
Citation: Lazzarini, R.; Tianfield, H.;

Charissis, V. Federated Learning for

IoT Intrusion Detection. AI 2023, 4,

509–530. https://doi.org/10.3390/

ai4030028

Academic Editor: Giovanni Diraco

Received: 23 May 2023

Revised: 26 June 2023

Accepted: 11 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Federated Learning for IoT Intrusion Detection
Riccardo Lazzarini 1,* , Huaglory Tianfield 1,* and Vassilis Charissis 2

1 School of Computing, Engineering and Built Environment, Glasgow Caledonian University (GCU),
Glasgow G4 0BA, UK

2 School of Arts and Creative Industries, Edinburgh Napier University, Edinburgh EH10 5DT, UK ;
v.charisis@napier.ac.uk

* Correspondence: rlazza200@caledonian.ac.uk (R.L.); h.tianfield@gcu.ac.uk (H.T.)

Abstract: The number of Internet of Things (IoT) devices has increased considerably in the past few
years, resulting in a large growth of cyber attacks on IoT infrastructure. As part of a defense in depth
approach to cybersecurity, intrusion detection systems (IDSs) have acquired a key role in attempting
to detect malicious activities efficiently. Most modern approaches to IDS in IoT are based on machine
learning (ML) techniques. The majority of these are centralized, which implies the sharing of data
from source devices to a central server for classification. This presents potentially crucial issues
related to privacy of user data as well as challenges in data transfers due to their volumes. In this
article, we evaluate the use of federated learning (FL) as a method to implement intrusion detection in
IoT environments. FL is an alternative, distributed method to centralized ML models, which has seen
a surge of interest in IoT intrusion detection recently. In our implementation, we evaluate FL using a
shallow artificial neural network (ANN) as the shared model and federated averaging (FedAvg) as
the aggregation algorithm. The experiments are completed on the ToN_IoT and CICIDS2017 datasets
in binary and multiclass classification. Classification is performed by the distributed devices using
their own data. No sharing of data occurs among participants, maintaining data privacy. When
compared against a centralized approach, results have shown that a collaborative FL IDS can be an
efficient alternative, in terms of accuracy, precision, recall and F1-score, making it a viable option as
an IoT IDS. Additionally, with these results as baseline, we have evaluated alternative aggregation
algorithms, namely FedAvgM, FedAdam and FedAdagrad, in the same setting by using the Flower
FL framework. The results from the evaluation show that, in our scenario, FedAvg and FedAvgM
tend to perform better compared to the two adaptive algorithms, FedAdam and FedAdagrad.

Keywords: Internet of Things; intrusion detection systems; federated learning; deep learning

1. Introduction

The Internet of Things (IoT) is a network of interconnected smart devices that con-
tribute towards generating and gathering enormous amounts of data [1]. IoT devices are
now used in every area of our daily life. Examples span from our home, with devices
such as smart appliances and entertainments systems, to smart city and its invisible infras-
tructure such as pedestrian and road sensors. The smart grid, autonomous automobile
systems, smart medical devices, industrial control systems and robotics are just some of the
areas in which IoT devices are being used on a daily basis. Data gathered by all of these
devices requires storage and analysis. To obtain insights into this data and enable intelligent
applications, techniques such as machine learning (ML) have been widely deployed [2].
Detection of cyber attacks is part of these intelligent applications. Given the continuous
increase in numbers of cyber attacks in IoT infrastructure [3], monitoring this high volume
of data for the detection of cyber attacks is critical. However, it can be achieved only
through the use of automated methods based on ML and deep learning (DL) [4]. DL is a
branch of ML that has become widely popular in many fields, including science, finance,
medicine and engineering [5]. DL for intrusion detection has also become increasingly

AI 2023, 4, 509–530. https://doi.org/10.3390/ai4030028 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4030028
https://doi.org/10.3390/ai4030028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0003-2016-0506
https://orcid.org/0000-0002-0605-6238
https://orcid.org/0000-0002-4195-843X
https://doi.org/10.3390/ai4030028
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4030028?type=check_update&version=2


AI 2023, 4 510

popular as it allows for a more sophisticated analysis of network traffic and more precise
detection of anomalies compared to traditional ML methods [6]. DL models tend to achieve
better performance and accuracy over ML models in highly complex environments, where
large volumes of data exist [7], in exchange for more computational power. While different,
ML and DL methods share a similar procedure. They both require data and model to
be available at a central location. In other words, these systems are centralized. Data is
captured in remote locations and transferred to a central repository where it is processed in
preparation for classification. This works well in environments limited to a single organi-
zation, with sites located in the same geographic area. In contrast, in organizations with
multiple sites or in the event of collaboration between organizations, data transfers could
compromise privacy [8]. Moreover, data volumes represent another challenge. Captures
from IDS sensors tend to be quite large. Transferring these large volumes of data to a
central location for classification could represent a serious bottleneck for the network [9].
Furthermore, given that some IoT applications are latency critical [10,11], transfers of data
to centralized location could compromise their correct functionality.

Federated learning (FL) is one of the latest paradigms in the area of ML that can
be used to address these challenges. FL was introduced by Google in 2017 [12] with the
aim of addressing issues related to data privacy. It uses a distributed environment where
participating clients complete analysis of their own data with no need of transfers. Instead,
clients share a model used for training their data. Only parameter updates are exchanged
with a server that takes the role of the aggregator. The server coordinates clients until
training is completed and performs aggregation of their weights and results through the
use of an averaging algorithm such as federated averaging (FedAvg) [12].

Given that IoT networks are fundamentally distributed, FL can be applied to address
the limitations of a centralized approach in IoT intrusion detection, as it can analyze traffic
and identify attacks as close to the source of data as possible. However, FL approaches to
IoT IDS are still at their infancy and require further evaluation before they can be deployed
in real-world scenarios [13].

In this article, we evaluate how FL performs in a scenario where four distributed
clients collaborate to classify attacks in the ToN_IoT [14] and the CICIDS2017 [15] datasets.
The objective is to evaluate FL as an alternative to a typical DL method where data is stored
and analyzed at a single location. The federated system created here uses horizontal data
partitioning, where each client participating in the process owns different data samples
but with the same dimensional space as every other client. Data from the two datasets is
randomly divided so that each client has access to its own portion. No data sharing occurs
between clients. On the other hand, the model, which is a shallow artificial neural network
(ANN), is shared amongst clients, with parameter updates exchanged with the server for
aggregation, as previously explained. Results are then compared against a centralized
approach, using the same ANN model.

Key contributions of this article can be summarized as follows:

• We propose a method for the detection of attacks in IoT network environments based
on a FL framework that uses FedAvg as the aggregation function. The distributed
framework is composed of four clients, sharing a shallow ANN, and a server acting as
the aggregator. The primary objective is the evaluation of FL as an approach to the
detection and classification of attacks in an IoT network environments.

• We evaluate the framework on two open-source datasets, namely ToN_IoT and CI-
CIDS2017, on both binary and multiclass classification. Our method offers a high
level of accuracy with a low False Positive (FP) rate in both types of classification for
both datasets.

• We compare results from our experiments against a centralized approach based on
the same model, showing that performance of our FL framework is comparable to its
centralized counterpart.

• In this scenario, we evaluate three alternative aggregation methods, namely FedAvgM,
FedAdam and FedAdagrad, and compare their performances against FedAvg.



AI 2023, 4 511

The remainder of this article is organized as follows: Section 2 provides a review of the
related work in the area of IDS in the IoT environment using FL. Section 3 proposes the FL
method for intrusion detection in IoT environments. Section 4 describes the datasets and
performance metrics used. Results are discussed in Section 5. The conclusion is drawn in
Section 6.

2. Literature Review

The term federated learning (FL) was firstly introduced in 2017 in a paper published
at Google [12]. In their work the authors developed a decentralized approach, namely
federated learning, with the objective of ensuring data privacy of participating clients.
In FL, a server or aggregator takes the role in coordinating several clients into analyzing
data using a shared model. The data owned by the clients remains with the data owner
and it is never transferred between devices. The model is shared amongst clients and
only parameter updates are exchanged. As explained by [12], when implementing FL,
several key constraints need taking into consideration in order to optimize a solution to
the problem. These constraints exist as FL must be able to train data with the following
characteristics [12,16]:

• Non-IID—Data stored locally in a device is not a representation of the entire popula-
tion distribution.

• Unbalanced—Local data has a large variation in size. In other words, some devices
will train on larger datasets compared to others.

• Massively Distributed—Large number of clients.
• Limited Communication—Communication amongst clients is not guaranteed as

some may be offline. Training may be completed with a smaller number of de-
vices or asynchronously.

Typical federated learning data is not identically distributed. For instance, in IoT
environments devices acquiring data for analysis capture data in different formats and
of different types to each other. Therefore, the local data cannot be used as an example
of the entire data distribution. Similarly, data size can vary drastically between devices,
depending on a given scenario. The large number of devices involved and issues with
communication between clients and server must also be taken into consideration when
developing FL applications.

2.1. Federated Learning in IoT Intrusion Detection

Being a technology that often requires devices to connect to a central location remotely,
the IoT fits well with the FL paradigm. Similarly, IDSs are normally structured as a
distributed environment, making the use of FL in IoT intrusion detection even more
appropriate. In fact, FL for IoT IDSs has seen a surge of interests in recent years. Research
work in this area covers many aspects of this new technology. In this section, we discuss
the current literature in the area of IoT intrusion detection using FL.

Sarhan et al. [17] presented a Cyber Threat Intelligence sharing scheme based on
federated learning. The idea presented in their work is to create a framework to allow
independent organizations to share their knowledge of cyber threats. Each organization can
use a common global model, provided by an orchestrating server, to analyze their data. A
federated averaging algorithm is used to aggregate results and update parameters to allow
the model to adapt continuously to achieve better performance in the detection of threats.
The framework requires each organization to maintain their local data using a common
logging format and feature set. They compared results obtained from their framework with
a centralized model, where data from all organization is stored at a single location, and
a localized model where each organization complete their own analysis. The FL model
achieved results generally on par with the other models, demonstrating that FL can be
used efficiently in a collaborative intrusion detection system. However, the assumption
of having a common feature set amongst different organization could be a limitation of
their work, particularly in relation to IoT environments, where devices produce a large



AI 2023, 4 512

amount of heterogeneous traffic, which can create difficulties in creating a commonly
structured dataset.

Another work based on FL is given in [18]. They have used long short-term memory
(LSTM) as the basis for their FL model, which was tested against a modified dataset of
system calls created by AT&T several years ago. Results were compared against standard
models based on LSTM and convolutional neural networks (CNNs). While the results
presented were positive, their value is undermined by the use of an old dataset, which may
not represent the type of command set commonly used in devices nowadays.

A FL method based on LSTM is given by [19] to identify false data injection attacks
in solar farms. They have used a traffic generator to build their own dataset to test their
method. Results show that their model offers efficient attack detection, improving over a
standard centralized method based on the same LSTM model.

FL is also used in [20] as a method to detect attacks in IoT environments. Their
work combines FL with ensemble learning. Each node uses a gated recurrent unit (GRU)-
based model to perform the classification. Weights are updated globally using federated
averaging. The outcome from classification by each node is used as input to an ensemble
model based on a random forest algorithm. Using a dataset based on Modbus traffic, the
authors have achieved promising results.

Zhang et al. [21] developed a platform named FeDIoT that uses FL on real devices to
detect anomalies in IoT traffic. Using the N-BaIoT [22] dataset and the LANDER dataset [23]
they employed a model based on Auto-Encoder run by the clients in their FL network.
Results from their experiments demonstrate that their method can be an efficient technique
in detecting attacks.

An interesting approach is proposed by [24]. They built a model using FL and an
ensemble stacking approach during aggregation of results from clients. Their idea is to
collect parameters from participating clients and concatenate them into a matrix. This is
subsequently used with some test data by the aggregator to obtain a final result. They
named their aggregation method FedStacking and tested it with multilayer perceptron
(MLP) models running on several clients.

The authors in [25] proposed a FL framework in support of fog-based resource-
constrained IoT devices. They named their approach Fog-FL and they have used an
interesting approach of using local fog nodes as aggregators for the FL network. Rather
than having a central aggregator communicating directly with distributed nodes, they
added an additional layer of aggregators selected based on geospatial location. The ap-
proach selects one of these nodes as the global aggregator at each FL round. According to
the authors, this process increases the efficiency of the system in terms of power consump-
tion and communication delays considerably.

An interesting work is given by Chen et al. in [26]. Their work proposes a novel
method for intrusion detection in wireless edge networks, named Federated Learning-based
Attention Gated Recurrent Unit (FedAGRU). Their method demonstrated an improved
communication in exchanging model updates compared to the FedAvg aggregation model.
At the same time they achieved superior accuracy in detection of attacks when compared
to a centralized CNN model.

An anomaly-based IDS using FL in Industrial IoT (IIoT) networks is proposed by
Zhang et al. [27]. They adopted an instance-based transfer learning approach using ensem-
ble techniques and proposed a novel aggregation algorithm based on a weighted voting
approach. Their method achieved a superior detection performance when compared with
a centralized model in multiclass classification.

Campos et al. [13] proposed an evaluation of an FL-enabled IDS approach, where they
used three different settings with the ToN_IoT dataset. Using the IBMFL library they also
tested different aggregation functions in the same scenarios with excellent results.

Several other relevant works have been presented in the area of IoT intrusion detection
including [28–32]. Table 1 presents a summary of work applying FL for IoT intrusion detection.



AI 2023, 4 513

Table 1. Summary of FL being applied for IoT intrusion detection.

Author Dataset Shared Model Aggregation
Function No. of Clients FL Library

Sarhan et al. [17] NF-UNSW-NB15
NF-BoT-IoT

LSTM
DNN FedAvg - -

Zhao et al. [19] Proprietary LSTM - 4 Flower

Mothukuri et al. [20] MODBUS
Network Data

GRU
Random Forest FlAverage - Pysyft

Zhang et al. [27] CICIDS2017
CICIDS2018 Adaboost and RF Weighed Voting

FedAvg 5 -

Zhang et al. [21] N-BaIoT USC
LANDER IoT Auto-Encoder 9

Chatterjee et al. [24]

NSL-KDD
DS2OS Traffic

Gas Pipeline Data
Water Tank Data

MLP
Stacking

Ensemble
FedStacking 4 -

Saha et al. [25] MNIST MLP FogFL 6 -

Zhao et al. [18] SEA Dataset LSTM FedAvg 4 Tensorflow

Campos et al. [13] ToN_IoT Logistic
Regression

FedAvg
Fed+ 10 IBMFL

Chen et al. [26]
KDD CUP 99
CICIDS2017

WSN-DS
GRU-SVM FedAGRU

FedAvg up to 50 Pysyft

2.2. Averaging Algorithms

FedAvg is an algorithm based on a federated version of stochastic gradient descent
(SGD), namely FedSGD, which was also proposed on the original FL paper from Google [12]
as a baseline for FedAvg. FedSGD uses a randomly selected client to complete a single batch
gradient calculation for every round of communication. The average gradient on its local
data is sent back to the server which, in turn, aggregates them and applies the update to the
model. FedAvg is a generalization of FedSGD, where the client updates the weights, rather
than the gradient, multiple times before it is sent to the server for aggregation. FedAvg
makes it possible for a network of clients to train ML and DL models collectively but still
using their local data. This is the basis for a successful FL network as it removes the need
for clients to upload data to a centralized server, hence allowing the main requirements of
privacy to be met. The pseudocodes of FedAvg are given in Algorithm 1.

FedAvg offers good performance in non-heterogeneous data. However, it is now estab-
lished that the more heterogeneous the data the longer FedAvg takes to converge [33–35]. As a
consequence research has been carried out to offer alternative solutions to FedAvg, to improve
on it or to be used in specific scenarios. Several alternative methods have been proposed in
the literature [34–40] to address limitations of FedAvg.

FedAdam and FedAdagrad have been proposed together in [40] as server-side meth-
ods to improve on FedAvg in situations where the noise distribution is high. The pseu-
docodes for both algorithms are presented in Algorithm 2. In Lines 15 and 16 of the
pseudocodes, either FedAdagrad or FedAdam is to be selected as the rest of the algorithm
is the same for both.



AI 2023, 4 514

Algorithm 1 The FedAvg Algorithm. The K clients are indexed by k; B is the local minibatch
size, E is the number of local epochs and η is the learning rate

1: Server executes:
2: initialize w0
3: for each round t = 1, 2 . . . do
4: m←max (C · K, 1)
5: St← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate (k, wt)
8: end for
9: wt+1 ← ∑K

k=1
nk
n wk

t+1
10: end for

11: ClientUpdate(k, w) : //run on client k
12: B ← (split Pk into batches of size B)
13: for each local epoch i from 1 to E do
14: for batch b ∈ B do
15: w← w− ηO`(w; b)
16: end for
17: end for
18: Return w to Server

Algorithm 2 The FedAdam and FedAdagrad Algorithms

1: Input:x0, v−1 ≥ r2, optional β1, β2 ∈ (0, 1) for FedAdam
2: for t = 0, . . . , T − 1 do
3: Sample a subset S of clients
4: xt

i = xt
5: for each client i ∈ S in parallel do
6: for e = 1, . . . , E do
7: for b ∈ Bi do
8: xt

i = xt
i − ηt∇ fi(xt

i ; b)
9: end for

10: end for
11: ∆t

i = xt
i − xt

12: end for
13: n = ∑i∈S ni, ∆t = ∑i∈S

ni
n ∆t

i
14: mt = β1mt−1 + (1− β1)∆t
15: vt = vt−1 + ∆2

t (FedAdagrad)
16: vt = β2vt−1 + (1− β2)∆2

t (FedAdam)
17: xt+1 = xt + η mt√

vt+r
18: end for

Another alternative algorithm is Federated averaging with Momentum or FedAvgM [35].
The pseudocodes for this are presented in Algorithm 3. Notice that the algorithm is practically
the same as FedAvg at the server side. However, it does change how the clients calculate the
weights. Using Nesterov accelerated gradient [41], a momentum is added to improve the
calculation of weights when data contains too much noise. A momentum is an improvement
to standard SGD accelerating the process of finding the best minimum when calculating the
gradient [42]. Given that SGD has a limitation that can make it stagnant in flat areas in noisy
environments, a momentum can be used as an approach to accelerate the progress of the
search of the minimum without getting stuck. Nesterov accelerated gradient is a further
improvement of the standard momentum as it updates parameters according to the previous
momentum and then corrects the gradient to achieve the parameter updating [43].



AI 2023, 4 515

Algorithm 3 The FedAvgM Algorithm. The K clients are indexed by k; B is the local
minibatch size, E is the number of local epochs and η is the learning rate

1: Server executes:
2: initialize w0
3: for each round t = 1, 2 . . . do
4: m←max (C · K, 1)
5: St← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← Client Update (k, wt)
8: end for
9: wt+1 ← ∑K

k=1
nk
n wk

t+1
10: end for

11: Client Update(k, w) : //run on client k
12: B ← (split Pk into batches of size B)
13: for each local epoch i from 1 to E do
14: for batch b ∈ B do
15: v = βv + ∆w
16: w← w− v
17: end for
18: end for
19: Return w to Server

2.3. Federated Learning Frameworks

While the use of FL is quite recent, several Python libraries exist for the development
of its applications. For instance, as a part of TensorFlow, Google created TensorFlow
Federated or TFF [44], which is an open-source framework for ML methods applied to
decentralized data. According to their website, TFF was created to facilitate open research
and experimentation using FL. Another popular library for FL is PySyft [45], recently
renamed Syft. This was created by OpenMined and it’s an open-source stack that focuses
on providing FL with secure and private communication. IBM also created their own FL
framework [46] which they named IBM Federated Learning. This is a library designed to
support an easy implementation of ML in a federated environment. Flower, the library of
choice for this work, is a stable high-level library for Python. Flower helps transitioning
rapidly from existing ML implementations into a FL setup. This allows a quick way for
the evaluation of existing models in a federated environment [47] and it was the main
reasoning behind its choice.

3. Proposed Model

The experiments were carried out using a workstation with an Intel© Core™ i7-5960X
CPU and 32 GB of RAM, running Linux Mint 20.3 Cinnamon as the main operating system
(OS). The testbed for experiments was created using the Python library, Flower, at version 1.0.0.

3.1. Overall Architecture

The proposed model is composed of four virtual clients and one server acting as
the aggregator. Figure 1 illustrates the topology and the steps taken by the FL model at
each round. Before training can start, clients connect to the server. The training process
begins when the server sends initial parameters to the clients. Upon receiving these,
clients undertake training on their own data by updating weights locally. At the end of
their training, each client sends their updates to the server. Using FedAvg, as described
in Algorithm 1, the server aggregates these updates into a global update, which is then
sent back to clients for a new training round. This process is repeated until all rounds
have completed.

Overall, the process for a training round consists of the following steps:

- The server starts and accepts connections from a number of clients based on a specific scenario.



AI 2023, 4 516

- The server sends initial parameters of the global model to clients.
- Each client completes training on their local data, calculates their local parameters and

sends an update to the server.
- The server updates parameters for the global model and aggregates results.

Figure 1. Federated learning topology.

A flowchart of the overall FL process using the Flower library is shown in Figure 2.
High-level pseudocodes for the FL process with Flower are given in Algorithm 4.

Hyperparameters, as shown in Table 2, were set at the server side, using a method
defined by Flower as a strategy, and sent to the clients at the start of the process. These
are: learning rate (LR) set to 0.01, number of rounds set to 5 and epochs set to 5 for the
first three rounds and then to 8 for the last two rounds. All of these settings were chosen
following an empirical evaluation, where different values of LR, epochs and FL rounds
were used. The values selected were those offering the best outcome in this scenario.



AI 2023, 4 517

Figure 2. Flowchart of FL process using Flower.

Algorithm 4 High-level pseudocodes for the FL algorithm. Cn are the clients; S is the server,
Dc is the local client’s data and R is the aggregated results

1: Server S starts:
2: initialize parameters: p
3: Clients: Cn
4: Client’s Data: Dc
5: for each round r = 1→ 5 do
6: Cn ← p
7: for each Client Cn in parallel do
8: Classify Dc
9: S← ClientUpdate(p)

10: end for
11: S→ ParameterUpdate(p)
12: S→ AggregateResult(R)
13: end for
14: Return R

Table 2. Hyperparameters.

Hyperparameter Value

Learning Rate 0.01

Epoch 5 in first 3 rounds
8 in last 2 rounds

FL Rounds 5

Flower uses the concept of strategies as a way to configure several options, including
the type of averaging algorithm that is used to aggregate parameters during training. In
fact, a strategy can be used to define several other customizable settings. For instance, the
minimum number of total clients in the FL system, the minimum number of clients required
to be available for training and the minimum number of clients required for validation are
configurable directly via a strategy.

3.2. Shared Model

The model used for classification is a shallow ANN with a dense input layer formed
by 24 neurons, a dense hidden layer formed by 16 neurons and an output layer. The



AI 2023, 4 518

loss function is Adam. The activation function is ReLU for input and hidden layer, while
sigmoid or softmax was used for the output layer depending whether the classification was
binary or multiclass. The choice of the model, its activation and loss function was made
to ensure the shared model was fast in training on the data, so that focus could be given
on selecting the best options for the FL framework and its aggregation methods. Figure 3
illustrates the layers of the ANN model showing an example of multiclass output with
10 outcomes. The number 43 in the input layers indicates the number of data points or
features fed into the input layer. This configuration is used on all clients. With this model,
each client performs a classification of their portion of data and sends back weights to the
server for aggregation and update. On the server side, the shared ANN model is also used,
with the same configuration, at the beginning of the training process with a small portion
of local data. A round of training is completed by the server to provide clients with initial
weights that can be somewhat meaningful to the type of data used. This is to avoid using
completely random weights as the initial weights for the global model.

Figure 3. Representation of the shared model.

3.3. Comparison of Averaging Algorithms

As a part of the experiments, several aggregation functions were tested in this scenario.
The results from the experiments above using the FedAvg algorithm were used as a
baseline for evaluating the other aggregation methods including FedAvgM, FedAdam and
FedAdagrad. All parameters and the shared models remain the same for each scenario.

4. Datasets, Pre-Processing and Performance Metrics
4.1. Datasets

The experiments were carried out using two open-source datasets: ToN_IoT and
CICIDS2017. The first is data obtained from a large IoT network, while the other is purely
based on a typical network environment. Both datasets are widely used in intrusion
detection and present different characteristics which can be of value for testing the pro-
posed model.

4.1.1. ToN_IoT Dataset

The ToN_IoT dataset [14] was collected using a large-scale network created by the
University of New South Wales (UNSW) at the Australian Defence Force Academy (ADFA).
This network included physical systems, virtual devices, cloud platforms and IoT sensors
offering a large number of heterogeneous sources. The data include several captures from



AI 2023, 4 519

devices with different perspective of the network: IoT/IIoT, Network, Linux and Windows.
For this set of experiments, the network data was used for the model training. Preference
was given to the train_test_network data as it provides a sample of the network data, as a
single file in CSV format, specifically created with the intent of evaluating the efficiency
of ML applications. The data contains 43 features in total and includes a large sample of
normal traffic plus nine different types of attacks. These are listed in Table 3. The Numerical
ID represents the value used by the algorithm to classify the samples during multiclass
classification. This dataset represent actual IoT data, making it one of the most relevant for
this work among those publicly available.

Table 3. ToN_IoT traffic type.

Numerical ID Traffic Type No. of Samples

0 Backdoor 20,000
1 DDoS 20,000
2 DoS 20,000
3 Injection 20,000
4 MITM 1043
5 Normal 300,000
6 Password 20,000
7 Ransomware 20,000
8 Scanning 20,000
9 XSS 20,000

4.1.2. CICIDS2017 Dataset

The CICIDS2017 [15] was created by the Canadian Institute for Cybersecurity and
was specifically designed to help developing solutions to anomaly detection. The dataset
contains traffic generated from a network captured over several days and includes a diverse
range of attack scenarios. This is a larger dataset compared to the ToN_IoT in numbers of
samples, features and classes. The diversity of data is one of the reasons behind its choice
as it offers a more complex environment for network traffic analysis. In total, the dataset
contains 79 features with each data sample labeled as either normal or as a specific attack
type. A list of all types of attacks is presented in Table 4.

Table 4. CICIDS2017 traffic type.

Numerical ID Traffic Type Number of Samples

0 Benign 2,273,097
1 Bot 1966
2 DDoS 128,027
3 DoS GoldenEye 10,293
4 DoS Hulk 230,124
5 DoS slowhttptest 5499
6 DoS slowloris 5796
7 FTP-Patator 7938
8 Heartbleed 11
9 Infiltrator 36
10 PortScan 158,930
11 SSH-Patator 5897
12 Web attacks—brute force 1507
13 Web attack—SQL Inj 21
14 Web attack XSS 652

4.2. Data Pre-Processing

In order to simulate a realistic FL environment, each client has to obtain its own portion
of the data. Therefore, both the ToN_IoT and the CICIDS2017 dataset were pre-divided
into several parts randomly. However, to ensure horizontal FL could be achieved, each
portion of the data maintained the same dimensionality. The same distribution of classes



AI 2023, 4 520

in the labels was also maintained for all clients to ensure consistency during training.
Before training, each client pre-processed their own data. This was achieved using the
Scikit-learn library. Firstly the data was checked for null values. The rows containing
these were removed as they represented an insignificant portion of data samples in both
datasets. Categorical objects were also identified and encoded into numerical form to
ensure data could be inputted into the DL models. The next step was the normalization
of the data (i.e., scaling values between 0 and 1). This is an important step to ensure that
no outliers exist in the data that could otherwise bias the outcome of the model training.
Again, the Scikit-learn library with its MinMaxScaler class was used to complete this task.
Mathematically, normalization was carried out by Equation (1).

xi =
x− xmin

xmax − xmin
(1)

To conclude the pre-processing of the data, at each client, the dataset was divided into
train and test data using a 70:30 ratio, where 30% of the data was kept aside for testing
the model with previously unseen data. This is a standard process for ML, as it allows
validating results obtained from training using previously unseen data. This step ensures
that ML models used in operational environment, with live data, can achieve similar results
to their performance during training.

4.3. Performance Metrics

Evaluation of ML and DL models for classification problems such as the one presented
in this work is mostly based on metrics obtained from a confusion matrix (CM). This is a
cross table that reports how often a model is capable of correctly classifying a data sample
with its real label. The model attempts to discover the correct type of data sample. This
prediction is recorded and compared against the real type. The CM is used to calculate
the number of occurrences the model correctly or incorrectly classifies data. In the context
of anomaly or intrusion detection, a CM can be used to verify the rate at which a model
manages to:

• Detect anomalies or attacks correctly—i.e., True Positives (TP);
• Detect normal traffic correctly—i.e., True Negatives (TN);
• Confuse normal traffic as anomalous—i.e., False Positives (FP);
• Confuse anomalous traffic as normal—i.e., False Negatives (FN).

A CM is often displayed in a tabular format similar to Figure 4. On the right-hand side
the numbers indicate the matching color code (e.g., dark blue indicates numbers in the order
80 K, in this case, but this value changes according to the number of samples classified).

An ideal model would identify all TP and TN correctly and never confuse one class of
traffic for the other. Of course, this is not realistically achievable. However, the rates of FP
and FN should be kept to a minimum. A CM allows for certain important metrics to be
calculated. These are:

• Accuracy—This is the ratio of correctly classified instances among the total number as
shown in Equation (2).

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

• Precision—This provides the rate of elements that have been classified as positive and
that are actually positive. It is obtained by dividing correctly classified anomalies (TP)
by the total number of positive instances (FP + TP) as shown in Equation (3).

Precision =
TP

FP + TP
(3)

• Recall—Also defined as sensitivity or true positive rate (TPR), it is obtained from the
correctly classified attacks (TP) divided by the total number of attacks (TP) + (FN) and



AI 2023, 4 521

measures the model’s ability to identify all positive instances (i.e., attacks) in the data.
Recall is calculated by Equation (4).

Recall =
TP

TP + FN
(4)

• F1-score—This uses both precision and recall to calculate their harmonic mean as
shown in Equation (5). The higher the score the better the model.

F1-Score = 2 ∗ Recall ∗ Precision
Recall + Precision

(5)

In multiclass classification an averaging technique is used to obtain an overall score
for each metric. Several exist as explained by [48]. In this case a weighted averaging score
is used where class imbalance is considered according to the number of samples of each
class in the data.

Figure 4. Confusion matrix.

5. Results and Discussion

In this section, we present results from the experiments on the ToN_IoT and CI-
CIDS2017 datasets using the Flower FL environment. To evaluate the performance of the
FL model, experiments were completed on both datasets for both binary and multiclass
classification. Each is presented and discussed as a standalone scenario. Results from a
traditional centralized approach, using the same ANN model on both datasets, are used
as a baseline for evaluation of the FL model. Accuracy, precision, recall and F1-score are
used as the metrics to compare performance between the FL model and its centralized
counterpart. FedAvg is used as the averaging algorithm for aggregation of parameters.
Results are also given of further experiments completed to evaluate FedAvgM, FedAdam
and FedAdagrad as alternative methods to FedAvg.

5.1. Binary Classification

Binary classification aims at identifying anomalies from the given data. Table 5 and
Figure 5 show results from the binary classification on the ToN_IoT dataset. The table
presents results from each participating client, the actual aggregated results from the server
and the centralized model. Results from each client are purely informational. In typical FL
models the number of clients can be quite large; therefore, keeping track of scores from each
client would be impractical and unnecessary. In this case, given that only four clients are
available, seeing how they perform on their own data and comparing their results with the
aggregated model can be useful particularly to identify possible substantial differences in
results. From the results it is evident that the federated model offers scores that are slightly



AI 2023, 4 522

lower than the centralized model. However, the difference is not substantial, indicating
the horizontal FL system can perform well in binary classification using the FedAvg as the
aggregating algorithm.

Table 5. Performance of FL in binary classification on ToN_IoT dataset.

Model Accuracy Precision Recall F1-Score

FL Model—Client 1 0.9758 0.9449 0.9883 0.9661
FL Model—Client 2 0.9755 0.9436 0.9892 0.9658
FL Model—Client 3 0.9748 0.9440 0.9864 0.9647
FL Model—Client 4 0.9760 0.9458 0.9878 0.9664

FL Model—Aggr. 0.9759 0.9487 0.9842 0.9661
Centralized Model 0.9840 0.9729 0.9817 0.9772

Figure 5. Comparison of FL model vs. centralized model in binary classification on ToN_IoT.

As to the performances of alternative averaging algorithms, results from the binary
classification on the ToN_IoT dataset are given in Table 6.

From the results it is clear that, in this context, the FedAvgM algorithm seems to
offer the best metrics. It offers superior accuracy, precision, recall and F1-score compared
to any of the other methods. Only FedAvg seems to perform closely. FedAdam and
FedAdagrad perform poorly compared to the others, with FedAdagrad in particular being
the most unreliable.

As a way to validate the classification on the ToN_IoT dataset, the CICIDS2017 was
used for a similar experiment. The results of the binary classification on the CICIDS2017
dataset are presented in Table 7 and Figure 6. The results are very similar to the previous
scenario, indicating consistency. Moreover, even in this scenario, the centralized model
offers a better performance compared to the FL system, confirming the results from the
binary classification on the ToN_IoT.



AI 2023, 4 523

Table 6. Performance of averaging algorithms in binary classification on ToN_IoT dataset.

Model Accuracy Precision Recall F1-Score

FedAvgM 0.9772 0.9512 0.9853 0.9679
FedAdam 0.8767 0.7580 0.9505 0.8434

FedAdagrad 0.8176 0.6635 0.9697 0.7879
FedAvg 0.9759 0.9487 0.9842 0.9661

Table 7. Performance of FL in binary classification on CICIDS2017 dataset.

Model Accuracy Precision Recall F1-Score

FL Model—Client 1 0.9851 0.9481 0.9778 0.9627
FL Model—Client 2 0.9841 0.9507 0.9694 0.9600
FL Model—Client 3 0.9821 0.9292 0.9841 0.9559
FL Model—Client 4 0.9821 0.9312 0.9816 0.9557

FL Model—Aggr. 0.9820 0.9326 0.9793 0.9554
Centralized Model 0.9840 0.9490 0.9720 0.9610

Figure 6. Comparison of FL model vs. centralized model in binary classification on CICIDS2017.

As to the performances of alternative averaging algorithms, binary classification on
CICIDS2017 has given some different results. With a larger and more heterogeneous dataset,
FedAvg performed better than the rest. FedAvgM is very close in most metrics and even
offered better scores in Recall. Again, FedAdagrad and FedAdam have given the poorest
results. This time FedAdam performed worse than FedAdagrad. However, performance
from both methods is well behind the other two algorithms. Results are presented in
Table 8.



AI 2023, 4 524

Table 8. Performance of averaging algorithms in binary classification on CICIDS2017 dataset.

Model Accuracy Precision Recall F1-Score

FedAvgM 0.9814 0.9263 0.9839 0.9542
FedAdam 0.8085 0.5075 0.9104 0.6517

FedAdagrad 0.8986 0.7908 0.6589 0.7189
FedAvg 0.9820 0.9326 0.9793 0.9554

The performances of alternative averaging algorithms for the binary classification on
the ToN_IoT dataset and the CICIDS2017 dataset are further illustrated in Figure 7.

(a) ToN_IoT (b) CICIDS2017

Figure 7. Comparison of different aggregation algorithms for binary classification on ToN_IoT and
CICIDS2017.

5.2. Multiclass Classification

In multiclass classification the objective is to identify the actual attack from the target
labels. The ToN_IoT dataset contains ten different classes of data: nine are attacks, while the
remaining class is normal traffic. Table 9 and Figure 8 show the results obtained in multiclass
classification. In this scenario, the centralized model clearly outperforms in all metrics its
federated counterpart. However, scores from the FL system are still quite high, demonstrating
the soundness of the approach even in multiclass classification.

Table 9. Performance of FL in multiclass classification on ToN_IoT dataset.

Model Accuracy Precision Recall F1-Score

FL Model—Client 1 0.9813 0.9816 0.9813 0.9812
FL Model—Client 2 0.9806 0.9810 0.9806 0.9806
FL Model—Client 3 0.9792 0.9794 0.9792 0.9791
FL Model—Client 4 0.9800 0.9803 0.9800 0.9800
FL Model—Aggr. 0.9786 0.9789 0.9786 0.9785

Centralized Model 0.9940 0.9940 0.9940 0.9940

As to the performances of alternative averaging algorithms, multiclass classification
on the ToN_IoT dataset returned similar results to the binary classification. FedAvg and
FedAvgM achieved better scores compared to the other two methods. FedAdagrad in
particular performed quite poorly in this scenario with very low scores in all metrics.
FedAdam achieved better scores but still well below the performance of FedAvg and
FedAvgM. Table 10 provides the results for all algorithms.



AI 2023, 4 525

Figure 8. Comparison of FL model vs. centralized model in multiclass classification on ToN_IoT.

Table 10. Performance of averaging algorithms in multiclass classification on ToN_IoT dataset.

Model Accuracy Precision Recall F1-Score

FedAvgM 0.9757 0.9766 0.9757 0.9758
FedAdam 0.8340 0.8694 0.8340 0.8299

FedAdagrad 0.6983 0.6687 0.6983 0.6612
FedAvg 0.9786 0.9789 0.9786 0.9785

The multiclass classification on the CICIDS2017 confirms the soundness of results from
the federated system. Moreover, it apparently shows that, in a more complex dataset such as
this, a smaller discrepancy of results exists between the centralized model and the federated
version. The centralized model has performed better once more but the performance from
the FL system is closer. The results are presented in Table 11 and Figure 9.

Table 11. Performance of FL in multiclass classification on CICIDS2017 dataset.

Model Accuracy Precision Recall F1-Score

FL Model—Client 1 0.9823 0.9841 0.9823 0.9823
FL Model—Client 2 0.9727 0.9725 0.9727 0.9704
FL Model—Client 3 0.9849 0.9856 0.9849 0.9846
FL Model—Client 4 0.9812 0.9834 0.9812 0.9813
FL Model—Aggr. 0.9815 0.9829 0.9815 0.9816

Centralized Model 0.9820 0.9840 0.9820 0.9820

As to the performances of alternative averaging algorithms, in the multiclass classifi-
cation on the CICIDS2017, the improved performance of FedAdagrad is noticeable as well
as the very poor performance of FedAdam. FedAvg and FedAvgM performed well in all
metrics. Again, all results are available in tabular format in Table 12.



AI 2023, 4 526

Figure 9. Comparison of FL model vs. centralized model in multiclass classification on CICIDS2017.

Table 12. Performance of averaging algorithms in multiclass classification on CICIDS2017 dataset.

Model Accuracy Precision Recall F1-Score

FedAvgM 0.9817 0.9831 0.9817 0.9816
FedAdam 0.5111 0.8624 0.5111 0.5847

FedAdagrad 0.9065 0.9046 0.9065 0.9005
FedAvg 0.9815 0.9829 0.9815 0.9816

The performances of alternative averaging algorithms for the multiclass classification
on the ToN_IoT dataset and the CICIDS2017 dataset are further illustrated in Figure 10.

(a) ToN_IoT (b) CICIDS2017

Figure 10. Comparison of different aggregation algorithms for multiclass classification on ToN_IoT
and CICIDS2017.

5.3. Confusion Matrices

The CMs of the FL model for binary classification on the ToN_IoT dataset and the
CICIDS2017 dataset are illustrated for reference in Figure 11.



AI 2023, 4 527

(a) Results for ToN_IoT in binary (b) Results for CICIDS2017 in binary

Figure 11. Confusion matrices obtained from the FL binary classification.

The CMs of the FL model for multiclass classification on the ToN_IoT dataset and the
CICIDS2017 dataset are illustrated for reference in Figure 12.

(a) Results for ToN_IoT in multiclass (b) Results for CICIDS2017 in multiclass

Figure 12. Confusion matrices obtained from the FL multiclass classification.

6. Conclusions and Future Works

User data privacy has become of paramount importance for organizations in recent
years, particularly so, since the official publication of the European General Data Protection
Regulation (GDPR) in May 2018, which intensified pressure on organizations to ensure
privacy of users’ data is maintained at all times. High fines are expected for those who
do not comply with GDPR. Large data storage for ML analysis could potentially lead to
privacy issues. In IoT environments, data needs to be transferred from devices to a central
location for analysis and this has the potential to cause privacy issues. FL can be used as a
method to ensure privacy is maintained while training ML models. In this article we have
performed several experiments to evaluate FL as an alternative method to a centralized
model in detecting attacks in IoT environments, while maintaining data privacy. The results



AI 2023, 4 528

from the experiments demonstrated how a collaborative federated system using horizontal
data partitioning can have a close performance to a centralized model. The FL model
was built out of four clients and one server. Data analysis was performed at the client
side, each using their own portion of the dataset. No data sharing between participants
occurred. The role of the server was to coordinate the overall process. FedAvg was used
as the algorithm for parameter aggregation. The overall process was completed over five
rounds. At each round, the clients trained the DL model with their local data. The DL
model used in this set of experiments is a shallow ANN with three layers. Results have
shown that a FL system can provide an excellent alternative to a centralized model as it is
capable of achieving comparable results in accuracy, precision, recall and F1-score in both
binary and multiclass classification.

FedAvg is known to work well in networks where the data distribution is balanced.
However, it has been found to have issues of convergence in situations where data distribu-
tion is highly variable. This tends to be a common situation in federated networks where
each client uses its own data. Algorithms such as FedAdam, FedAdagrad and FedAvgM
have been proposed to deal with these issues. In this article, we have presented an evalua-
tion of these algorithms. Using the same testbed as the other experiments, each algorithm
was evaluated in both binary and multiclass classification. Results from experiments have
shown that FedAvg and FedAvgM tend to perform better in both scenarios compared to the
two adaptive algorithms, FedAdam and FedAdagrad. In particular, FedAvg achieved a bet-
ter score in binary classification on the CICIDS2017 dataset and multiclass classification on
the ToN_IoT. In contrast, results from experiments with FedAdam and FedAdagrad, were
generally negative. Only in multiclass classification with CICIDS2017 was FedAdagrad
able to achieve scores in the order of 90% in all metrics. Other than that, the performances
of both algorithms in this context was fairly poor. It is difficult to establish the exact reasons
for this performance. However, given that these algorithms were designed to improve
on the performance of FedAvg in a cross-device scenario [40], where a large number of
clients is assumed, an empirical evaluation of these methods in more complex scenarios
should be considered as a part of future works. Moreover, in order to improve on both
binary and multiclass classification, the use of a more complex shared model should be
considered. For instance, a possible approach that could be interesting to explore is the
use of an ensemble of diverse models applied to a FL infrastructure where results are
aggregated at a central location.

Author Contributions: Conceptualization, R.L. and H.T.; methodology, R.L. and H.T.; software,
R.L.; validation, R.L.; formal analysis, R.L.; investigation, R.L.; resources, R.L.; data curation, R.L.;
writing—original draft preparation, R.L.; writing—review and editing, H.T. and V.C.; visualization,
R.L.; supervision, H.T. and V.C.; project administration, R.L.; funding acquisition, R.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A Review and State of Art of Internet of Things (IoT). Arch. Comput.

Methods Eng. 2022, 29, 1395–1413. [CrossRef]
2. Nguyen, T.D.; Rieger, P.; Miettinen, M.; Sadeghi, A.R. Poisoning Attacks on Federated Learning-based IoT Intrusion Detection

System. In Proceedings of the Workshop on Decentralized IoT Systems and Security (DISS) 2020, San Diego, CA, USA,
23–26 February 2020; Internet Society: Reston, VA, USA, 2021; Volume 8. [CrossRef]

http://doi.org/10.1007/s11831-021-09622-6
http://dx.doi.org/10.14722/diss.2020.23003


AI 2023, 4 529

3. Kagita, M.K.; Thilakarathne, N.; Gadekallu, T.R.; Maddikunta, P.K.R.; Singh, S. A Review on Cyber Crimes on the Internet of
Things. In Signals and Communication Technology; Springer Science and Business Media GmbH: Berlin, Germany, 2021; pp. 83–98.
[CrossRef]

4. Kuzlu, M.; Fair, C.; Guler, O. Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity. Discov. Internet Things
2021, 1, 7. [CrossRef]

5. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A review of deep learn-
ing with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 2020, 194, 105596.
[CrossRef]

6. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A system-
atic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150.
[CrossRef]

7. Tsimenidis, S.; Lagkas, T.; Rantos, K. Deep Learning in IoT Intrusion Detection. J. Netw. Syst. Manag. 2022, 30, 8. [CrossRef]
8. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019,

10, 19. [CrossRef]
9. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.;

Cummings, R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]
10. Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of communication latency in industrial IoT applications. In Proceed-

ings of the 2017 IEEE International Workshop on Measurement and Networking, M and N 2017—Proceedings, Naples, Italy,
27–29 September 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017. [CrossRef]

11. Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I.; et al. Latency
Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag.
2017, 55, 70–78. [CrossRef]

12. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Agüera y Arcas, B. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017,
Ft. Lauderdale, FL, USA, 20–22 April 2017.

13. Campos, E.M.; Saura, P.F.; González-Vidal, A.; Hernández-Ramos, J.L.; Bernabé, J.B.; Baldini, G.; Skarmeta, A. Evaluating
Federated Learning for intrusion detection in Internet of Things: Review and challenges. Comput. Netw. 2022, 203, 108661.
[CrossRef]

14. Booij, T.M.; Chiscop, I.; Meeuwissen, E.; Moustafa, N.; Hartog, F.T. ToN_IoT: The Role of Heterogeneity and the Need for
Standardization of Features and Attack Types in IoT Network Intrusion Data Sets. IEEE Internet Things J. 2022, 9, 485–496.
[CrossRef]

15. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the ICISSP 2018—4th International Conference on Information Systems Security and Privacy,
Funchal, Portugal, 22–24 January 2018; SciTePress: Setúbal, Portugal, 2018; Volume 2018, pp. 108–116. [CrossRef]

16. Konečný, J.; McMahan, B.; Ramage, D. Federated Optimization:Distributed Optimization Beyond the Datacenter. arXiv 2015,
arXiv:1511.03575.

17. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. A Cyber Threat Intelligence Sharing Scheme based on Federated Learning
for Network Intrusion Detection. J. Netw. Syst. Manag. 2023, 31, 3. [CrossRef]

18. Zhao, R.; Yin, Y.; Shi, Y.; Xue, Z. Intelligent intrusion detection based on federated learning aided long short-term memory. Phys.
Commun. 2020, 42, 101157. [CrossRef]

19. Zhao, L.; Li, J.; Li, Q.; Li, F. A Federated Learning Framework for Detecting False Data Injection Attacks in Solar Farms. IEEE
Trans. Power Electron. 2022, 37, 2496–2501. [CrossRef]

20. Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated-Learning-Based Anomaly
Detection for IoT Security Attacks. IEEE Internet Things J. 2022, 9, 2545–2554. [CrossRef]

21. Zhang, T.; He, C.; Ma, T.; Gao, L.; Ma, M.; Avestimehr, S. Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection. arXiv 2021, arXiv:2106.07976.

22. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT-Network-based detection of
IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

23. ANT. The ANT Lab: Analysis of Network Traffic. 2017. Available online: https://ant.isi.edu/ (accessed on 16 May 2022 ).
24. Chatterjee, S.; Hanawal, M.K. Federated Learning for Intrusion Detection in IoT Security: A Hybrid Ensemble Approach. Int. J.

Internet Things-Cyber-Assur. 2022, 2, 62–86. [CrossRef]
25. Saha, R.; Misra, S.; Deb, P.K. FogFL: Fog-Assisted Federated Learning for Resource-Constrained IoT Devices. IEEE Internet

Things J. 2021, 8, 8456–8463. [CrossRef]
26. Chen, Z.; Lv, N.; Liu, P.; Fang, Y.; Chen, K.; Pan, W. Intrusion Detection for Wireless Edge Networks Based on Federated Learning.

IEEE Access 2020, 8, 217463–217472. [CrossRef]
27. Zhang, J.; Luo, C.; Carpenter, M.; Min, G. Federated Learning for Distributed IIoT Intrusion Detection using Transfer Approaches.

IEEE Trans. Ind. Inform. 2023, 19, 8159–8169. [CrossRef]

http://dx.doi.org/10.1007/978-981-16-6186-0_4
http://dx.doi.org/10.1007/s43926-020-00001-4
http://dx.doi.org/10.1016/j.knosys.2020.105596
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1007/s10922-021-09621-9
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1109/IWMN.2017.8078359
http://dx.doi.org/10.1109/MCOM.2017.1600435CM
http://dx.doi.org/10.1016/j.comnet.2021.108661
http://dx.doi.org/10.1109/JIOT.2021.3085194
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1007/s10922-022-09691-3
http://dx.doi.org/10.1016/j.phycom.2020.101157
http://dx.doi.org/10.1109/TPEL.2021.3114671
http://dx.doi.org/10.1109/JIOT.2021.3077803
http://dx.doi.org/10.1109/MPRV.2018.03367731
https://ant.isi.edu/
http://dx.doi.org/10.1504/IJITCA.2022.124372
http://dx.doi.org/10.1109/JIOT.2020.3046509
http://dx.doi.org/10.1109/ACCESS.2020.3041793
http://dx.doi.org/10.1109/TII.2022.3216575


AI 2023, 4 530

28. Thonglek, K.; Takahashi, K.; Ichikawa, K.; Iida, H.; Nakasan, C. Federated Learning of Neural Network Models with Hetero-
geneous Structures. In Proceedings of the 19th IEEE International Conference on Machine Learning and Applications, ICMLA
2020, Miami, FL, USA, 14–17 December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020;
Volume 12, pp. 735–740. [CrossRef]

29. Qin, Q.; Poularakis, K.; Leung, K.K.; Tassiulas, L. Line-Speed and Scalable Intrusion Detection at the Network Edge via
Federated Learning. In Proceedings of the IFIP Networking 2020 Conference and Workshops—Networking 2020, Paris, France,
22–25 June 2020; pp. 352–360.

30. Otoum, Y.; Nayak, A. AS-IDS: Anomaly and Signature Based IDS for the Internet of Things. J. Netw. Syst. Manag. 2021, 29, 23.
[CrossRef]

31. Man, D.; Zeng, F.; Yang, W.; Yu, M.; Lv, J.; Wang, Y. Intelligent Intrusion Detection Based on Federated Learning for Edge-Assisted
Internet of Things. Secur. Commun. Netw. 2021, 2021, 9361348. [CrossRef]

32. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Conditional variational autoencoder for prediction and feature
recovery applied to intrusion detection in iot. Sensors 2017, 17, 1967. [CrossRef]

33. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the Convergence of FedAvg on Non-IID Data. arXiv 2019, arXiv:1907.02189.
34. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.J.; Stich, S.U.; Suresh, A.T. SCAFFOLD: Stochastic Controlled Averaging for

Federated Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, Online, 13–18 July
2020; Volume PartF16814, pp. 5088–5099.

35. Hsu, T.M.H.; Qi, H.; Brown, M. Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification.
arXiv 2019, arXiv:1909.06335.

36. Sun, T.; Li, D.; Wang, B. Decentralized Federated Averaging. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4289–4301. [CrossRef]
37. Muhammad, K.; Wang, Q.; O’Reilly-Morgan, D.; Tragos, E.; Smyth, B.; Hurley, N.; Geraci, J.; Lawlor, A. FedFast: Going beyond

Average for Faster Training of Federated Recommender Systems. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Online, 23–27 August 2020; Volume 20, pp. 1234–1242. [CrossRef]

38. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks.
Proc. Mach. Learn. Syst. 2020, 2, 429–450.

39. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated Learning with Matched Averaging. arXiv 2020,
arXiv:2002.06440.

40. Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečný, J.; Kumar, S.; McMahan, H.B. Adaptive Federated Optimization.
arXiv 2020, arXiv:2003.00295.

41. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence. Dokl. Akad. Nauk. SSSR
1983, 269, 543.

42. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

43. Su, W.; Chen, L.; Wu, M.; Zhou, M.; Liu, Z.; Cao, W. Nesterov accelerated gradient descent-based convolution neural network with
dropout for facial expression recognition. In Proceedings of the 2017 Asian Control Conference, ASCC 2017, Gold Coast, QLD, Aus-
tralia, 17–20 December 2017; IEEE: Piscataway, NJ, USA, 2018; pp. 1063–1068. [CrossRef]

44. Google Inc. TensorFlow Federated. 2022. Available online: https://www.tensorflow.org/federated (accessed on 7 February 2022).
45. Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.;

Rose, N.; et al. PySyft: A Library for Easy Federated Learning. In Studies in Computational Intelligence; Springer Science and
Business Media GmbH: Berlin, Germany, 2021; Volume 965, pp. 111–139. [CrossRef]

46. Ludwig, H.; Baracaldo, N.; Thomas, G.; Zhou, Y.; Anwar, A.; Rajamoni, S.; Ong, Y.; Radhakrishnan, J.; Verma, A.; Sinn, M.; et al.
IBM Federated Learning: An Enterprise Framework White Paper V0.1. arXiv 2020, arXiv:2007.10987.

47. Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-Marques, J.; Gao, Y.; Sani, L.; Li, K.H.; Parcollet, T.; de Gusmão, P.P.B.; et al.
Flower: A Friendly Federated Learning Research Framework. arXiv 2020, arXiv:2007.14390.

48. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICMLA51294.2020.00120
http://dx.doi.org/10.1007/s10922-021-09589-6
http://dx.doi.org/10.1155/2021/9361348
http://dx.doi.org/10.3390/s17091967
http://dx.doi.org/10.1109/TPAMI.2022.3196503
http://dx.doi.org/10.1145/3394486.3403176
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/ASCC.2017.8287318
https://www.tensorflow.org/federated
http://dx.doi.org/10.1007/978-3-030-70604-3_5

	Introduction
	Literature Review
	Federated Learning in IoT Intrusion Detection
	Averaging Algorithms
	Federated Learning Frameworks

	Proposed Model
	Overall Architecture
	Shared Model
	Comparison of Averaging Algorithms

	Datasets, Pre-Processing and Performance Metrics
	Datasets
	ToN_IoT Dataset
	CICIDS2017 Dataset

	Data Pre-Processing
	Performance Metrics

	Results and Discussion
	Binary Classification
	Multiclass Classification
	 Confusion Matrices

	Conclusions and Future Works
	References

