
Citation: Tsoulos, I.G.; Tzallas, A.

Training Artificial Neural Networks

Using a Global Optimization Method

That Utilizes Neural Networks. AI

2023, 4, 491–508. https://

doi.org/10.3390/ai4030027

Academic Editors: Kenji Suzuki and

José Machado

Received: 16 May 2023

Revised: 12 July 2023

Accepted: 14 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Training Artificial Neural Networks Using a Global
Optimization Method That Utilizes Neural Networks
Ioannis G. Tsoulos * and Alexandros Tzallas

Department of Informatics and Telecommunications, University of Ioannina, 451 10 Ioannina, Greece;
tzallas@uoi.gr
* Correspondence: itsoulos@uoi.gr

Abstract: Perhaps one of the best-known machine learning models is the artificial neural network,
where a number of parameters must be adjusted to learn a wide range of practical problems from
areas such as physics, chemistry, medicine, etc. Such problems can be reduced to pattern recognition
problems and then modeled from artificial neural networks, whether these problems are classification
problems or regression problems. To achieve the goal of neural networks, they must be trained by
appropriately adjusting their parameters using some global optimization methods. In this work,
the application of a recent global minimization technique is suggested for the adjustment of neural
network parameters. In this technique, an approximation of the objective function to be minimized
is created using artificial neural networks and then sampling is performed from the approximation
function and not the original one. Therefore, in the present work, learning of the parameters of
artificial neural networks is performed using other neural networks. The new training method was
tested on a series of well-known problems, a comparative study was conducted against other neural
network parameter tuning techniques, and the results were more than promising. From what was
seen after performing the experiments and comparing the proposed technique with others that have
been used for classification datasets as well as regression datasets, there was a significant difference in
the performance of the proposed technique, starting with 30% for classification datasets and reaching
50% for regression problems. However, the proposed technique, because it presupposes the use of
global optimization techniques involving artificial neural networks, may require significantly higher
execution time than other techniques.

Keywords: global optimization; neural networks; stochastic methods

1. Introduction

Artificial neural networks (ANNs) are parametric models [1–3] in machine learning,
and they are widely used in pattern recognition problems. A series of practical problems
from the fields of physics [4–6], chemistry [7–9], economics [10–12], medicine [13,14],
etc., can be transformed to pattern recognition problems and then solved using artificial
neural networks. Furthermore, neural networks have been used with success to solve
differential equations [15–17], solar radiation prediction [18,19], spam detection [20–22], etc.
Moreover, variations of artificial neural networks have been employed to solve agricultural
problems [23,24], facial expression recognition [25], prediction of the speed of wind [26],
the gas consumption problem [27], intrusion detection [28], hydrological systems [29], etc.
Furthermore, Swales and Yoon discussed the application of artificial neural networks to
investment analysis in their work [30].

A neural network can be denoted as a function N(−→x ,−→w) where the vector −→x stands
for the input vector and the vector −→w is the set of the parameters of the neural network that
should be estimated. The input vector is usually called pattern in the relevant literature

AI 2023, 4, 491–508. https://doi.org/10.3390/ai4030027 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4030027
https://doi.org/10.3390/ai4030027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0001-9043-1290
https://doi.org/10.3390/ai4030027
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4030027?type=check_update&version=1

AI 2023, 4 492

and the vector −→w is usually called the weight vector. Artificial neural network training
methods adjust the vector of weights in order to minimize the following quantity:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In the previous equation, what will be called training error, the set
(−→xi , yi

)
, i = 1, ..., M

is the input training dataset for the neural network with M patterns. The value yi is
the expected output for the pattern −→xi . Equation (1) can be minimized with respect
to the weight vector using any local or global optimization method such as the back-
propagation method [31,32], the hill climbing method [33], the RPROP method [34–36],
quasi Newton methods [37,38], simulated annealing [39,40], genetic algorithms [41,42],
particle swarm optimization [43,44], differential optimization methods [45,46], evolutionary
computation [47], the whale optimization algorithm [48], etc. Furthermore, Cui et al.
suggested the usage of a new stochastic optimization algorithm that simulates the plant
growing process for neural network training. Furthermore, recently, the bird mating
optimizer [49] was suggested as a training method for artificial neural networks [50], and
hybrid methods have been developed by various researchers to optimize the weight vector,
such as the work of Yaghini et al. [51] that combined particle swarm optimization with a
back-propagation algorithm to minimize the error function. Moreover, Chen et al. [52]
used a hybrid technique that combines particle swarm optimization and cuckoo search [53]
to optimize the weight vector of neural networks.

In addition, many researchers have addressed the issue of the initial values for the
weights of neural networks, such as the incorporation of decision trees [54], an initializa-
tion method using Cauchy’s inequality [55], incorporation of discriminant learning [56],
methods based on genetic algorithms [57], etc. A paper discussing all the aspects of weight
initialization strategies was written by Narkhede et al. [58].

Moreover, various groups of researchers are dealing with the issue of constructing the
structure of artificial neural networks, such as the incorporation of genetic algorithms [41],
the usage of the grammatical evolution method [59] for the construction of neural net-
works [60], a construction and pruning approach to optimize the structure of ANNs [61],
usage of cellular automata [62], etc. Furthermore, because the training of artificial neural
networks with optimization methods requires a significantly longer computing time, par-
allel techniques have been developed that take advantage of modern parallel computing
units [63–65].

Another area of research in the field of artificial neural networks that attracts a multi-
tude of researchers is the problem of overfitting that occurs in many cases. In this problem,
although the artificial neural network has achieved a satisfactory level of training, this
is not reflected in unknown patterns that were not present during training. This set of
patterns will be called the test set in the following. Commonly used methods that tackle
the overfitting problem are weight sharing [66,67], methods that reduce the number of
parameters (weight pruning) [68–70], the method of dropout [71,72], weight decaying
methods [73,74], the Sarprop method [75], positive correlation methods [76], etc.

In this paper, the use of a recent global minimization technique [77] called NeuralMin-
imizer, is proposed to find the optimal set for the weights of artificial neural networks.
This innovative global minimization technique constructs an approximation of the objective
function to be minimized using a limited number of its samples. These limited samples
form the training set of an artificial neural network that can be trained with any optimiza-
tion method. Subsequently, the sampling for the continuation of the global optimization
method is not performed by the objective function but by the previously trained artificial
neural network. The samples obtained by artificial neural networks before being fed into
the global minimization method are classified and those with the smallest functional value
will finally be input into the global minimization method. From the experimental results,
it was shown that this global minimization method requires a limited number of samples

AI 2023, 4 493

from the objective function to find the global minimum and is also more efficient than other
techniques for discovery of the global minimum. Therefore, this paper proposes using
artificial neural networks to train other artificial neural networks. This new procedure will
be tested on a series of known problems in order to evaluate its effectiveness.

The rest of this article is organized as follows: Section 2 describes the proposed method,
Section 3 lists the experimental datasets and the results obtained by the incorporation of
various methods, and finally, Section 4 discusses some conclusions.

2. The Proposed Method

In this section, some basic principles for artificial neural networks are presented and
then a new training method that incorporates a modified version of the NeuralMinimizer
global optimization technique is outlined.

2.1. Preliminaries

Let us consider an artificial neural network with only one hidden layer in which the
sigmoid function is used as an activation function. The output value for every node in this
layer is calculated as:

oi(x) = σ(pix + θi), (2)

where the value pi is the weight vector, and θi denotes the bias for the node i. The sigmoid
function is defined as:

σ(x) =
1

1 + exp(−x)
(3)

and it is graphically illustrated in Figure 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

sigma(x)

Figure 1. The sigmoid function σ(x).

When the neural network has H processing nodes, the output can be formulated as:

N(x) =
H

∑
i=1

vioi(x), (4)

AI 2023, 4 494

where vi stands for the output weight for node i. Hence, by using one vector for all the
parameters (weights and biases) the neural network can be written in the following form:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(5)

where d is the dimension of vector −→x . From Equation (5) we can conclude that number of
elements in the weight vector is:

dw = (d + 2)H (6)

2.2. The Modified NeuralMinimizer Method

In its original version, the NeuralMinimizer method employed RBF neural networks [78]
to build a model of the objective function. Even though radial basis function (RBF) net-
works have been used with success in a variety of problems [79–82], it is not possible to
apply them to the training of the parameters of an artificial neural network due to the large
dimension of the problem, as shown in Equation (6). Hence, in the current work, the RBF
network has been replaced by an artificial neural network that implements Equation (5).
The training of the artificial neural network was performed using a local minimization tech-
nique that is not particularly demanding in calculations and storage space, such as limited
memory BFGS (L-BFGS) [83]. Obviously, any other technique that is not extremely memory
intensive could be used in its place. Such a technique could be the Adam method [84],
the SGD method [85,86], or even a simple global minimization method such as a genetic
algorithm with a limited number of chromosomes. The L-BFGS method is a variation of
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [87] using a limited amount of
computer memory. This local minimization method has found wide application in difficult
and memory-intensive optimization problems such as image reconstruction [88], inverse
eigenvalue problems [89], seismic waveform tomography [90], etc. Because of the appli-
cation of this technique to large-dimensional problems, a number of modifications have
been proposed that make use of modern parallel computing systems [91–93]. A numerical
study on the limited memory BFGS methods is provided in the work of Morales [94]. In the
original publication on the NeuralMinimizer optimization method, an RBF neural network
was used to generate the approximation function of the objective function. However, this
would not always be possible in cases where the objective function to be minimized is the
error of an artificial neural network, because an artificial neural network usually has a
large number of parameters, and this would require an extremely large storage space for
training the global minimization method’s RBF neural network. Of course, in some cases
with small artificial neural networks, an RBF neural network could be used as the training
model in the global optimization method NeuralMinimizer. However, when an artificial
neural network is used to approach large and complex problems (something extremely
common) then a relatively under powered RBF neural network should be used. In those
cases, the RBF network will not be able to be an efficient approximation of the artificial
neural network, which is, of course, the original aim of the NeuralMinimizer method.

In the following, the main steps of the modified NeuralMinimizer method for the
training of neural networks are listed. In these steps, the neural network used by the
NeuralMinimizer method will be called NN(x, w).

1. Initialization step.

(a) Set H the number of weights of the neural network. In the current method the
same number of weights was used for both N(x, w) and NN(x, w) artificial neural
networks.

(b) Set NS as the samples that will be initially drawn from N(x, w). At this stage,
the training error for the artificial neural network will be used as an objective
function to minimize

(c) Set NT as the number of points that will be utilized as local minimization method
starters in every iteration.

AI 2023, 4 495

(d) Set NR as the number of samples that will be drawn from the NN(x, w) network
in each iteration.

(e) Set NG as the maximum number of iterations allowed.
(f) Set Iter = 0, the current iteration number.
(g) Set (w∗, y∗) as the global minimum discovered by the method. Initially

y∗ = ∞, w∗ = (0, 0, . . . , 0)

2. Creation Step.

(a) Set T = ∅, the used training set for the NN(x, w) neural network.
(b) For i = 1, .., NS do

i. Draw a new sample wi from N(x, w).
ii. Calculate yi = f (wi) using Equation 1
iii. T = T ∪ (wi, yi)

(c) EndFor
(d) Train the NN(x, w) neural network on set T using the L-BFGS method.

3. Sampling Step

(a) Set TR = ∅
(b) For i = 1, .., NR do

i. Produce randomly a sample (wi, yi) from NN(x, w) neural network
ii. Set TR = TR ∪ (xi,yi)

(c) EndFor
(d) Sort TR in ascending with respect to the values yi

4. Optimization Step.

(a) For i = 1, .., NT do

i. Get the next item (wi, yi) from TR.
ii. Train the neural network N(x, wi) on the training set of the objective problem

using the L-BFGS method and obtain the corresponding training error yi.
iii. Update T = T ∪ (wi, yi)
iv. Train the network NN(x, w) again on the modified set T. In this step, the

original training set used by NN(x, w) is updated to include the new discov-
ered local minimum. This operation is used in order to construct a more
accurate approximation of the real objective function.

v. If yi ≤ y∗ then w∗ = wi, y∗ = yi
vi. If the termination rule proposed in [95], then apply the produced network

N(x, w∗) on the test set of the objective problem, report the test error
and terminate.

(b) EndFor

5. Set iter=iter+1
6. Goto to Sampling step.

A flowchart of the proposed method is graphically outlined in Figure 2.

AI 2023, 4 496

Figure 2. The flowchart of the proposed method.

3. Experiments

The effectiveness of the proposed artificial neural network training technique was
evaluated using a series of data sets from the relevant literature. These datasets have
been studied by various researchers in the relevant literature and cover a wide range of
research areas from physics to economics. These datasets are freely available from the
following websites:

1. The UCI repository, https://archive.ics.uci.edu/(accessed on 12 July 2023) [96]
2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php(accessed on 17 June 2023) [97].
3. The Statlib URL ftp://lib.stat.cmu.edu/datasets/index.html (accessed on 17 June

2023). This repository is used mainly for the regression datasets.

3.1. Experimental Datasets

The following classification datasets from the relevant literature were used in
the experiments:

1. Appendicitis, a dataset used for medical purposes; it was found in [98,99].

https://archive.ics.uci.edu/
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html

AI 2023, 4 497

2. Australian dataset [100], an economic dataset, related to bank transactions.
3. Balance dataset [101], which is related to psychological experiments.
4. Cleveland dataset, a medical dataset found in the following research papers [102,103].
5. Bands dataset, related to printing problems [104].
6. Dermatology dataset [105], a dataset related to dermatology problems.
7. Hayes-Roth dataset [106].
8. Heart dataset [107], a medical dataset used to detect heart diseases.
9. HouseVotes dataset [108], related to the Congressional voting records of USA.
10. Ionosphere dataset, related to measurements from the ionosphere an thoroughly

studied in a series of research papers [109,110].
11. Liverdisorder dataset [111,112], a medical dataset.
12. Lymography dataset [113].
13. Mammographic dataset [114], a medical dataset related to breast cancer diagnosis.
14. Page Blocks dataset [115].
15. Parkinsons dataset [116,117], a medical dataset applied to the Parkinson’s decease.
16. Pima dataset [118], a medical dataset.
17. Popfailures dataset [119], a dataset related to meteorological data.
18. Regions2 dataset, a medical dataset for liver biopsy images [120].
19. Saheart dataset [121], a medical dataset related to heart diseases.
20. Segment dataset [122], a dataset related to image segmentation.
21. Wdbc dataset [123], a dataset related to breast tumors.
22. Wine dataset, a dataset related to chemical analysis of wines [124,125].
23. Eeg datasets [126,127], an EEG dataset, and the following cases were used in

the experiments:

(a) Z_F_S,
(b) ZO_NF_S
(c) ZONF_S.

24. Zoo dataset [128], suggested for the detection of the proper classes of animals.

A table showing the number of classes for every classification dataset is shown in
Table 1.

Table 1. Description for every classification dataset.

DATASET CLASSES

Appendicitis 2

Australian 2

Balance 3

Cleveland 5

Bands 2

Dermatology 6

Hayes-Roth 3

Heart 2

Housevotes 2

Ionosphere 2

Liverdisorder 2

Lymography 4

Mammographic 2

Page Blocks 5

AI 2023, 4 498

Table 1. Cont.

DATASET CLASSES

Parkinsons 2

Pima 2

Popfailures 2

Regions2 5

Saheart 2

Segment 7

Wdbc 2

Wine 3

Z_F_S 3

ZO_NF_S 3

ZONF_S 2

Zoo 7

The following regression datasets were used:

1. Abalone dataset [129], proposed to predict the age of abalones.
2. Airfoil dataset, a dataset provided by NASA [130], created from a series of aerody-

namic and acoustic tests.
3. Baseball dataset, a dataset using baseball games.
4. BK dataset [131], used to predict the points scored in a basketball game.
5. BL dataset, used in machine problems.
6. Concrete dataset [132], a dataset proposed to calculate the compressive strength

of concrete.
7. Dee dataset, used to detect the electricity energy prices.
8. Diabetes dataset, a medical dataset.
9. Housing dataset [133].
10. FA dataset, used to fit body fat to other measurements.
11. MB dataset [131].
12. Mortgage dataset. The goal is to predict the 30-year conventional mortgage rate.
13. PY dataset, (pyrimidines problem) [134].
14. Quake dataset, used to approximate the strength of a earthquake given its the depth

of its focal point, its latitude and its longitude.
15. Treasure dataset, which contains economic data information from the USA, where

the goal is to predict the 1-month CD Rate.
16. Wankara dataset, a weather dataset.

3.2. Experimental Setup

The proposed method was tested on the regression and classification problems men-
tioned previously, and it was compared against the results of several other well-known
optimization methods in the relevant literature. For greater reliability of the experi-
mental results, the 10-fold validation technique was employed for every classification
or regression dataset. Every experiment was executed 30 times, with different initial-
ization for the random generator each time. Furthermore, the srand48() random gen-
erator of the C-programming language was utilized. The used code was implemented
in ANSI C++ using the freely available OPTIMUS optimization library available from
https://github.com/itsoulos/OPTIMUS/(accessed on 18 July 2023). For the case of the
classification datasets, the average classification error was measured for every method. For
regression datasets, the average mean squared error was measured in the test set. The
number of hidden nodes for the neural networks was set to H = 10 for every method. All

https://github.com/itsoulos/OPTIMUS/

AI 2023, 4 499

the experiments were performed using an AMD Ryzen 5950X with 128 GB of RAM. The
running operating system was Debian Linux. The methods used in the experimental results
are the following:

1. A genetic algorithm with 200 chromosomes was used to train a neural network with
H hidden nodes. This method was denoted as GENETIC in the tables holding the
experimental results.

2. A radial basis function (RBF) network [78] with H hidden nodes.
3. The Adam optimization method [84]. Here, the method was used to minimize the

train error of a neural network with H hidden nodes.
4. The resilient back-propagation (RPROP) optimization method [34–36] was also em-

ployed to train a neural network with H hidden nodes.
5. The NEAT method (NeuroEvolution of Augmenting Topologies) [135].

The values used for every parameter are listed in Table 2 and they are similar to the
values used in the original publication of the NeuralMinimizer method.

Table 2. Experimental settings.

PARAMETER MEANING VALUE

H Number of weights 10

NS Start samples 50

NT Starting points 100

NR Samples drawn from the first network 10× NT

NG Maximum number of iterations 200

3.3. Experimental Results

The experimental results for the classification datasets are shown in Table 3 and those
of the regression datasets are shown in Table 4. The column PROPOSED represents the
usage of the proposed method to train a neural network with H hidden nodes. Furthermore,
the Figure 3 shows a scatter plot and the Wilcoxon signed-rank test for the classification
datasets. In the same direction, Figure 4 shows the scatter plot for the regression datasets.

Table 3. Experimental results for the classification datasets. The numbers in cells denote average
classification error of 30 independent runs.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

Appendicitis 18.10% 12.23% 16.50% 16.30% 17.20% 22.30%

Australian 32.21% 34.89% 35.65% 36.12% 31.98% 21.59%

Balance 8.97% 33.42% 7.87% 8.81% 23.14% 5.46%

Bands 35.75% 37.22% 36.25% 36.32% 34.30% 33.06%

Cleveland 51.60% 67.10% 67.55% 61.41% 53.44% 45.41%

Dermatology 30.58% 62.34% 26.14% 15.12% 32.43% 4.14%

Hayes Roth 56.18% 64.36% 59.70% 37.46% 50.15% 35.28%

Heart 28.34% 31.20% 38.53% 30.51% 39.27% 17.93%

HouseVotes 6.62% 6.13% 7.48% 6.04% 10.89% 5.78%

Ionosphere 15.14% 16.22% 16.64% 13.65% 19.67% 16.31%

Liverdisorder 31.11% 30.84% 41.53% 40.26% 30.67% 33.02%

Lymography 23.26% 25.31% 29.26% 24.67% 33.70% 25.64%

Mammographic 19.88% 21.38% 46.25% 18.46% 22.85% 16.37%

PageBlocks 8.06% 10.09% 7.93% 7.82% 10.22% 5.44%

AI 2023, 4 500

Table 3. Cont.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

Parkinsons 18.05% 17.42% 24.06% 22.28% 18.56% 14.47%

Pima 32.19% 25.78% 34.85% 34.27% 34.51% 25.61%

Popfailures 5.94% 7.04% 5.18% 4.81% 7.05% 5.57%

Regions2 29.39% 38.29% 29.85% 27.53% 33.23% 22.73%

Saheart 34.86% 32.19% 34.04% 34.90% 34.51% 34.03%

Segment 57.72% 59.68% 49.75% 52.14% 66.72% 37.28%

Wdbc 8.56% 7.27% 35.35% 21.57% 12.88% 5.01%

Wine 19.20% 31.41% 29.40% 30.73% 25.43% 7.14%

Z_F_S 10.73% 13.16% 47.81% 29.28% 38.41% 7.09%

ZO_NF_S 8.41% 9.02% 47.43% 6.43% 43.75% 5.15%

ZONF_S 2.60% 4.03% 11.99% 27.27% 5.44% 2.35%

ZOO 16.67% 21.93% 14.13% 15.47% 20.27% 4.20%

Table 4. Average regression error for the regression datasets.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

ABALONE 7.17 7.37 4.30 4.55 9.88 4.50

AIRFOIL 0.003 0.27 0.005 0.002 0.067 0.003

BASEBALL 103.60 93.02 77.90 92.05 100.39 56.16

BK 0.027 0.02 0.03 1.599 0.15 0.02

BL 5.74 0.01 0.28 4.38 0.05 0.0004

CONCRETE 0.0099 0.011 0.078 0.0086 0.081 0.003

DEE 1.013 0.17 0.63 0.608 1.512 0.30

DIABETES 19.86 0.49 3.03 1.11 4.25 1.24

HOUSING 43.26 57.68 80.20 74.38 56.49 18.30

FA 1.95 0.02 0.11 0.14 0.19 0.01

MB 3.39 2.16 0.06 0.055 0.061 0.05

MORTGAGE 2.41 1.45 9.24 9.19 14.11 3.50

PY 105.41 0.02 0.09 0.039 0.075 0.03

QUAKE 0.04 0.071 0.06 0.041 0.298 0.039

TREASURY 2.929 2.02 11.16 10.88 15.52 3.72

WANKARA 0.012 0.001 0.02 0.0003 0.005 0.002

AI 2023, 4 501

Figure 3. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test results
of the comparison for each of the five (5) clas-sification methods (GENETIC, RBF, ADAM, RPROP,
NEAT) with the PROPOSED method regarding the classification error in twenty-six (26) different
public available classification datasets. The stars only intend to flag significance levels for three of the
most used groups. A p-value of less than 0.001 is flagged with three stars (***). A p-value of less than
0.0001 is flagged with four stars (****).

The experimental results and their graphical representation demonstrate the superior-
ity of the proposed technique over the others in terms of the average error, as measured
in the test set. For example, in the case of datasets used for classification, the proposed
method outperforms the remaining techniques in 19 out of 26 datasets (73% percent).
Furthermore, in several cases, the percentage reduction in error exceeds 50%. For the
classification problems, the immediate most effective training method after the proposed
one is the genetic algorithm and, on average, the proposed technique achieves lower classi-
fication error than the genetic algorithm error by 24%. Moreover, in regression problems,
the next most effective method after the proposed one is the RBF neural network with small
differences from the ADAM optimizer. However, in the case of regression problems, the
improvement in average error using the proposed technique exceeds 49%. Of course, the
proposed technique is quite time-consuming, because it requires the continuous training of
an artificial neural network.

AI 2023, 4 502

Figure 4. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test of the
comparison for each of the five (5) regression methods (GENETIC, RBF, ADAM, RPROP, NEAT) with
the PROPOSED method regarding the regression error in sixteen (16) different publicly available
classification datasets. The stars only intend to flag significance levels for three of the most used
groups. A p-value of less than 0.01 is flagged with two stars (**). A p-value of less than 0.001 is flagged
with three stars (***). The notation “ns” denotes “not significant”.

4. Conclusions

In this work, the application of a recent global minimization method for the training
of artificial neural networks was proposed. The application of this method was used in
artificial neural networks both for classification problems and for regression problems. This
new global minimization method constructs an approximation of the objective function
using neural networks. This construction is performed with a limited number of samples
from the objective function. However, each time a local minimization takes place, this
approximation is readjusted. Subsequently, the sampling for the minimization is performed
from the approximate function and not from the objective one, even taking samples from
the approximation with the smallest function value in order to speed up the discovery
of the global minimum. In this particular case, the artificial neural network of the global
minimization method is used to train the artificial neural network. However, due to the
large time and storage requirements of artificial neural networks, the RBF network of the
original NeuralMinimizer method was replaced with an artificial neural network that was
trained using the local minimization method L-BFGS. The new artificial neural network
training technique is tested on a wide collection of classification and regression problems
from the relevant literature and is shown to significantly improve the learning error over
other established artificial neural network training techniques. This improvement is 25% on
average for the case of classification problems and rises significantly to 50% for regression
problems. The proposed method outperforms the other methods and models in the majority
of cases. For example, in the classification datasets, the proposed method outperforms the
genetic algorithm in 22 datasets, the RBF model in 21 datasets, the ADAM optimizer in
23 cases, the RPROP optimizer in 22 cases and finally, the NEAT method in 25 datasets.

AI 2023, 4 503

Nevertheless, the proposed procedure can be extremely slow, especially as the size
of the artificial neural network increases. The size of the artificial neural network directly
depends on the dimension of the input dataset. Future improvements to the methodology
may include the use of parallel programming techniques, such as parallel implementations
of the L-BFGS optimization method, in order to accelerate the training of artificial neural
networks by taking advantage of modern computing structures. Furthermore, in the
present phase, as a minimization method in step 4 of the proposed training method, a local
minimization method is used. Future extensions could explore the possibility of also using
global minimization techniques in this step, although care should be taken to make use of
parallel computing techniques to avoid long execution times.

Author Contributions: I.G.T. and A.T. conceived of the idea and the methodology and I.G.T. imple-
mented the corresponding software. I.G.T. conducted the experiments, employing objective functions
as test cases, and provided the comparative experiments. A.T. performed the necessary statistical
tests. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been co-financed by the European Regional Development Fund
of the European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call Research–Create–Innovate, project name “Create a
system of recommendations and augmented reality applications in a hotel” (project code: T1EDK-03745).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
2. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
3. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network

applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]
4. Baldi, P.; Cranmer, K.; Faucett, T.; Sadowski, P.; Whiteson, D. Parameterized neural networks for high-energy physics. Eur. Phys.

J. C 2016, 76, 235. [CrossRef]
5. Valdas, J.J.; Bonham-Carter, G. Time dependent neural network models for detecting changes of state in complex processes:

Applications in earth sciences and astronomy. Neural Netw. 2006, 19, 196–207. [CrossRef] [PubMed]
6. Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606.

[CrossRef]
7. Shen, L.; Wu, J.; Yang, W. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. J. Chem.

Theory Comput. 2016, 12, 4934–4946. [CrossRef]
8. Manzhos, S.; Dawes, R.; Carrington, T. Neural network-based approaches for building high dimensional and quantum dynamics-

friendly potential energy surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. [CrossRef]
9. Wei, J.N.; Duvenaud, D.; Aspuru-Guzik, A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci.

2016, 2, 725–732. [CrossRef]
10. Falat, L.; Pancikova, L. Quantitative Modelling in Economics with Advanced Artificial Neural Networks. Procedia Econ. Financ.

2015, 34, 194–201. [CrossRef]
11. Namazi, M.; Shokrolahi, A.; Maharluie, M.S. Detecting and ranking cash flow risk factors via artificial neural networks technique.

J. Bus. Res. 2016, 69, 1801–1806. [CrossRef]
12. Tkacz, G. Neural network forecasting of Canadian GDP growth. Int. J. Forecast. 2001, 17, 57–69. [CrossRef]
13. Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11,

785–795. [CrossRef] [PubMed]
14. Bartzatt, R. Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN). World J. Pharm. Res.

2018, 7, 16.
15. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.

Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
16. Effati, S.; Pakdaman, M. Artificial neural network approach for solving fuzzy differential equations. Inf. Sci. 2010, 180, 1434–1457.

[CrossRef]

http://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://www.ncbi.nlm.nih.gov/pubmed/30519653
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1016/j.neunet.2006.01.006
http://www.ncbi.nlm.nih.gov/pubmed/16537103
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1002/qua.24795
http://dx.doi.org/10.1021/acscentsci.6b00219
http://dx.doi.org/10.1016/S2212-5671(15)01619-6
http://dx.doi.org/10.1016/j.jbusres.2015.10.059
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1080/17460441.2016.1201262
http://www.ncbi.nlm.nih.gov/pubmed/27295548
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1016/j.ins.2009.12.016

AI 2023, 4 504

17. Rostami, F.; Jafarian, A. A new artificial neural network structure for solving high-order linear fractional differential equations.
Int. J. Comput. Math. 2018, 95, 528–539. [CrossRef]

18. Yadav, A.K.; Chandel, S.S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain.
Energy Rev. 2014, 33, 772–781. [CrossRef]

19. Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.A.; Khan, W.A. The artificial neural network for solar radiation prediction and
designing solar systems: A systematic literature review. J. Clean. Prod. 2015, 104, 1–12. [CrossRef]

20. Wu, C.H. Behavior-based spam detection using a hybrid method of rule-based techniques and neural networks. Expert Syst. Appl.
2009, 36, 4321–4330. [CrossRef]

21. Ren, Y.; Ji, D. Neural networks for deceptive opinion spam detection: An empirical study. Inf. Sci. 2017, 385–386, 213–224.
[CrossRef]

22. Madisetty, S.; Desarkar, M.S. A Neural Network-Based Ensemble Approach for Spam Detection in Twitter. IEEE Trans. Comput.
Soc. Syst. 2018, 5, 973–984. [CrossRef]

23. Topuz, A. Predicting moisture content of agricultural products using artificial neural networks. Adv. Eng. 2010, 41, 464–470.
[CrossRef]

24. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial
Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835.
[CrossRef]

25. Boughrara, H.; Chtourou, M.; Ben Amar, C.; Chen, L. Facial expression recognition based on a mlp neural network using
constructive training algorithm. Multimed. Tools Appl. 2016, 75, 709–731. [CrossRef]

26. Liu, H.; Tian, H.Q.; Li, Y.F.; Zhang, L. Comparison of four Adaboost algorithm based artificial neural networks in wind speed
predictions. Energy Convers. Manag. 2015, 92, 67–81. [CrossRef]

27. Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. [CrossRef]
28. Bahram, H.; Navimipour, N.J. Intrusion detection for cloud computing using neural networks and artificial bee colony optimiza-

tion algorithm. ICT Express 2019, 5, 56–59.
29. Chen, Y.S.; Chang, F.J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367, 125–137.

[CrossRef]
30. Swales, G.S.; Yoon, Y. Applying Artificial Neural Networks to Investment Analysis. Financ. Anal. J. 1992, 48, 78–80. [CrossRef]
31. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
32. Chen, T.; Zhong, S. Privacy-Preserving Backpropagation Neural Network Learning. IEEE Trans. Neural Netw. 2009, 20, 1554–1564.

[CrossRef] [PubMed]
33. Chalup, S.; Maire, F. A study on hill climbing algorithms for neural network training. In Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Toulouse, France, 1999;
Volume 3, pp. 2014–2021.

34. Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP algorithm. In Proceedings
of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; IEEE: Toulouse,
France, 1993; pp. 586–591.

35. Pajchrowski, T.; Zawirski, K.; Nowopolski, K. Neural Speed Controller Trained Online by Means of Modified RPROP Algorithm.
IEEE Trans. Ind. Informatics 2015, 11, 560–568. [CrossRef]

36. Hermanto, R.P.S.; Nugroho, A. Waiting-Time Estimation in Bank Customer Queues using RPROP Neural Networks. Procedia
Comput. Sci. 2018, 135, 35–42. [CrossRef]

37. Robitaille, B.; Marcos, B.; Veillette, M.; Payre, G. Modified quasi-Newton methods for training neural networks. Comput. Chem.
Eng. 1996, 20, 1133–1140. [CrossRef]

38. Liu, Q.; Liu, J.; Sang, R.; Li, J.; Zhang, T.; Zhang, Q. Fast Neural Network Training on FPGA Using Quasi-Newton Optimization
Method. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1575–1579. [CrossRef]

39. Yamazaki, A.; de Souto, M.C.P.; Ludermir, T.B. Optimization of neural network weights and architectures for odor recognition
using simulated annealing. In Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02, Honolulu,
HI, USA, 12–17 May 2002; IEEE: Toulouse, France, 2002; Volume 1, pp. 547–552.

40. Da, Y.; Xiurun, G. An improved PSO-based ANN with simulated annealing technique. Neurocomputing 2005, 63, 527–533.
[CrossRef]

41. Leung, F.H.F.; Lam, H.K.; Ling, S.H.; Tam, P.K.S. Tuning of the structure and parameters of a neural network using an improved
genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [CrossRef]

42. Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447.
43. Zhang, C.; Shao, H.; Li, Y. Particle swarm optimisation for evolving artificial neural network. In Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000; IEEE: Toulouse, France,
2000; pp. 2487–2490.

44. Yu, J.; Wang, S.; Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 2008, 71, 1054–1060.
[CrossRef]

http://dx.doi.org/10.1080/00207160.2017.1291932
http://dx.doi.org/10.1016/j.rser.2013.08.055
http://dx.doi.org/10.1016/j.jclepro.2015.04.041
http://dx.doi.org/10.1016/j.eswa.2008.03.002
http://dx.doi.org/10.1016/j.ins.2017.01.015
http://dx.doi.org/10.1109/TCSS.2018.2878852
http://dx.doi.org/10.1016/j.advengsoft.2009.10.003
http://dx.doi.org/10.3390/app10113835
http://dx.doi.org/10.1007/s11042-014-2322-6
http://dx.doi.org/10.1016/j.enconman.2014.12.053
http://dx.doi.org/10.1016/j.energy.2015.03.084
http://dx.doi.org/10.1016/j.jhydrol.2009.01.009
http://dx.doi.org/10.2469/faj.v48.n5.78
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/TNN.2009.2026902
http://www.ncbi.nlm.nih.gov/pubmed/19709975
http://dx.doi.org/10.1109/TII.2014.2359620
http://dx.doi.org/10.1016/j.procs.2018.08.147
http://dx.doi.org/10.1016/0098-1354(95)00228-6
http://dx.doi.org/10.1109/TVLSI.2018.2820016
http://dx.doi.org/10.1016/j.neucom.2004.07.002
http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1016/j.neucom.2007.10.013

AI 2023, 4 505

45. Ilonen, J.; Kamarainen, J.K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward Neural Networks. Neural
Process. Lett. 2003, 17, 93–105. [CrossRef]

46. Slowik, A.; Bialko, M. Training of artificial neural networks using differential evolution algorithm. In Proceedings of the 2008
Conference on Human System Interactions, Krakow, Poland, 25–27 May 2008; IEEE: Toulouse, France, 2008; pp. 60–65.

47. Rocha, M.; Cortez, P.; Neves, J. Evolution of neural networks for classification and regression. Neurocomputing 2007, 70, 2809–2816.
[CrossRef]

48. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft
Comput. 2018, 22, 1–15. [CrossRef]

49. Askarzadeh, A.; Rezazadeh, A. Artificial neural network training using a new efficient optimization algorithm. Appl. Soft Comput.
2013, 13, 1206–1213. [CrossRef]

50. Cui, Z.; Yang, C.; Sanyal, S. Training artificial neural networks using APPM. Int. J. Wirel. And Mobile Comput. 2012, 5, 168–174.
[CrossRef]

51. Yaghini, M.; Khoshraftar, M.M.; Fallahi, M. A hybrid algorithm for artificial neural network training. Eng. Appl. Artif. Intell. 2013,
26, 293–301. [CrossRef]

52. Chen, J.F.; Do, Q.H.; Hsieh, H.N. Training Artificial Neural Networks by a Hybrid PSO-CS Algorithm. Algorithms 2015, 8, 292–308.
[CrossRef]

53. Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [CrossRef]
54. Ivanova, I.; Kubat, M. Initialization of neural networks by means of decision trees. Knowl.-Based Syst. 1995, 8, 333–344. [CrossRef]
55. Yam, J.Y.F.; Chow, T.W.S. A weight initialization method for improving training speed in feedforward neural network. Neurocom-

puting 2000, 30, 219–232. [CrossRef]
56. Chumachenko, K.; Iosifidis, A.; Gabbouj, M. Feedforward neural networks initialization based on discriminant learning. Neural

Netw. 2022, 146, 220–229. [CrossRef]
57. Itano, F.; de Sousa, M.A.d.A.; Del-Moral-Hernandez, E. Extending MLP ANN hyper-parameters Optimization by using Genetic

Algorithm. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8–13 July 2018; IEEE: Toulouse, France, 2018; pp. 1–8.

58. Narkhede, M.V.; Bartakke, P.P.; Sutaone, M.S. A review on weight initialization strategies for neural networks. Artif. Intell. Rev.
2022, 55, 291–322. [CrossRef]

59. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
60. Tsoulos, I.G.; Gavrilis, D.; Glavas, E. Neural network construction and training using grammatical evolution. Neurocomputing

2008, 72, 269–277. [CrossRef]
61. Han, H.G.; Qiao, J.F. A structure optimisation algorithm for feedforward neural network construction. Neurocomputing 2013, 99,

347–357. [CrossRef]
62. Kim, K.J.; Cho, S.B. Evolved neural networks based on cellular automata for sensory-motor controller. Neurocomputing 2006, 69,

2193–2207. [CrossRef]
63. Martínez-Zarzuela, M.; Díaz Pernas, F.J.; Díez Higuera, J.F.; Rodríguez, M.A. Fuzzy ART Neural Network Parallel Computing on

the GPU. In Computational and Ambient Intelligence. IWANN 2007; Lecture Notes in Computer Science; Sandoval, F., Prieto, A.,
Cabestany, J., Graña, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4507.

64. Sierra-Canto, X.; Madera-Ramirez, F.; Uc-Cetina, V. Parallel Training of a Back-Propagation Neural Network Using CUDA.
In Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, Washington, DC, USA,
12–14 December 2010; IEEE: Toulouse, France, 2010; pp. 307–312.

65. Huqqani, A.A.; Schikuta, E.; Chen, S.Y.P. Multicore and GPU Parallelization of Neural Networks for Face Recognition. Procedia
Comput. Sci. 2013, 18, 349–358. [CrossRef]

66. Nowlan, S.J.; Hinton, G.E. Simplifying neural networks by soft weight sharing. Neural Comput. 1992, 4, 473–493. [CrossRef]
67. Kim, J.K.; Lee, M.Y.; Kim, J.Y.; Kim, B.J.; Lee, J.H. An efficient pruning and weight sharing method for neural network. In

Proceedings of the 2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Republic of Korea,
26–28 October 2016; IEEE: Toulouse, France, 2016; pp. 1–2.

68. Hanson, S.J.; Pratt, L.Y. Comparing biases for minimal network construction with back propagation. In Advances in Neural
Information Processing Systems; Touretzky, D.S., Ed.; Morgan Kaufmann: San Mateo, CA, USA, 1989; Volume 1, pp. 177–185.

69. Mozer, M.C.; Smolensky, P. Skeletonization: A technique for trimming the fat from a network via relevance assesment. In Advances
in Neural Processing Systems; Touretzky, D.S., Ed.; Morgan Kaufmann: San Mateo, CA, USA, 1989; Volume 1, pp. 107–115.

70. Augasta, M.; Kathirvalavakumar, T. Pruning algorithms of neural networks—a comparative study. Cent. Eur. Comput. Sci. 2003, 3,
105–115. [CrossRef]

71. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

72. Iosifidis, A.; Tefas, A.; Pitas, I. DropELM: Fast neural network regularization with Dropout and DropConnect. Neurocomputing
2015, 162, 57–66. [CrossRef]

73. Gupta, A.; Lam, S.M. Weight decay backpropagation for noisy data. Neural Netw. 1998, 11, 1127–1138. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1022995128597
http://dx.doi.org/10.1016/j.neucom.2006.05.023
http://dx.doi.org/10.1007/s00500-016-2442-1
http://dx.doi.org/10.1016/j.asoc.2012.10.023
http://dx.doi.org/10.1504/IJWMC.2012.046787
http://dx.doi.org/10.1016/j.engappai.2012.01.023
http://dx.doi.org/10.3390/a8020292
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1016/0950-7051(96)81917-4
http://dx.doi.org/10.1016/S0925-2312(99)00127-7
http://dx.doi.org/10.1016/j.neunet.2021.11.020
http://dx.doi.org/10.1007/s10462-021-10033-z
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1016/j.neucom.2008.01.017
http://dx.doi.org/10.1016/j.neucom.2012.07.023
http://dx.doi.org/10.1016/j.neucom.2005.07.013
http://dx.doi.org/10.1016/j.procs.2013.05.198
http://dx.doi.org/10.1162/neco.1992.4.4.473
http://dx.doi.org/10.2478/s13537-013-0109-x
http://dx.doi.org/10.1016/j.neucom.2015.04.006
http://dx.doi.org/10.1016/S0893-6080(98)00046-X
http://www.ncbi.nlm.nih.gov/pubmed/12662780

AI 2023, 4 506

74. Carvalho, M.; Ludermir, T.B. Particle Swarm Optimization of Feed-Forward Neural Networks with Weight Decay. In Proceedings
of the 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS’06), Rio de Janeiro, Brazil, 13–15 December 2006;
IEEE: Toulouse, France, 2006; p. 5.

75. Treadgold, N.K.; Gedeon, T.D. Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm. IEEE Trans.
Neural Netw. 1998, 9, 662–668. [CrossRef] [PubMed]

76. Shahjahan, M.D.; Kazuyuki, M. Neural network training algorithm with possitive correlation. IEEE Trans. Inf. Syst. 2005, 88,
2399–2409. [CrossRef]

77. Tsoulos, I.G.; Tzallas, A.; Karvounis, E.; Tsalikakis, D. NeuralMinimizer: A Novel Method for Global Optimization. Information
2023, 14, 66. [CrossRef]

78. Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257.
[CrossRef] [PubMed]

79. Mai-Duy, N.; Tran-Cong, T. Numerical solution of differential equations using multiquadric radial basis function networks.
Neural Netw. 2001, 14, 185–199. [CrossRef]

80. Mai-Duy, N. Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Meth. Engng.
2005, 62, 824–852. [CrossRef]

81. Laoudias, C.; Kemppi, P.; Panayiotou, C.G. Localization Using Radial Basis Function Networks and Signal Strength Fingerprints
in WLAN. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA,
30 November–4 December 2009; IEEE: Toulouse, France, 2009; pp. 1–6.

82. Azarbad, M.; Hakimi, S.; Ebrahimzadeh, A. Automatic recognition of digital communication signal. Int. J. Energy Inf. Commun.
2012, 3, 21–33.

83. Liu, D.C.; Nocedal, J. On the Limited Memory Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528. [CrossRef]
84. Kingma, D.P.; Ba, J.L. ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
85. Wang, L.; Yang, Y.; Min, R.; Chakradhar, S. Accelerating deep neural network training with inconsistent stochastic gradient

descent. Neural Netw. 2017, 93, 219–229. [CrossRef]
86. Sharma, A. Guided Stochastic Gradient Descent Algorithm for inconsistent datasets. Appl. Soft Comput. 2018, 73, 1068–1080.

[CrossRef]
87. Fletcher, R. A new approach to variable metric algorithms. Comput. J. 1970, 13, 317–322. [CrossRef]
88. Wang, H.; Gemmeke, H.; Hopp, T.; Hesser, J. Accelerating image reconstruction in ultrasound transmission tomography using

L-BFGS algorithm. In Medical Imaging 2019: Ultrasonic Imaging and Tomography; 109550B (2019); SPIE Medical Imaging: San Diego,
CA, USA, 2019. [CrossRef]

89. Dalvand, Z.; Hajarian, M. Solving generalized inverse eigenvalue problems via L-BFGS-B method. Inverse Probl. Sci. Eng. 2020,
28, 1719–1746. [CrossRef]

90. Rao, Y.; Wang, Y. Seismic waveform tomography with shot-encoding using a restarted L-BFGS algorithm. Sci. Rep. 2017, 7, 8494.
[CrossRef] [PubMed]

91. Fei, Y.; Rong, G.; Wang, B.; Wang, W. Parallel L-BFGS-B algorithm on GPU. Comput. Graph. 2014, 40, 1–9. [CrossRef]
92. D’Amore, L.; Laccetti, G.; Romano, D.; Scotti, G.; Murli, A. Towards a parallel component in a GPU—CUDA environment: A case

study with the L-BFGS Harwell routine. Int. J. Comput. Math. 2015, 92, 59–76. [CrossRef]
93. Najafabadi, M.M.; Khoshgoftaar, T.M.; Villanustre, F.; Holt, J. Large-scale distributed L-BFGS. J. Big Data 2017, 4, 22. [CrossRef]
94. Morales, J.L. A numerical study of limited memory BFGS methods. Appl. Math. Lett. 2002, 15, 481–487. [CrossRef]
95. Tsoulos, I.G. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 2008, 203, 598–607.

[CrossRef]
96. Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. 2023. Available online: https://archive.ics.uci.edu

(accessed on 18 July 2023).
97. Alcalá-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. J.-Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
98. Weiss, S.M.; Kulikowski, C.A. Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1991.
99. Wang, M.; Zhang, Y.Y.; Min, F. Active learning through multi-standard optimization. IEEE Access 2019, 7, 56772–56784. [CrossRef]
100. Quinlan, J.R. Simplifying Decision Trees. Int.-Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
101. Shultz, T.; Mareschal, D.; Schmidt, W. Modeling Cognitive Development on Balance Scale Phenomena. Mach. Learn. 1994, 16,

59–88. [CrossRef]
102. Zhou, Z.H.; Jiang, Y. NeC4.5: Neural ensemble based C4.5. IEEE Trans. Knowl. Data Eng. 2004, 16, 770–773. [CrossRef]
103. Setiono, R.; Leow, W.K. FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks. Appl. Intell. 2000, 12, 15–25.

[CrossRef]
104. Evans, B.; Fisher, D. Overcoming process delays with decision tree induction. IEEE Expert 1994, 9, 60–66. [CrossRef]
105. Demiroz, G.; Govenir, H.A.; Ilter, N. Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature

Intervals. Artif. Intell. Med. 1998, 13, 147–165.

http://dx.doi.org/10.1109/72.701179
http://www.ncbi.nlm.nih.gov/pubmed/18252489
http://dx.doi.org/10.1093/ietisy/e88-d.10.2399
http://dx.doi.org/10.3390/info14020066
http://dx.doi.org/10.1162/neco.1991.3.2.246
http://www.ncbi.nlm.nih.gov/pubmed/31167308
http://dx.doi.org/10.1016/S0893-6080(00)00095-2
http://dx.doi.org/10.1002/nme.1220
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1016/j.neunet.2017.06.003
http://dx.doi.org/10.1016/j.asoc.2018.09.038
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1117/12.2512654
http://dx.doi.org/10.1080/17415977.2020.1763982
http://dx.doi.org/10.1038/s41598-017-09294-y
http://www.ncbi.nlm.nih.gov/pubmed/28819294
http://dx.doi.org/10.1016/j.cag.2014.01.002
http://dx.doi.org/10.1080/00207160.2014.899589
http://dx.doi.org/10.1186/s40537-017-0084-5
http://dx.doi.org/10.1016/S0893-9659(01)00162-8
http://dx.doi.org/10.1016/j.amc.2008.05.005
https://archive.ics.uci.edu
http://dx.doi.org/10.1109/ACCESS.2019.2914263
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1007/BF00993174
http://dx.doi.org/10.1109/TKDE.2004.11
http://dx.doi.org/10.1023/A:1008307919726
http://dx.doi.org/10.1109/64.295130

AI 2023, 4 507

106. Hayes-Roth, B.; Hayes-Roth, B.F. Concept learning and the recognition and classification of exemplars. J. Verbal Learn. Verbal
Behav. 1977, 16, 321–338. [CrossRef]

107. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl.
Intell. 1997, 7, 39–55. [CrossRef]

108. French, R.M.; Chater, N. Using noise to compute error surfaces in connectionist networks: A novel means of reducing catastrophic
forgetting. Neural Comput. 2002, 14, 1755–1769. [CrossRef]

109. Dy, J.G.; Brodley, C.E. Feature Selection for Unsupervised Learning. J. Mach. Learn. Res. 2004, 5, 845–889.
110. Perantonis, S.J.; Virvilis, V. Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component

Analysis. Neural Process. Lett. 1999, 10, 243–252. [CrossRef]
111. Garcke, J.; Griebel, M. Classification with sparse grids using simplicial basis functions. Intell. Data Anal. 2002, 6, 483–502.

[CrossRef]
112. Mcdermott, J.; Forsyth, R.S. Diagnosing a disorder in a classification benchmark. Pattern Recognit. Lett. 2016, 73, 41–43. [CrossRef]
113. Cestnik, G.; Konenenko, I.; Bratko, I. Assistant-86: A Knowledge-Elicitation Tool for Sophisticated Users. In Progress in Machine

Learning; Bratko, I., Lavrac, N., Eds.; Sigma Press: Wilmslow, UK, 1987; pp. 31–45.
114. Elter, M.; Schulz-Wendtland, R.; Wittenberg, T. The prediction of breast cancer biopsy outcomes using two CAD approaches that

both emphasize an intelligible decision process. Med. Phys. 2007, 34, 4164–4172. [CrossRef] [PubMed]
115. Malerba, F.E.F.D.; Semeraro, G. Multistrategy Learning for Document Recognition. Appl. Artif. Intell. 1994, 8, 33–84.
116. Little, M.; Mcsharry, P.; Roberts, S.; Costello, D.; Moroz, I. Exploiting Nonlinear Recurrence and Fractal Scaling Properties for

Voice Disorder Detection. BioMed. Eng. OnLine 2007, 6, 23. [CrossRef]
117. Little, M.A.; McSharry, P.E.; Hunter, E.J.; Spielman, J.; Ramig, L.O. Suitability of dysphonia measurements for telemonitoring of

Parkinson’s disease. IEEE Trans. Biomed. Eng. 2009, 56, 1015–1022. [CrossRef]
118. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset

of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care; IEEE Computer Society Press:
Piscataway, NJ, USA; American Medical Informatics Association: Bethesda, MD, USA, 1988; pp. 261–265.

119. Lucas, D.D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y. Failure analysis of parameter-induced
simulation crashes in climate models. Geosci. Model Dev. 2013, 6, 1157–1171. [CrossRef]

120. Giannakeas, N.; Tsipouras, M.G.; Tzallas, A.T.; Kyriakidi, K.; Tsianou, Z.E.; Manousou, P.; Hall, A.; Karvounis, E.C.; Tsianos, V.;
Tsianos, E. A clustering based method for collagen proportional area extraction in liver biopsy images. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August
2015; IEEE: Toulouse, France, 2015; pp. 3097–3100.

121. Hastie, T.; Tibshirani, R. Non-parametric logistic and proportional odds regression. JRSS-C (Appl. Stat.) 1987, 36, 260–276.
[CrossRef]

122. Dash, M.; Liu, H.; Scheuermann, P.; Tan, K.L. Fast hierarchical clustering and its validation. Data Knowl. Eng. 2003, 44, 109–138.
[CrossRef]

123. Wolberg, W.H.; Mangasarian, O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology.
Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [CrossRef] [PubMed]

124. Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes
classifier/evolutionary algorithm. IEEE Trans. Syst. Man. Cybern. 2003, 33, 802–813. [CrossRef]

125. Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods
Softw. 2007, 22, 225–236. [CrossRef]

126. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. 2001,
64, 061907. [CrossRef]

127. Tzallas, A.T.; Tsipouras, M.G.; Fotiadis, D.I. Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural
Networks. Comput. Intell. Neurosci. 2007, 2007, 80510. [CrossRef]

128. Koivisto, M.; Sood, K. Exact Bayesian Structure Discovery in Bayesian Networks. J. Mach. Learn. Res. 2004, 5, 549–573.
129. Nash, W.J.; Sellers, T.L.; Talbot, S.R.; Cawthor, A.J.; Ford, W.B. The Population Biology of Abalone (haliotis species). In Blacklip

Abalone (H. rubra) from the North Coast and Islands of Bass Strait; Tasmania, I., Ed.; Technical Report; Sea Fisheries Division:
Tasmania, Australia, 1994; ISSN 1034-3288.

130. Brooks, T.F.; Pope, D.S.; Marcolini, A.M. Airfoil Self-Noise and Prediction; Technical report; NASA: Washington, DC, USA, 1989.
131. Simonoff, J.S. Smooting Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1996.
132. Yeh, I.C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.

[CrossRef]
133. Harrison, D.; Rubinfeld, D.L. Hedonic prices and the demand for clean ai. J. Environ. Econ. Manag. 1978, 5, 81–102. [CrossRef]

http://dx.doi.org/10.1016/S0022-5371(77)80054-6
http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1162/08997660260028700
http://dx.doi.org/10.1023/A:1018792728057
http://dx.doi.org/10.3233/IDA-2002-6602
http://dx.doi.org/10.1016/j.patrec.2016.01.004
http://dx.doi.org/10.1118/1.2786864
http://www.ncbi.nlm.nih.gov/pubmed/18072480
http://dx.doi.org/10.1186/1475-925X-6-23
http://dx.doi.org/10.1109/TBME.2008.2005954
http://dx.doi.org/10.5194/gmd-6-1157-2013
http://dx.doi.org/10.2307/2347785
http://dx.doi.org/10.1016/S0169-023X(02)00138-6
http://dx.doi.org/10.1073/pnas.87.23.9193
http://www.ncbi.nlm.nih.gov/pubmed/2251264
http://dx.doi.org/10.1109/TSMCB.2003.816922
http://dx.doi.org/10.1080/10556780600834745
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1155/2007/80510
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/0095-0696(78)90006-2

AI 2023, 4 508

134. King, R.D.; Muggleton, S.; Lewis, R.; Sternberg, M.J.E. Drug design by machine learning: The use of inductive logic programming
to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc. Natl. Acad. Sci.
USA 1992, 89, 11322–11326. [CrossRef]

135. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1073/pnas.89.23.11322
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173

	Introduction
	The Proposed Method
	Preliminaries
	The Modified NeuralMinimizer Method

	Experiments
	Experimental Datasets
	Experimental Setup
	Experimental Results

	Conclusions
	References

