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Abstract: Convolutional Neural Networks (CNNs) have exhibited remarkable potential in effectively
tackling the intricate task of classifying MRI images, specifically in Alzheimer’s disease detection and
brain tumor identification. While CNNs optimize their parameters automatically through training
processes, finding the optimal values for these parameters can still be a challenging task due to the
complexity of the search space and the potential for suboptimal results. Consequently, researchers
often encounter difficulties determining the ideal parameter settings for CNNs. This challenge
necessitates using trial-and-error methods or expert judgment, as the search for the best combination
of parameters involves exploring a vast space of possibilities. Despite the automatic optimization
during training, the process does not guarantee finding the globally-optimal parameter values.
Hence, researchers often rely on iterative experimentation and expert knowledge to fine-tune these
parameters and maximize CNN performance. This poses a significant obstacle in developing real-
world applications that leverage CNNs for MRI image analysis. This paper presents a new hybrid
model that combines the Particle Swarm Optimization (PSO) algorithm with CNNs to enhance detec-
tion and classification capabilities. Our method utilizes the PSO algorithm to determine the optimal
configuration of CNN hyper-parameters. Subsequently, these optimized parameters are applied to
the CNN architectures for classification. As a result, our hybrid model exhibits improved prediction
accuracy for brain diseases while reducing the loss of function value. To evaluate the performance
of our proposed model, we conducted experiments using three benchmark datasets. Two datasets
were utilized for Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
an international dataset from Kaggle. The third dataset focused on brain tumors. The experimental
assessment demonstrated the superiority of our proposed model, achieving unprecedented accuracy
rates of 98.50%, 98.83%, and 97.12% for the datasets mentioned earlier, respectively.

Keywords: Convolutional Neural Networks (CNNs); Particle Swarm Optimization (PSO); deep
learning (DL); image classification

1. Introduction

Around the world, more than 286 million people suffer from brain disease, according
to the World Health Organization [1]. There are 246 million mentally ill people and
39 million people who are in critical condition, according to [2]. The brain, being one of the
largest and most intricate parts of the body, plays an important role in several functions,
such as generating ideas, problem-solving, reasoning, making decisions, imagination,
and memory [1].

Alzheimer’s disease (AD), which affects millions of people, is the most prevalent
type of dementia. As people get older, their anxiety about getting Alzheimer’s increases.
Alzheimer’s disease slowly kills brain cells, leaving patients unable to recognize family
members, recall memorization, or remember familiar faces. As a result, they become
disoriented and lose the ability to recognize their surroundings. In advanced stages, they
also lose the ability to eat, cough, and breathe. The cost of providing health and social care
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for the 50 million people affected by dementia globally is equal to the 18th largest economy
in the world [2]. Additionally, by 2050, it is anticipated that there will be 152 million new
cases of AD and other dementias annually, or one case every three seconds. The symptoms
of AD and vascular dementia (VD) overlap, such as memory impairment, language and
communication difficulties, and behavioral and psychological symptoms, making the
diagnosis of AD challenging [3,4]. Through the monitoring of its progression, early and
accurate AD diagnosis is crucial for patient care, treatment, and prevention.

A brain tumor is another severe condition extremely dangerous for the brain.
Since the brain’s veins and nerves are already compromised, tumors frequently develop
there. Depending on the tumor stage, this can cause partial or total blindness [5].
Family history, ethnicity, and severe myopia are additional contributing factors [6].
It is made to prevent nerve vessels from enlarging and is also brought on by poor blood flow.
This disease is typically detected after progressing to a critical stage, as mentioned in [7],
and is typically painless before that point. As a result, today’s most advanced societies have
an ever-growing need for quick and automated discovery for early diagnosis techniques.

In many scientific fields, images are crucial. Medical imaging has also advanced into a
powerful tool for understanding brain activity. Magnetic resonance imaging (MRI), a type
of brain imaging that allows for the representation of the structure and functionality of the
brain, has been used in the healthcare diagnosis of brain conditions. Medical professionals
assess the symptoms and signs of AD and brain tumors [8]. Doctors may request additional
laboratory examinations, brain imaging exams, or memory tests for patients. By excluding
other conditions that cause comparable symptoms, these tests can assist doctors in making
diagnoses. Using MRI, it is possible to identify brain abnormalities linked to mild cognitive
impairment (MCI) and to foretell which MCI patients will go on to develop AD and brain
tumors. The MRI images will be examined for anomalies, such as a decrement in the size of
different brain regions that primarily influence memorization [9].

As a result of technological advancements and the expansion of data gathered by brain-
imaging techniques, Deep Neural Networks (DNN) are becoming increasingly crucial for
extracting accurate and highly relevant information and making accurate predictions of
AD and brain tumors from brain-imaging data.

Deep Neural Networks (DNN) have proven they can use a hierarchical model, millions
of parameters, and learn from large databases to solve classification problems. CNNs are a
sub-type of DNN comprising several convolutional, pooling, and fully connected layers.
They have been successfully used for pattern recognition, classification, and image or video
processing. CNN has attracted attention in recent years for outperforming competitors in
several computer vision-related applications, including natural language processing and
medicine [10,11].

Different CNN architectures (such as ResNet-50 [12] and DarkNet-19 [13]) can pro-
duce different classification results due to the many parameters that comprise them.
Finding the optimal hyper-parameter values requires a complex search procedure, typically
based on trial and error, a series of tests, or manual adjustment. It has been demonstrated
that certain hyper-parameter selection algorithms can match or exceed the performance of
human experts [14]. However, they still need to be widely used due to their high computa-
tional complexity. Various state-of-the-art techniques are available, from the basic grid and
random searches [15] to sophisticated methods that balance exploring and exploiting the so-
lution space [16]. Model-based approaches [17] and Bayesian optimization using Gaussian
processes (GP) [14,16] are included in the latter category. While evolutionary algorithms
have been proven effective in solving a wide variety of difficult optimization problems [18],
they have yet to be used to optimize CNN’s hyper-parameters in all applications.

Based on the effective performance of DNN and CNN methods in various image
classification tasks [8,10], the study goal is to help design a more efficient system for
making a highly accurate prediction for AD and brain tumor diseases using a highly
efficient optimization algorithm known as Particle Swarm Optimization (PSO). Our main
contributions can be recapped as follows:
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• We develop a hybrid framework that employs the PSO algorithm to determine the
best hyper-parameters’ configuration for CNN architectures to improve prediction
accuracy for brain diseases and decrease the loss function value.

• We utilize PSO as a wrapper around the training process to retrieve hyper-parameters
(such as the number of convolution filters, the size of the filters used in the convolu-
tional layer, the size of the pool in the max pooling layer, and the size of the strides
used in the max pooling layer).

• We evaluate our model on three distinct modern brain disease datasets, namely the
Alzheimer’s disease dataset [19,20], and the brain tumor dataset [21].

• We contrast our PSO-optimized CNN model with three distinct CNN models: the ResNet,
the InceptionNet, and the VGG models. Finally, we benchmarked our proposed model
against state-of-the-art models employing different optimization algorithms.

The remainder of this paper is structured as follows: Section 2 provides related studies
of AD and brain tumor diagnosis and classification. The proposed CNN-PSO model is
built and evaluated in Section 3, which also presents the methodology. Section 4 presents
the experimental and evaluation results; Section 5 concludes the paper and discusses
future works.

2. Related Work

Various classification strategies have been proposed for AD and brain tumors as part
of the proposed diagnosis and detection systems. This section reviews recent studies
using conventional ML and DL methods for AD and brain tumor detection and diagnosis.
Traditional machine-learning techniques [22] were employed in some of the earlier studies
on the diagnosis of Alzheimer’s disease and brain tumors. They focused on developing
models that analyze the anatomy or systemic brain images obtained through MRIs and
the functioning of the brain in order to find any flaws or disorders. They heavily relied
on manually made features and feature representations for voxel, region, or patch-based
methods and saw segmentation issues as classification issues. Many expert-segmented
images were required, which added to the time required to train the classification models.

The summarized studies from the review are shown in Table 1 below, which also dis-
tinguishes them based on (1) dataset type (brain tumors or AD), (2) proposed methodology,
since some of the studies are based on CNN architecture only, on the other hand, other
studies used optimization algorithms in order to optimize the classification results; also,
many studies used the segmentation approach for the classification of the MRI images,
(3) the limitation of the proposed study and (4) performance evaluation results. Table 2
shows the usage of the PSO algorithm for each study.

Related to Alzheimer’s brain disease, the authors in the paper [23] suggested an inher-
ent structure-based multiview learning (ISML) method for classifying AD/MCI. The sug-
gested approach is composed of three stages: (1) multi-view extraction of features using
multiple templates and using gray matter (GM) tissues as tissue-segmented brain im-
ages for feature extraction; (2) subclass clustering-based feature selection through using
voxel selection that improves the power of features; and (3) using SVM-based ensemble
classification. They used the MRI baseline dataset from the ADNI database to assess the ef-
fectiveness of the suggested method. According to the experiment’s findings, the proposed
ISML method achieves an accuracy of 93.83% when comparing AD and NC.

The authors of the paper [9] use two different 3D CNN approaches for classification—3D-
VGGNet and 3D-ResNet—along with Softmax nonlinearity. They employ the 3D structural
MRI brain scans from the ADNI dataset. According to the outcome, ResNet and Voxnet both
achieve an accuracy of 79% and 80% for AD/CN classification, respectively. Additionally,
their algorithms are easier to implement and do not require manual extraction. Recent
research led the authors of [24] to suggest a straightforward CNN for AD pre-detection.
Two MRI scans provided by ADNI are used in their study’s two experiments. As the most
popular detection technique, they use the SVM classifier. They made this choice under
the presumption that an effective AD detection method could be successfully applied to
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an AD pre-detection method. The first experiment shows 84.41% accuracy for the SVM
classifier. The proposed CNN model was used in the second experiment. With various
datasets and image segmentation techniques, they tested the utility of the CNN model
using the six evaluation steps. Extended ROI without edge detection was the most accurate
image segmentation technique, with a 96% accuracy rate.

The authors of [25] proposed a new classification method that distinguishes patients
with AD from HC based on MRI data. Utilizing AlexNet, sequential feature selection (SFS),
and feature selection based on principal component analysis (PCA). In addition to that,
the CNN architecture is used to extract the feature. The findings demonstrate that the
AD/CN classification accuracy reaches 90%. The study [26] additionally proposed a model
for the early diagnosis and classification of AD and MCI from elderly patients with no
cognitive impairments in addition to the prediction and diagnosis of early and late MCI
patients. The ADNI database provides the dataset. For each scan, they used FreeSurfer
analysis to extract 68 features of the cortical thickness and used those features to build the
model. The scans were then used to test various machine learning methods, such as linear
SVM, non-linear SVM (RBF kernel), naive Bayesian, K-nearest neighborhood, random
forest, and decision trees. The non-linear SVM classifier with radial basis function showed
a 75% accuracy rate for classifying tasks.

In other research studies, CNN architectures are optimized using the PSO algorithm,
yielding positive outcomes in the accuracy of various applications. In [27], the authors
focused on the PSO algorithm for improving the behavior of the Patch Image Differential
Clustering (PIDC) algorithm to segment the subjects’ brains and examine the stages of
Alzheimer’s disease. Compared to fuzzy C-Means and K-Means clustering algorithms,
the PSO-based PIDC algorithm provides better segmentation of various brain subjects,
demonstrating that 92% of segmentation accuracy was achieved with the PSO and the
PIDC algorithms. While in paper [28], the PSO algorithm is used with the decision tree
method, the PSO algorithm is used for the feature selection process, and according to the
experiment’s findings, the PSO-based random forest algorithm achieved a 93.56% accuracy
rate to detect Alzheimer’s disease.

Additionally, the authors in [29] classified Alzheimer’s disease using three different
types of algorithms: the Extreme Learning Machine (ELM) for classification, with a PSO
to optimize its performance; a GA algorithm for feature selection; and a Voxel-Based
Morphometry (VBM) approach for feature extraction from the MRI images. This study has
demonstrated that using all three techniques together yields better classification outcomes.
This method can help distinguish between very mild cases of AD and normal cases with a
testing accuracy of 87.23%, which shows how effective it is at observing the onset of AD.

For brain tumor diseases, the CNN architecture was used by the authors of the
paper [30] in their investigation. They have primarily focused on creating a CNN model
for classifying brain tumors in T1-weighted contrast-enhanced MRI images. The proposed
process has two key phases: pre-process the images using various image processing
techniques and then use CNN to classify them. Three different types of brain tumors are
included in the dataset of 3064 images used in the study (glioma, meningioma, pituitary).
They achieved a testing accuracy of 94.39% using the CNN model. Additionally, the authors
of the paper [31] used a support vector machine and a genetic algorithm to segment and
categorize brain MRI images. The results of classifying the brain MRI images into normal
and abnormal cases were about 91% accurate.
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Table 1. Summary of reviewed related works.

Reference Dataset Type Proposed Model Study Limitation Evaluation Results

[18] AD Dataset 3D CNN (VoxCNN, ResNet),
Softmax

Small dataset size, model
complexity, lack of interpretability

and external validation

AD vs. NC
Accuracy: 79% VoxCNN
Accuracy: 80% ResNet
AUC: 88% VoxCNN
AUC: 87% ResNet

[19] AD Dataset CNN, SVM Lack of implementation, training,
and parameter details

AD vs. NC
Accuracy: 96%

[20] AD Dataset CNN (AlexNet), SVM
Insufficient discussion on feature
selection and extraction from MRI

data

AD vs. NC
Accuracy: 90%
Specificity: 91%
Sensitivity: 87%

[21] AD Dataset FreeSurfer, SVM, Naive Bayesian,
Random Forest, Decision Tree

Limitations in choice of evaluation
metrics

AD vs. NC
Accuracy: 75%
Specificity: 77%
Sensitivity: 75%
F-score: 72%
AUC: 76%

[22] AD Dataset PSO-based PIDC algorithm,
Softmax

Lack of extensive details and
evaluation of the hybrid algorithm

for brain image segmentation

AD vs. NC
Accuracy: 92%

[23] AD Dataset PSO with Decision Tree Methods Insufficient analysis or discussion of
feature selection process

AD vs. NC
Accuracy: 93.56%

[24] AD Dataset GA algorithm, ELM, PSO Lack of thorough comparison with
other classifiers or methods

AD vs. NC
Accuracy: 87.23%
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Table 1. Cont.

Reference Dataset Type Proposed Model Study Limitation Evaluation Results

[25] Brain Tumor Dataset CNN, Softmax
Insufficient details or analysis of

CNN architecture for brain tumor
classification

Normal vs. Not Normal
Accuracy: 94.39%

[26] Brain Tumor Dataset GA algorithm, SVM
Lack of extensive details or analysis
of optimization technique for brain

tumor detection

Normal vs. Not Normal
Accuracy: 91%

[27] Brain Tumor Dataset CNN, ELM, SVM
Insufficient details or analysis of

ensemble classifier for brain tumor
segmentation and classification

Normal vs. Not Normal
Accuracy: 91.17%

[29] Brain Tumor Dataset CNN (VGG19), Softmax

Lack of details or analysis of deep
CNN architecture and

hyper-parameters for brain tumor
classification

Normal vs. Not Normal
Accuracy: 90.67%

[31] Brain Tumor Dataset CNN with DWT, SVM

Lack of details or analysis of
PSO-based segmentation technique

for brain MRI images and
comparison with other methods

Normal vs. Not Normal
Accuracy: 85%

[32] Brain Tumor Dataset CNN with PSO, Softmax

Lack of details or analysis of
modified PSO algorithm for brain
tumor detection and limitations of

the modification

Normal vs. Not Normal
Accuracy: 92%
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Table 2. Usage of PSO algorithm.

Reference Usage of PSO

[18] Not used PSO

[19] Not Used PSO

[20] Not Used PSO

[21] Not Used PSO

[22] PSO was used for optimizing the model performance by selecting the optimal parameters and weight

[23] PSO was used for the feature selection process

[24] PSO was used for optimizing the model performance by selecting the optimal parameters and weight

[25] Not used PSO

[26] Not used PSO

[27] Not used PSO

[29] Not used PSO

[31] PSO was used for the feature selection process

[32] PSO was used for the feature selection process

Using ensemble methods, the segmentation and classification of brain tumors were
carried out in a different study by the author of the paper [32]. In ensemble methods, neural
networks, Extreme Learning Machines (ELM), and support vector machine classifiers are
all combined. The suggested system has several phases: pre-processing, segmentation,
feature extraction, and classification. Pre-processing operations are first performed on the
input MRI image using the median filtering algorithm. Next, segmentation is performed
using the FCM clustering algorithm. The third stage involves extracting features using
the Gray Level Co-occurrence Matrix (GLCM). The automatic stage of a brain tumor is
established using ensemble classification. Tumor and non-tumor images are distinguished
using the ensemble classifier. As a result of the experiments, the method was discovered
to be more reliable, efficient, and precise. An accuracy of 91.17% was obtained using the
suggested method.

Furthermore, in the paper [33], the authors employed machine learning methods
to recognize tumors in MRI images for the proposed work. The proposed model uses a
CNN model to segment MRI images automatically. Segmentation and classification are
performed with the same method. The proposed model includes several key phases: data
collection, pre-processing, average filtering, segmentation, feature extraction, and classifica-
tion. On the UCI dataset, this model had an overall accuracy of 91.00%. Another study [34]
proposed a detailed augmentation-based model that divides the stages of a brain tumor
into four categories. In this method, images are segmented using the CNN model and
then submitted to the CNN model (VGG19) for feature extraction and classification after
extensive data augmentation. On the Radiopaedia dataset [35], the suggested method
achieved 90.67% accuracy.

Several studies used the CNN with PSO to achieve efficient results in terms of accuracy
to detect brain tumor diseases; the authors of the paper [36] propose a model to categorize
tumorous and non-tumorous brains, PSO extracts thirteen different features using Dis-
crete Wavelet Transform (DWT)-based features and segments the precise tumor location
from the images; these features were developed for the classification of tumorous and
non-tumorous brains from MR images using an SVM classifier with two different kernel
functions, a dataset of 50 brain MR images is used to validate the proposed model and it
delivers results with an accuracy of 85%. In addition, the paper [37] used CNN with PSO
to classify the tumorous and non-tumorous brain MRI images; the feature optimization
process enhances the classifier’s feature selection process with an accuracy of 92%.
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3. Proposed Methodology
3.1. MRI Datasets

In this paper, we focused on the binary class classification for brain diseases
(Alzheimer’s disease and brain tumor disease). We utilized three well-known bench-
mark sets—the ADNI dataset [20], the AD dataset [19], and the brain tumor dataset [21].
The ADNI dataset [20] contains 6410 images, two classes (normal/not normal), and the
image size is 180 × 180 pixels. Related to the [19] dataset, it contains 6400 images, two
classes (normal/not normal), and the image size is 180 × 180 pixels. The brain tumor
dataset [21] contains a total of 7023 images; it contains two classes (tumor/no tumor),
and the image size is 180 × 180 pixels—Figure 1 lists samples of images from these datasets.

Figure 1. MRI datasets.

3.2. Data Pre-Processing

Data pre-processing involves cleaning and preparing data to be utilized in a machine-
learning model, thereby enhancing the accuracy and efficiency of the model. In the case of
MRI datasets containing brain images, it is observed that the images differ in terms of their
width, height, and overall size. To ensure consistency for training purposes, all the images
are resized to a standard dimension of 180 × 180 pixels. Additionally, the input photos are
converted to grayscale, which aids in reducing complexity. Figure 1 shows some samples
of MRI datasets.

3.3. Proposed Detection Framework
3.3.1. Convolutional Neural Network (CNN)

CNN architecture is one of the most popular types of ANN and is mainly used for
image-based pattern recognition problems. Through a series of deep and hidden layers, it is
possible to identify objects by recognizing distinctive patterns in the input data. The initial
layers are responsible for detecting the lines and curves, and as you add additional layers,
it becomes possible to recognize complicated structures such as faces. These networks are
made specifically to work with image processing. Its architecture was created to mimic how
the brain’s visual cortex acts when processing and identifying images [36]. The primary
goal of using convolution layers is to find and learn characteristic patterns such as curves,
lines, color tones, and so on, which aid in object identification and classification. The five
layers that comprise the fundamental CNN architecture, as shown in Figure 2, are the input
layer, convolution layer, non-linearity or activation function layer (ReLu), pooling layer,
and finally, the classification layer.

CNNs are frequently used in applications where artificial vision techniques are re-
quired. Even though the results are extremely encouraging, they come at a high computa-
tional cost; for this reason, it is critical to use strategies that boost performance. Optimiza-
tion of the CNN parameters is presented in this study in order to improve the recognition
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rate and reduce computational costs. In Figure 3, we can see a few parameters for each
CNN layer that require optimization.

Figure 2. CNN architecture.

Figure 3. CNN layers and the parameters for each layer.

3.3.2. Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a meta-heuristic search algorithm built on the swarm’s
intelligence and modeled after how birds search for food; each bird is represented by
particles that “move” in a complex search environment and “change” based on your own
and your neighbors’ experiences. The article, which can be viewed as “an individual
element in a flock”, represents one possible solution. Using a fitness function and the
particle’s velocities, PSO analyzes local and global data to determine the best solution.

The selection of PSO over other optimization algorithms was justified based on its
effectiveness, particularly in optimizing parameters in high-dimensional search spaces.
PSO balances exploration and exploitation, converges quickly, and requires fewer parameter
settings. Its simplicity of implementation and previous successful applications in similar
domains further supported its choice.

The PSO’s procedure is described in Algorithm 1. The equations defining this algo-
rithm allow for updating the position, as shown in Equation (1), and updating the velocity,
as shown in Equation (2).

pi(t + 1) = pi(t) + xi(t + 1) (1)

Pi(t) in Equation (1) represents the location of particle i in the search space at iteration
t. Velocity, xi(t), can alter the particle’s position.

xi(t + 1) = xi(t)ω + c1r1[yi − pi(t)] + c2r2[ŷ− pi(t)] (2)

The particle is denoted by i in Equation (2), and the velocity is represented by x.
Indicated by parameters c1 and c2, the cognitive and social factors are defined, respectively.
The best particle position (pbesti), as well as the best global position (gbest), are determined
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by yi and y, respectively. The random values in the range [0, 1] are represented by r1 and r2,
which represent inertia weight.

pbesti(t + 1) =

{
pbesti(t) if f (pbesti(t)) ≤ f (p(t + 1))
pi(t + 1) if f (pbesti(t)) > f (pi(t + 1))

(3)

gbest(t + 1) = max{ f (y), f (gbest(t)) (4)

where y ∈ {pbest0(t), pbest1(t), . . . , pbestn(t)}.

Algorithm 1: Particle Swarm Optimization (PSO) Algorithm
Require : Objective function g : Rn → R
Require : Hyperparameters n, Fitness function F
Ensure : Optimal solution λ∗

1 Initialization:
2 Initialize the swarm with s particles;
3 for i = 0 to s do
4 Initialize position λi randomly from U(bl, bu);
5 Set best-known position λi as λi;
6 if g(λi) > g(λS) then
7 Set λS as λi;
8 end
9 Initialize velocity vi randomly from U;

10 end
11 Evaluation Loop:
12 while termination conditions are not met do
13 for i = 0 to s do
14 Generate random numbers rp and rg from U(0, 1);
15 Update velocity vi using:

vi ← ωvi + φprp(g(λ∗i )− g(λi)) + φgrg(g(λS)− g(λi))

;
16 Update position λi accordingly:

λi ← λi + vi

;
17 if g(λi) > g(λS) then
18 Set λS as λi;
19 end
20 end
21 end
22 return λS

To compute particle fitness with a maximization task, an objective function f is imple-
mented under the assumption that the swarm consists of n particles. Equations (3) and (4),
respectively, are used at iteration t to update the personal and global best values.

3.3.3. Optimal Selection of Hyper-Parameters via PSO Algorithm

This section describes our method for using the PSO algorithm to optimize the pa-
rameters of CNN architectures. The first goal is to decide which parameters are most
important for obtaining good CNN performance and then to use the PSO algorithm to
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find these ideal parameters. After analyzing a CNN’s performance in an experimental
study where the parameters were manually changed, the parameters to be optimized were
chosen. Because different CNN parameter values, as already mentioned, produce a variety
of potential findings for the same task, the objective is to identify the best architectures.
The following variables were picked for optimization in this study:

• The number of filters in convolutional layers.
• The size of filters in convolutional layers.
• The size of the pool in the max pooling layer.
• The size of the strides used in the max pooling layer.

Algorithm 1 illustrates the PSO algorithm and its role in our methodology in detail;
let g : Rn → R denote an objective function based on the provided algorithm; n represents
the hyper-parameters, and F represents the fitness function, which measures the accuracy
of detection of the trained CNN model. The objective of the fitness function in our study
is to find a solution λ for which g(λ) ≥ g(λ) for all λ ∈ χ, where χ is the set of all hyper-
parameters. In PSO, evolution occurs with a swarm of particles representing the values of
the hyper-parameters. Each particle in the swarm has a position in the search space defined
by λi ∈ Rn, and a velocity defined by vi ∈ Rn which influences particle movement. Let λS

denote the global position in the swarm, and λ∗i represent the local position of the particle.
The proposed PSO algorithm is independent of the optimized CNN and can easily adapt to
any new CNN architecture.

Our implemented PSO algorithm contains two main processes; the first is known as
“Swarm Initialization”, and the second is called “Swarm Evaluation”.

1. Initialization of the Swarm
In the swarm, each particle’s initial position λi in the n-dimensional space is randomly
selected from a uniform distribution U(bl , bu), where bl and bu represent the lower
and upper limits. The particle’s position λi is then designated as its best-known
position, denoted by λi. If the fitness value g(λi) exceeds the fitness value of the
swarm’s best global position, g(λS), λi is stored as the new best position in the swarm,
referred to as λS. The particle’s velocity vi is randomly determined from a uniform
distribution, considering the constraints of the hyper-parameter limits. Following the
initialization, the swarm, consisting of s particles represented as tuples (λi, vi, λi = λi)
for i = 0, 1, . . . , s, undergoes evolutionary processes.

2. Evaluation of the Swarm
In each generation of a swarm (referred to as gen, where Gmax represents the maximum
number of generations), the velocity values of all particles are updated using the
following equation:

vi ← ωvi + φprp(λ
∗
i − λi) + φgrg(λ

S − λi) (5)

Here, rp and rg are randomly drawn from a uniform distribution U(0, 1) to add
a stochastic element to the velocity updates, enhancing search space exploration.
The inertia weight ω scales the velocity, while φp and φg are acceleration coefficients
that determine the influence of the best particle position (λ∗i ) and the best swarm
position (λS) on the velocity changes. Subsequently, the particle’s position λi is
updated accordingly.
Following this, the best position for each particle and the best swarm position are
modified. These updates are only applied if there has been a change. The evolutionary
process continues until one of the following termination conditions is met:

(a) The best position in the swarm (λS) has been displaced by an amount smaller
than a specified minimum step size denoted as δ.

(b) The fitness value of the best particle has improved by an amount less than a
predefined threshold denoted by ε.

(c) The maximum number of swarm generations, Gmax, has been reached.
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The first termination condition is designed to prevent high-quality oscillation between
two neighboring solutions. The second condition is satisfied when the swarm opti-
mization converges to a well-fitted particle unlikely to improve further. Finally, the
best position in the swarm (λS) is returned as the output.
The efficiency of PSO is influenced by the number of hyper-parameters involved,
and this can be denoted as

TPSO = s · g(λk) · Gmax (6)

where s and Gmax are constants, the time complexity primarily stems from the evalua-
tion of f (λn), which scales linearly with the parameter n.
Figure 4 illustrates the whole architecture of our methodology used in this study.
The CNN initially uses the PSO algorithm for parameter optimization. The PSO is
initialized in this process by the execution parameters, and this generates the particles.
Each solution represents a completed CNN training period because each particle is
a possible solution, and its position has a parameter that needs to be used in the
proposed CNN architecture. Our CNN architecture is designed with a concise yet
flexible structure. It comprises a block comprising convolutional and max pooling
layers, followed by a Softmax activation function for classification. Tables 3 and 4 list
the convolutional and maximum pooling layer parameters and the permitted ranges
for each.

Table 3. Parameters of the layers in CNN-PSO proposed model.

Layer Type Used Parameters Parameter Value

Convolutional Layer (C) Filter Size (sF × sF) sF ≥ 2
Number of Filters (n) n ≥ 1

Max Pooling Layer (P) Stride/Step Size (ł) ł ≥ 2
Size of the Max Pooling Layer

(sP) sP ≥ 2

Table 4. Parameters of CNN and PSO.

Parameters of CNN

Learning Function Adam

Activation Function Softmax

Non-linearity Activation Function ReLU

Epochs 20

Batch Size 32

Parameters of PSO

Particles 4

Iterations 14

Inertial weight (W) 0.5

Social constant (W2) 0.5

Cognitive constant (W1) 0.5
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Figure 4. Proposed CNN-PSO architecture.

In the following are the detailed steps for optimizing the CNN using the PSO algorithm,
which is also represented as a flowchart in Figure 5.

1. Input database for the CNN training: this step chooses the database that will be pro-
cessed and classified for CNN. It is important to note that each database’s components
must maintain a consistent structure or set of attributes with the same pixel size and
file format.

2. Produce the particle population needed by the PSO algorithm: the PSO parameters
were set to include the experiment’s number of iterations, particle numbers, iner-
tial weight, cognitive constant (C1), and social constant (C2). Table 4 lists the PSO
parameters used in the experiment.

3. Set up the CNN architecture: create the CNN architecture using the PSO parameter
(the number of filters and the size of the filters in the convolution layers, the size of
the pool in the max pooling layer, and the size of the strides in the max pooling layer),
along with the additional parameters listed in Table 4.

4. Validation and training for CNN: after reading and processing the input databases
and collecting the images for training, validation, and testing, the CNN generates
a recognition rate in this step. The objective function’s return value includes these
values for the PSO.

5. Determine the objective function: the PSO algorithm evaluates the objective function
defined in Equation (1) to select the best parameters.

6. Update the PSO parameters: each particle adjusts its velocity and location at each
iteration based on its best position (Pbest) in the search space and the best position for
the entire swarm (Gbest).

7. Repeat the process: the number of iterations is the stopping criterion in our study,
which involves evaluating all the particles until the stopping criteria are satisfied.

8. Select the optimal solution: the particle Gbest represents the best solution in this
process for the CNN model.
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Figure 5. Flowchart of the proposed CNN-PSO architecture.

4. Experiments and Results

Our proposed model was implemented using Python programming and the Tensor-
Flow deep learning library. TensorFlow provided the necessary tools and capabilities
for building and training our deep neural network. We utilized a T4 GPU hardware
configuration to optimize computational performance, facilitating faster training and infer-
ence processes. The combination of Python, TensorFlow, and the T4 GPU allowed us to
effectively develop and evaluate our hybrid model.

The experimental findings of the proposed study are presented in this section, em-
phasizing the assessment of the suggested transfer learning model. Multiple performance
metrics, such as accuracy, area under the curve (AUC), recall, and precision, have been
used to thoroughly evaluate the model’s performance. These metrics are crucial in the
medical field, where effective patient care and treatment planning depend on accurate and
trustworthy diagnostic tools. While AUC quantifies the model’s capacity to distinguish
between positive and negative cases, accuracy measures the model’s overall predictive
accuracy. Due to the significance of making effective diagnoses and disease identifications,
attaining high accuracy and AUC values is essential.



AI 2023, 4 565

Additionally, our proposed model’s performance is evaluated in comparison to that of
other transfer learning models, including Inception v3, ResNet50, and VGG16. We can learn
more about our strategy’s effectiveness and comparative performance by benchmarking it
against these models. Additionally, we contrast our findings with the comparative studies
mentioned in the related works section. This comparative analysis allows us to assess the
improvements and contributions of our proposed model compared to the most state-of-
the-art methodologies currently in use, providing us with a thorough understanding of its
benefits and drawbacks. The performance matrices that we used to evaluate our proposed
method are presented in the below equations:

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where: True Positive (TP) represents the number of correctly predicted positive classes in
binary classification, where the actual class is positive; True Negative (TN) represents the
number of correctly predicted negative classes in binary classification, where the actual
class is negative, False Positives (FP) represents the number of incorrectly predicted positive
classes in binary classification, where the actual class is negative, and False Negatives (FN)
represents the number of incorrectly predicted negative classes in binary classification,
where the actual class is positive.

4.1. Optimization Results Obtained by the PSO-CNN Method

Our previous section discussed our proposed method, which aims to create a hybrid
model that utilizes the PSO algorithm. The objective is to find the optimal parameter
configuration (as listed in Table 3) for CNN architectures. This configuration will enhance
the accuracy of brain disease prediction and minimize the loss of function value. In our
method, we employ the parameter values mentioned in Table 4. Additionally, we set the
number of epochs to 15 and the batch size to 32.

The PSO-CNN method was employed to achieve optimized results in three different
datasets: ADNI [20], AD [19], and brain tumor [21] as listed in Tables 5–7. In the ADNI
dataset, the PSO-CNN model demonstrated promising performance in Alzheimer’s disease
prediction. The best accuracy of 98.50% was achieved with the hyper-parameter values
[n, s f , sp, l] = [12, 8, 4, 3]. Here, ‘n’ refers to the number of filters, ‘sf ’ denotes the size
of filters, ‘sp’ represents the size of the max pooling layer, and ‘l’ indicates the step size.
Several other configurations, such as [8, 7, 4, 3] and [9, 8, 2, 4], also yielded high accuracies
above 97%. However, certain configurations, e.g., [1, 5, 2, 3] and [1, 5, 2, 2], resulted
in significantly lower accuracies of 84.20% and 50%, respectively. Moving on to the AD
dataset, the PSO-CNN method showcased excellent performance in disease prediction.
The best accuracy achieved was 98.83% with hyper-parameter values [n, s f , sp, l] = [15, 7,
2, 4]. Configurations such as [16, 2, 4, 4] and [16, 5, 4, 4] also yielded accuracies above
97%. Conversely, the [1, 5, 2, 2] configuration resulted in a lower accuracy of 85.40%.
Lastly, in the tumor dataset, the PSO-CNN method achieved notable results in tumor detec-
tion. The best accuracy obtained was 97.12% with the hyper-parameter values [n, s f , sp, l] =
[12, 5, 3, 2]. Configurations such as [8, 5, 3, 4] and [12, 7, 4, 2] also yielded accuracies above
96%. However, the [1, 5, 2, 2] and [5, 5, 2, 2] configurations resulted in lower accuracies of
82.40% and 60.53%, respectively. These results demonstrate the potential of the PSO-CNN
method in optimizing hyper-parameters [n, s f , sp, l] and achieving high accuracies across
diverse datasets.
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Table 5. Proposed CNN hyper-parameters by PSO for the ADNI dataset.

Hyper-Parameters [n, s f , sp, l] Accuracy (%)

[8, 7, 4, 3] 97.72

[7, 6, 3, 3] 96.96

[8, 7, 2, 4] 95.87

[14, 8, 4, 3] 95.79

[13, 8, 4, 3] 91.97

[9, 8, 2, 4] 97.43

[8, 7, 4, 3] 97.00

[1, 5, 2, 3] 84.20

[1, 5, 2, 2] 50.00

[12, 8, 4, 3] 98.50

Best Values of [n, s f , sp, l] = [12, 8, 4, 3]

Table 6. Proposed CNN hyper-parameters by PSO for the AD dataset.

Hyper-Parameters [n, s f , sp, l] Accuracy (%)

[2, 8, 2, 4] 91.88

[16, 2, 4, 4] 97.34

[5, 4, 3, 4] 95.47

[16, 7, 2, 4] 98.67

[16, 5, 4, 4] 98.44

[5, 7, 3, 4] 93.90

[13, 6, 4, 4] 97.89

[11, 6, 4, 4] 94.22

[13, 7, 2, 4] 96.80

[8, 6, 4, 4] 95.94

[1, 5, 2, 2] 85.40

[15, 7, 2, 4] 98.83

Best Values of [n, s f , sp, l] = [15, 7, 2, 4]

After applying the highest hyper-parameters obtained through the PSO-CNN method
for each dataset, we evaluated the CNN architecture. The results, as presented in Table 8,
showcase the performance of the proposed model in terms of accuracy, precision, re-
call, and AUC. In the ADNI dataset, the proposed model achieved an impressive ac-
curacy of 98.50%, as shown in Figure 6a, indicating its ability to classify Alzheimer’s
disease cases accurately. The hyper-parameter values [n, s f , sp, l] used in this dataset
were [12, 8, 4, 3]. The precision and recall values were equally remarkable, with 97.53%
precision and 98.60% recall. Additionally, the AUC value of 99.83% further signifies the
model’s effectiveness in distinguishing between different classes, as shown in Figure 6b.
Moving to the AD dataset, the proposed model showcased outstanding performance, attain-
ing an accuracy of 98.83%, as shown in Figure 7a. The hyper-parameter values [n, s f , sp, l]
used in this dataset were [15, 7, 2, 4]. This highlights its capability to predict the presence
of the disease accurately. The precision and recall values of 98.15% and 99.22%, respec-
tively, indicate the model’s ability to achieve a high proportion of true positive predictions
while minimizing false negatives. Moreover, the AUC value of 99.88% demonstrates the
model’s excellent discriminatory power, as shown in Figure 7b. In the brain tumor dataset,
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the proposed model exhibited strong performance, achieving an accuracy of 97.12% as
shown in Figure 8a. The hyper-parameter values [n, s f , sp, l] used in this dataset were [12,
5, 3, 2]. The precision value of 92.66% indicates the model’s ability to accurately identify
positive cases, while the recall value of 99.02% showcases its effectiveness in capturing
a high proportion of true positives. Furthermore, the AUC value of 99.24% confirms the
model’s robustness in distinguishing between tumor and non-tumor cases, as shown in
Figure 8b. These results illustrate the effectiveness of the proposed model in accurately
detecting the datasets, emphasizing its potential as a reliable tool for disease prediction
and diagnosis.

Table 7. Proposed CNN hyper-parameters by PSO for the brain tumor dataset.

Hyper-Parameters [n, s f , sp, l] Accuracy (%)

[8, 5, 3, 4] 96.80

[10, 4, 2, 2] 95.52

[12, 7, 4, 2] 96.48

[15, 6, 3, 2] 96.64

[11, 6, 2, 2] 95.68

[1, 5, 2, 2] 82.40

[5, 5, 2, 2] 60.53

[16, 6, 3, 4] 95.36

[13, 6, 3, 4] 94.88

[12, 6, 3, 4] 93.76

[12, 5, 3, 2] 97.12

Best Values of [n, s f , sp, l] = [12, 5, 3, 2]

Table 8. Performance metrics on different datasets.

Dataset
Metrics (%)

Accuracy Precision Recall AUC False Negative Rate (FNR)

ADNI Dataset 98.50 97.53 98.60 99.83 1.72

AD Dataset 98.83 98.15 99.22 99.88 1.56

Brain Tumor Dataset 97.12 92.66 99.02 99.24 1.98

(a) (b)

Figure 6. Results for ADNI dataset: (a) training and validation accuracy results (b) AUC result.
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(a) (b)

Figure 7. Results for AD dataset: (a) training and validation accuracy results (b) AUC result.

(a) (b)

Figure 8. Results for tumor dataset: (a) training and validation accuracy results (b) AUC result.

4.2. Comparison with Existing Transfer Learning Model

Table 9 comprehensively compares different transfer learning models on multiple
datasets, providing insights into their accuracy, precision, recall, and AUC performance.
Among the evaluated models, VGG16 demonstrates a satisfactory accuracy of 82% on the
ADNI dataset. However, its precision and recall scores fall below the desired thresholds, in-
dicating potential limitations in accurately identifying Alzheimer’s disease cases. Inception
V3 exhibits intermediate results across all datasets, lacking the desired level of accuracy
and precision. ResNet50, while showing improvements over VGG16 and Inception V3,
fails to achieve optimal performance, particularly in terms of AUC.

In contrast, the proposed model consistently outperforms other transfer learning mod-
els across all datasets, underscoring its significance and potential impact. On the ADNI
dataset, the proposed model achieves an outstanding accuracy of 98.50%, accompanied
by remarkable precision and recall scores. These exceptional results signify the model’s
ability to effectively classify Alzheimer’s disease cases, positioning it as a promising tool
for early detection and diagnosis. Additionally, on the AD dataset, the proposed model
maintains its superiority with a remarkable accuracy of 98.83% and well-balanced precision
and recall scores. These findings demonstrate its robustness in accurately identifying
cases of Alzheimer’s disease in diverse datasets, thereby enhancing diagnostic accuracy.
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Notably, the proposed model also showcases remarkable efficacy on the brain tumor dataset,
achieving an accuracy of 97.12%. This outstanding performance underscores its poten-
tial to assist medical professionals in brain tumor detection and classification. The high
precision and recall scores further emphasize the model’s reliability and effectiveness in
distinguishing between tumor and non-tumor samples. In addition, the proposed model
achieved low False Negative Rates (FNR) of 1.72%, 1.56%, and 1.98% on the ADNI, AD,
and brain tumor datasets, respectively. These low FNR values indicate that the proposed
model correctly identified positive instances related to brain diseases, with only a small
proportion of missed cases.

Table 9. Comparison with existing transfer learning models.

Transfer Learning Model Dataset
Metrics (%)

Accuracy Precision Recall AUC

VGG16

ADNI
Dataset 82 51.08 50.03 50.78

AD
Dataset 82 50.61 62.66 50.61

Brain
Tumor
Dataset

94 66.34 65.56 50.74

Inception V3

ADNI
Dataset 50.50 49.50 50.26 48.07

AD
Dataset 50.05 50.03 50.35 47.05

Brain
Tumor
Dataset

90.03 68.49 68.06 49.54

ResNet50

ADNI
Dataset 68 49.07 50.38 49.27

AD
Dataset 69 51.03 51.19 51.40

Brain
Tumor
Dataset

87 55.59 53.97 50.63

4.3. Comparison with Existing Transfer Learning Model

Compared with related works for Alzheimer’s brain disease (listed in Tables 1 and 2),
the proposed model is a highly effective approach for AD vs. NC detection. The proposed
model achieves exceptional performance on the ADNI dataset by leveraging PSO to select
the best hyper-parameters. With an accuracy of 98.50%, a precision of 97.53%, a recall of
98.60%, and an impressive AUC of 99.83%, the proposed model outperforms the referenced
studies in several key aspects. Notably, the accuracy and precision of the proposed model
on the AD dataset [19] are equally remarkable, reaching 98.83% and 98.15%, respectively.
Comparing these results with the VoxCNN and ResNet models presented in [9], which
achieved accuracies of 79% and 80%, and AUCs of 88% and 87%, respectively, it becomes ev-
ident that the proposed model demonstrates superior performance. Similarly, the proposed
model surpasses the accuracy reported in [24] (96%) and [25] (90%) on the ADNI dataset.

Furthermore, in terms of specificity, sensitivity, and F-score, the proposed model
showcases competitive performance compared to the results presented in [26]. Notably,
the utilization of PSO for optimizing model performance or feature selection, as explored
in [27–29], also demonstrates the effectiveness of such an approach. The achieved ac-
curacy, precision, recall, and AUC by the proposed model highlight its potential as a
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high-performance CNN architecture for AD vs. NC detection when leveraging PSO for
hyper-parameter selection.

While compared with related works for brain tumor disease (listed in Tables 1 and 2),
various methodologies were employed to classify brain tumors using diverse techniques.
Notably, the authors of [30] achieved an accuracy of 94.39% for normal vs. not normal
classification on the brain tumor dataset without utilizing the PSO algorithm. Similarly,
the authors of [31,32,34] also obtained accuracies of 91%, 91.17%, and 90.67%, respec-
tively, for the same classification task, without incorporating PSO. In contrast, the authors
of [36,37] utilized PSO for feature selection and achieved accuracies of 85% and 92%, re-
spectively, for normal vs. not normal classification on the brain tumor dataset. These works
demonstrated the potential of PSO in enhancing classification accuracy.

The proposed model presented in this study advanced the state-of-the-art by utilizing
PSO for feature selection and optimal hyper-parameters in constructing a high-performance
CNN architecture. The results of the proposed model are remarkable, exhibiting an out-
standing accuracy of 97.12% for AD vs. NC detection, accompanied by precision, recall,
and AUC values of 92.66%, 99.02%, and 99.24%, respectively. The superior performance of
the proposed model, surpassing the related works, can be attributed to the comprehensive
utilization of PSO for both feature selection and hyper-parameter optimization. By leverag-
ing PSO in these crucial aspects, the proposed model effectively distinguishes between AD
and NC brain tumor classes, demonstrating the potential of PSO in significantly improving
the detection accuracy of brain tumor diseases.

While this model combines CNN and PSO, we achieved computational efficiency
through an optimized implementation. The PSO algorithm was responsible for selecting
the best parameters, and it took approximately 8 min to complete this optimization process.
The CNN component, responsible for training and validation accuracy, exhibited efficient
performance, completing the process in approximately 3 min. The efficient execution times
of the PSO and CNN components contribute to the overall computational efficiency of
our proposed model. By effectively utilizing PSO for parameter selection and optimizing
the CNN training process, our model demonstrates a balance between accuracy and
computational efficiency, making it well-suited for practical applications.

However, it is important to acknowledge the limitations of our model in accurately
classifying certain images. One of the key challenges we encountered was misclassifying
images due to their low resolution and unclear characteristics. These factors significantly
impact the model’s ability to extract meaningful features and patterns for accurate classi-
fication. The lack of clarity and fine details in low-resolution images pose difficulties for
the model in capturing essential discriminative information. As a result, the model may
struggle to classify such images, leading to misidentifications. Although efforts were made
to optimize the model’s performance, including fine-tuning the architecture and adjusting
parameters, our current approach could not completely overcome the inherent limitations
posed by low resolution and unclear image quality. Addressing this limitation requires
further research and potential improvements in pre-processing techniques or considering
alternative approaches specifically tailored for handling low-resolution or unclear images.
As an example, Figure 9a illustrates the incorrect image classification of Alzheimer’s disease,
while Figure 9b illustrates the correct image classification of Alzheimer’s disease.

Figure 9. Alzheimer’s disease classification: (a) incorrect image classification (b) correct image classification.
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5. Conclusions and Future Work

This proposed model focused on the CNNs for detecting MRI images, specifically
targeting the identification of Alzheimer’s disease and brain tumors. The performance of
CNNs heavily depends on selecting various parameters, which has traditionally been a
challenging task requiring trial-and-error or expert judgment. To address this challenge, we
proposed a hybrid methodology incorporating the PSO algorithm to determine the optimal
configuration of parameters for CNN architectures. Using the PSO algorithm, we aimed to
enhance the accuracy and the Area Under Curve (AUC) results of disease prediction and
reduce the loss function value.

The proposed model was evaluated using three benchmark datasets: the ADNI dataset,
an international dataset obtained from Kaggle, and a dataset specifically designed for brain
tumors. The experimental results demonstrated the effectiveness of our approach, achieving
accuracy rates of 98.50%, 98.83%, and 97.12% for the respective datasets.

Future research could explore the proposed methodology’s scalability and generaliz-
ability to larger, more diverse datasets. Additionally, investigating the interpretability of
the CNN models and integrating other optimization algorithms could further enhance the
accuracy and robustness of disease detection.
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