quickly with minimum labeling efforts. Therefore, we believe networks designed
for FSL should accommodate not only a domain shift (e.g., the change from one 5-way
classification problem to another 5-way classification problem in a new environment),
but also to reasonable changes in the classification problem itself (e.g., the change from a
5-way classification problem to a 6-way classification problem). Therefore, we encourage



AI 2023, 4 593

researchers in the FSL field to remember the end goal, rather than striving solely to optimize
network performance on a benchmark dataset.

5. Conclusions

The main focus of this paper has been to bridge the gap between the study of few-
shot learning (FSL) and the deployment of FSL classifiers for real-world problems. Here,
we explore a practical problem—animal species classification for in-the-wild camera-trap
images—as the example for a realistic FSL application, where FSL should alleviate the
major difficulty of not having labels for a new environment. This puts the theory of FSL
to the test since our real-world problem has additional challenges, including lower image
quality, the presence of distractors, and unbalanced class distributions. These additional
challenges caused by real-world data were described in Section 3.1.

To understand the performance of each FSL network for this problem, we create two
datasets from our data: (1) a benchmark-style dataset that enables an exploration into a net-
work’s effectiveness under a new environment and a new task, and (2) an implementation-
style dataset that focuses on a network’s effectiveness under additional challenges such
as the presence of distractors and imbalanced class distributions. The implementation-
style dataset also introduces new experiments and several additional performance metrics.
We describe the construction of the datasets and evaluation protocols in Section 3.3. We
then conduct experiments and report results using these two testing datasets. Specifically,
in Section 4.1, we report the detailed testing results for both our datasets, and observe
many cases that indicate that performance benchmark datasets do not necessarily reflect a
network’s true usefulness in real-world scenarios. In Section 4.2, we discuss the benefit of
having external training data and how that affects a network’s performance in real-world
settings. Finally, in Section 4.3, we perform additional experiments exclusively within the
implementation settings, to explore how various factors influence a network’s effectiveness
in real-world settings. These factors include both network design choices as well as things
such as support set selection, which were not considered when a benchmark dataset is
in place.

We believe there is more work to be done. There exist many other factors that may
affect a network’s real-world performance but have not been incorporated into benchmark
testing. For example, there is more to understand about how to create an effective training
set from public data for training an FSL network for a given domain. We also encourage
researchers in the FSL area to stay true to the origin of the problem. There is an increasing
tendency to focus primarily on obtaining high accuracy on benchmark datasets, but FSL
was proposed to make systems easily adaptable to new environments and tasks. We
encourage additional renewed effort to this original goal.

Author Contributions: Conceptualization, H.C., A.R.R. and S.L.; methodology, H.C. and A.R.R.;
software, H.C.; data acquisition, S.L., P.I.N., J.D.P. and Y.H.N.; data curation, H.C.; writing—original
draft preparation, H.C.; writing—review and editing, H.C., S.L., P.I.N. and A.R.R.; supervision, S.L.,
J.D.P., P.I.N. and A.R.R.; funding acquisition, S.L., J.D.P., P.I.N. and A.R.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is funded by NSF grant number 2022314, under the HUNTRESS (HUnting,
Nutrition, Tool-use, Reproductive Ecology, and meat Sharing in Savanna chimpanzees) project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Information about obtaining our testing datasets for classification can
be requested by contacting A. R. Reibman at reibman@purdue.edu.

Acknowledgments: We thank the Direction des Parcs Nationaux, Direction des Forêts et Chasses,
Recherche Chimpanzé Assirik, Fongoli Savanna Chimpanzee Project, Purdue University, and Univer-
sité Cheikh Anta Diop.

Conflicts of Interest: The authors declare no conflict of interest.



AI 2023, 4 594

Abbreviations
The following abbreviations are used in this manuscript:

FSL Few-shot learning
KNN K-nearest neighbor
CT Camera trap
TPR True positive rate (see Section 3.3.2 for detailed definition)
FPR False positive rate
ROC Receiver operating characteristic
MCA Mean per-class accuracy
In figures and tables:
S.S. Snapshot Serengeti (dataset)
Mini-I Mini-ImageNet (dataset)
Mini80 Subset of ImageNet used for self-supervised pre-training in [36]
IN900 ImageNet900, Subset of ImageNet used for self-supervised pre-training in [36]

Appendix A. Additional Figures

Appendix A.1. Comparison between Training Datasets

Figure A1 compares each network’s performance when trained on mini-ImageNet and
Snapshot Serengeti under our implementation settings. The best curves of each network
are collectively displayed in Figure 5.

(a) Baseline (b) Baseline++ (c) e3bm

(d) P > M > F (e) ProtoNet (f) R2-D2

(g) RFS (h) RENet (i) SSL

Figure A1. ROC curve comparison between training on mini-ImageNet (Mini-I) and Snapshot
Serengeti (S.S.) for each network. Note that e3bm has a pre-training stage and meta-training stage,
which was further discussed in Section 4.1.2.



AI 2023, 4 595

Appendix A.2. Comparison between Distance Metrics

(a) Baseline (b) Baseline++ (c) e3bm

(d) P > M > F (e) ProtoNet (f) R2-D2

(g) RFS (h) RENet (i) SSL
Figure A2. ROC curve comparison between using Euclidean distance and cosine similarity when
comparing support and query images. The best networks based on Figure A1 are used.

References
1. Li, F.-F.; Fergus, R.; Perona, P. One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 594–611.

[CrossRef] [PubMed]
2. Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning. In Proceedings of

the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.
3. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.

2020, 53, 1–34. [CrossRef]
4. Chen, H.; Lindshield, S.M.; Reibman, A.R. Challenges and constraints when applying few shot learning to a real-world scenario:

In-the-wild camera-trap species classification. Electron. Imaging 2023, 35, 280-1–280-6. . [CrossRef]
5. Lindshield, S.; Bogart, S.; Gueye, M.; Ndiaye, P.; Pruetz, J. Informing Protection Efforts for Critically Endangered Chimpanzees

(Pan troglodytes verus) and Sympatric Mammals amidst Rapid Growth of Extractive Industries in Senegal. Folia Primatol. 2019,
90, 124–136. [CrossRef] [PubMed]

6. Pruetz, J.; Bertolani, P.; Boyer Ontl, K.; Lindshield, S.; Shelley, M.; Wessling, E. New evidence on the tool-assisted hunting
exhibited by chimpanzees (Pan troglodytes verus) in a savannah habitat at Fongoli, Sénégal. R. Soc. Open Sci. 2015, 2, 140507.
[CrossRef]

7. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying,
counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–
E5725. [CrossRef]

8. Pavlovs, I.; Aktas, K.; Avots, E.; Vecvanags, A.; Filipovs, J.; Brauns, A.; Done, G.; Jakovels, D.; Anbarjafari, G. Ungulate Detection
and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN. Entropy 2022, 24, 353. [CrossRef]

9. Zhang, Z.; He, Z.; Cao, G.; Cao, W. Animal Detection From Highly Cluttered Natural Scenes Using Spatiotemporal Object Region
Proposals and Patch Verification. IEEE Trans. Multimed. 2016, 18, 2079–2092. [CrossRef]

10. Singh, P.; Lindshield, S.M.; Zhu, F.; Reibman, A.R. Animal Localization in Camera-Trap Images with Complex Backgrounds. In
Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Albuquerque, NM, USA, 29–31
March 2020; pp. 66–69. [CrossRef]

http://doi.org/10.1109/TPAMI.2006.79
http://www.ncbi.nlm.nih.gov/pubmed/16566508
http://dx.doi.org/10.1145/3386252
http://dx.doi.org/10.2352/EI.2023.35.7.IMAGE-280
http://dx.doi.org/10.1159/000496145
http://www.ncbi.nlm.nih.gov/pubmed/30826809
http://dx.doi.org/10.1098/rsos.140507
http://dx.doi.org/10.1073/pnas.1719367115
http://dx.doi.org/10.3390/e24030353
http://dx.doi.org/10.1109/TMM.2016.2594138
http://dx.doi.org/10.1109/SSIAI49293.2020.9094613


AI 2023, 4 596

11. Karami, A.; Crawford, M.; Delp, E.J. Automatic Plant Counting and Location Based on a Few-Shot Learning Technique. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5872–5886. [CrossRef]

12. Tian, Z.; Lai, X.; Jiang, L.; Liu, S.; Shu, M.; Zhao, H.; Jia, J. Generalized Few-shot Semantic Segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11553–11562.
[CrossRef]

13. Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
14. Tian, Y.; Wang, Y.; Krishnan, D.; Tenenbaum, J.B.; Isola, P. Rethinking few-shot image classification: A good embedding is all you

need? In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 266–282.
[CrossRef]

15. Chen, W.Y.; Liu, Y.C.; Kira, Z.; Wang, Y.C.; Huang, J.B. A Closer Look at Few-shot Classification. In Proceedings of the
International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

16. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1126–1135.

17. Liu, Y.; Schiele, B.; Sun, Q. An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning. In Proceedings of the European
Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020. [CrossRef]

18. Xiong, C.; Li, W.; Liu, Y.; Wang, M. Multi-Dimensional Edge Features Graph Neural Network on Few-Shot Image Classification.
IEEE Signal Process. Lett. 2021, 28, 573–577. [CrossRef]

19. Jiang, B.; Zhao, K.; Tang, J. RGTransformer: Region-Graph Transformer for Image Representation and Few-Shot Classification.
IEEE Signal Process. Lett. 2022, 29, 792–796. [CrossRef]

20. Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science
2015, 350, 1332–1338. [CrossRef]

21. Sun, Q.; Liu, Y.; Chua, T.; Schiele, B. Meta-Transfer Learning for Few-Shot Learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 403–412. [CrossRef]

22. Bennequin, E.; Tami, M.; Toubhans, A.; Hudelot, C. Few-Shot Image Classification Benchmarks are Too Far From Reality:
Build Back Better with Semantic Task Sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, New Orleans, LA, USA, 19–20 June 2022; pp. 4766–4775. [CrossRef]

23. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the International Conference on
Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

24. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. Caltech-UCSD Birds 200; Technical Report CNS-TR-2011-001; California
Institute of Technology: Pasadena, CA, USA, 2011.

25. Nuthalapati, S.; Tunga, A. Multi-Domain Few-Shot Learning and Dataset for Agricultural Applications. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021;
pp. 1399–1408. [CrossRef]

26. Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning. IEEE
Access 2019, 7, 110895–110904. [CrossRef]

27. Yoo, T.K.; Choi, J.Y.; Kim, H.K. Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot
classification. Med. Biol. Eng. Comput. 2021, 59, 401–415. [CrossRef] [PubMed]

28. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML
Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2.

29. Figueroa-Mata, G.; Mata-Montero, E. Using a Convolutional Siamese Network for Image-Based Plant Species Identification with
Small Datasets. Biomimetics 2020, 5, 8. [CrossRef]

30. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251.
[CrossRef]

31. Prabhu, V.; Kannan, A.; Ravuri, M.; Chablani, M.; Sontag, D.A.; Amatriain, X. Prototypical Clustering Networks for Dermatologi-
cal Disease Diagnosis. arXiv 2018, arXiv:1811.03066.

32. Wang, L.; Yang, X.; Tan, H.; Bai, X.; Zhou, F. Few-Shot Class-Incremental SAR Target Recognition Based on Hierarchical
Embedding and Incremental Evolutionary Network. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5204111. [CrossRef]

33. Zhong, Q.; Chen, L.; Qian, Y. Few-Shot Learning for Remote Sensing Image Retrieval with MAML. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 2446–2450.
[CrossRef]

34. Bertinetto, L.; Henriques, J.F.; Torr, P.H.S.; Vedaldi, A. Meta-learning with differentiable closed-form solvers. In Proceedings of
the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

35. Kang, D.; Kwon, H.; Min, J.; Cho, M. Relational Embedding for Few-Shot Classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021.

36. Chen, D.; Chen, Y.; Li, Y.; Mao, F.; He, Y.; Xue, H. Self-Supervised Learning for Few-Shot Image Classification. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021;
pp. 1745–1749. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2020.3025790
http://dx.doi.org/10.1109/CVPR52688.2022.01127
http://dx.doi.org/10.1007/978-3-030-58568-6_16
http://dx.doi.org/10.1007/978-3-030-58517-4_24
http://dx.doi.org/10.1109/LSP.2021.3061978
http://dx.doi.org/10.1109/LSP.2022.3155991
http://dx.doi.org/10.1126/science.aab3050
http://dx.doi.org/10.1109/CVPR.2019.00049
http://dx.doi.org/10.1109/CVPRW56347.2022.00523
http://dx.doi.org/10.1109/ICCVW54120.2021.00161
http://dx.doi.org/10.1109/ACCESS.2019.2934233
http://dx.doi.org/10.1007/s11517-021-02321-1
http://www.ncbi.nlm.nih.gov/pubmed/33492598
http://dx.doi.org/10.3390/biomimetics5010008
http://dx.doi.org/10.1109/ICCV.2017.244
http://dx.doi.org/10.1109/TGRS.2023.3248040
http://dx.doi.org/10.1109/ICIP40778.2020.9191042
http://dx.doi.org/10.1109/ICASSP39728.2021.9413783


AI 2023, 4 597

37. Hu, S.X.; Li, D.; Stühmer, J.; Kim, M.; Hospedales, T.M. Pushing the Limits of Simple Pipelines for Few-Shot Learning: External
Data and Fine-Tuning Make a Difference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022. [CrossRef]

38. Swanson, A.; Kosmala, M.; Lintott, C.; Simpson, R.; Smith, A.; Packer, C. Snapshot Serengeti, high-frequency annotated camera
trap images of 40 mammalian species in an African savanna. Sci. Data 2015, 2, 150026. [CrossRef]

39. Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 9650–9660. [CrossRef]

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

41. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
42. Bachman, P.; Hjelm, R.D.; Buchwalter, W. Learning representations by maximizing mutual information across views. In Proceed-

ings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December
2019.

43. Shalam, D.; Korman, S. The Self-Optimal-Transport Feature Transform. arXiv 2022, arXiv:2204.03065.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR52688.2022.00886
http://dx.doi.org/10.1038/sdata.2015.26
http://dx.doi.org/10.1109/ICCV48922.2021.00951
http://dx.doi.org/10.1109/CVPR.2016.90

	Introduction
	Background
	Species Classification for Camera-Trap Videos/Images
	FSL Methods
	FSL Benchmark Datasets and Evaluation Protocols
	Applied FSL

	Materials and Methods
	Data Description
	Challenges
	Environmental/Imagery Challenges
	Presence of Distractors
	Unbalanced Class Distribution

	Dataset Formation
	Dataset 1: For a Benchmark-Style Evaluation
	Dataset 2: For an Implementation-Style Evaluation

	Network Training Settings

	Results and Discussions
	Overall Comparison of FSL Network Performance under Challenging Environments
	Results Part 1: Benchmark-Style Evaluation
	Results Part 2: Implementation-Style Evaluation
	Discussion: Performance Difference between Benchmark and Implementation Settings

	Benefit of Extra Training Data and an Effective Feature Extractor
	A Deeper Look into FSL Classification in Implementation Settings
	Distance Metrics
	Additional Feature Transformation
	Support Data Selection
	Ease of Implementation


	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

