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Abstract: Perhaps one of the best-known machine learning models is the artificial neural network,
where a number of parameters must be adjusted to learn a wide range of practical problems from
areas such as physics, chemistry, medicine, etc. Such problems can be reduced to pattern recognition
problems and then modeled from artificial neural networks, whether these problems are classification
problems or regression problems. To achieve the goal of neural networks, they must be trained by
appropriately adjusting their parameters using some global optimization methods. In this work,
the application of a recent global minimization technique is suggested for the adjustment of neural
network parameters. In this technique, an approximation of the objective function to be minimized
is created using artificial neural networks and then sampling is performed from the approximation
function and not the original one. Therefore, in the present work, learning of the parameters of
artificial neural networks is performed using other neural networks. The new training method was
tested on a series of well-known problems, a comparative study was conducted against other neural
network parameter tuning techniques, and the results were more than promising. From what was
seen after performing the experiments and comparing the proposed technique with others that have
been used for classification datasets as well as regression datasets, there was a significant difference in
the performance of the proposed technique, starting with 30% for classification datasets and reaching
50% for regression problems. However, the proposed technique, because it presupposes the use of
global optimization techniques involving artificial neural networks, may require significantly higher
execution time than other techniques.

Keywords: global optimization; neural networks; stochastic methods

1. Introduction

Artificial neural networks (ANNs) are parametric models [1–3] in machine learning,
and they are widely used in pattern recognition problems. A series of practical problems
from the fields of physics [4–6], chemistry [7–9], economics [10–12], medicine [13,14],
etc., can be transformed to pattern recognition problems and then solved using artificial
neural networks. Furthermore, neural networks have been used with success to solve
differential equations [15–17], solar radiation prediction [18,19], spam detection [20–22], etc.
Moreover, variations of artificial neural networks have been employed to solve agricultural
problems [23,24], facial expression recognition [25], prediction of the speed of wind [26],
the gas consumption problem [27], intrusion detection [28], hydrological systems [29], etc.
Furthermore, Swales and Yoon discussed the application of artificial neural networks to
investment analysis in their work [30].

A neural network can be denoted as a function N(−→x ,−→w ) where the vector −→x stands
for the input vector and the vector −→w is the set of the parameters of the neural network that
should be estimated. The input vector is usually called pattern in the relevant literature
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and the vector −→w is usually called the weight vector. Artificial neural network training
methods adjust the vector of weights in order to minimize the following quantity:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In the previous equation, what will be called training error, the set
(−→xi , yi

)
, i = 1, ..., M

is the input training dataset for the neural network with M patterns. The value yi is
the expected output for the pattern −→xi . Equation (1) can be minimized with respect
to the weight vector using any local or global optimization method such as the back-
propagation method [31,32], the hill climbing method [33], the RPROP method [34–36],
quasi Newton methods [37,38], simulated annealing [39,40], genetic algorithms [41,42],
particle swarm optimization [43,44], differential optimization methods [45,46], evolutionary
computation [47], the whale optimization algorithm [48], etc. Furthermore, Cui et al.
suggested the usage of a new stochastic optimization algorithm that simulates the plant
growing process for neural network training. Furthermore, recently, the bird mating
optimizer [49] was suggested as a training method for artificial neural networks [50], and
hybrid methods have been developed by various researchers to optimize the weight vector,
such as the work of Yaghini et al. [51] that combined particle swarm optimization with a
back-propagation algorithm to minimize the error function. Moreover, Chen et al. [52]
used a hybrid technique that combines particle swarm optimization and cuckoo search [53]
to optimize the weight vector of neural networks.

In addition, many researchers have addressed the issue of the initial values for the
weights of neural networks, such as the incorporation of decision trees [54], an initializa-
tion method using Cauchy’s inequality [55], incorporation of discriminant learning [56],
methods based on genetic algorithms [57], etc. A paper discussing all the aspects of weight
initialization strategies was written by Narkhede et al. [58].

Moreover, various groups of researchers are dealing with the issue of constructing the
structure of artificial neural networks, such as the incorporation of genetic algorithms [41],
the usage of the grammatical evolution method [59] for the construction of neural net-
works [60], a construction and pruning approach to optimize the structure of ANNs [61],
usage of cellular automata [62], etc. Furthermore, because the training of artificial neural
networks with optimization methods requires a significantly longer computing time, par-
allel techniques have been developed that take advantage of modern parallel computing
units [63–65].

Another area of research in the field of artificial neural networks that attracts a multi-
tude of researchers is the problem of overfitting that occurs in many cases. In this problem,
although the artificial neural network has achieved a satisfactory level of training, this
is not reflected in unknown patterns that were not present during training. This set of
patterns will be called the test set in the following. Commonly used methods that tackle
the overfitting problem are weight sharing [66,67], methods that reduce the number of
parameters (weight pruning) [68–70], the method of dropout [71,72], weight decaying
methods [73,74], the Sarprop method [75], positive correlation methods [76], etc.

In this paper, the use of a recent global minimization technique [77] called NeuralMin-
imizer, is proposed to find the optimal set for the weights of artificial neural networks.
This innovative global minimization technique constructs an approximation of the objective
function to be minimized using a limited number of its samples. These limited samples
form the training set of an artificial neural network that can be trained with any optimiza-
tion method. Subsequently, the sampling for the continuation of the global optimization
method is not performed by the objective function but by the previously trained artificial
neural network. The samples obtained by artificial neural networks before being fed into
the global minimization method are classified and those with the smallest functional value
will finally be input into the global minimization method. From the experimental results,
it was shown that this global minimization method requires a limited number of samples
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from the objective function to find the global minimum and is also more efficient than other
techniques for discovery of the global minimum. Therefore, this paper proposes using
artificial neural networks to train other artificial neural networks. This new procedure will
be tested on a series of known problems in order to evaluate its effectiveness.

The rest of this article is organized as follows: Section 2 describes the proposed method,
Section 3 lists the experimental datasets and the results obtained by the incorporation of
various methods, and finally, Section 4 discusses some conclusions.

2. The Proposed Method

In this section, some basic principles for artificial neural networks are presented and
then a new training method that incorporates a modified version of the NeuralMinimizer
global optimization technique is outlined.

2.1. Preliminaries

Let us consider an artificial neural network with only one hidden layer in which the
sigmoid function is used as an activation function. The output value for every node in this
layer is calculated as:

oi(x) = σ(pix + θi), (2)

where the value pi is the weight vector, and θi denotes the bias for the node i. The sigmoid
function is defined as:

σ(x) =
1

1 + exp(−x)
(3)

and it is graphically illustrated in Figure 1.
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Figure 1. The sigmoid function σ(x).

When the neural network has H processing nodes, the output can be formulated as:

N(x) =
H

∑
i=1

vioi(x), (4)
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where vi stands for the output weight for node i. Hence, by using one vector for all the
parameters (weights and biases) the neural network can be written in the following form:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(5)

where d is the dimension of vector −→x . From Equation (5) we can conclude that number of
elements in the weight vector is:

dw = (d + 2)H (6)

2.2. The Modified NeuralMinimizer Method

In its original version, the NeuralMinimizer method employed RBF neural networks [78]
to build a model of the objective function. Even though radial basis function (RBF) net-
works have been used with success in a variety of problems [79–82], it is not possible to
apply them to the training of the parameters of an artificial neural network due to the large
dimension of the problem, as shown in Equation (6). Hence, in the current work, the RBF
network has been replaced by an artificial neural network that implements Equation (5).
The training of the artificial neural network was performed using a local minimization tech-
nique that is not particularly demanding in calculations and storage space, such as limited
memory BFGS (L-BFGS) [83]. Obviously, any other technique that is not extremely memory
intensive could be used in its place. Such a technique could be the Adam method [84],
the SGD method [85,86], or even a simple global minimization method such as a genetic
algorithm with a limited number of chromosomes. The L-BFGS method is a variation of
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [87] using a limited amount of
computer memory. This local minimization method has found wide application in difficult
and memory-intensive optimization problems such as image reconstruction [88], inverse
eigenvalue problems [89], seismic waveform tomography [90], etc. Because of the appli-
cation of this technique to large-dimensional problems, a number of modifications have
been proposed that make use of modern parallel computing systems [91–93]. A numerical
study on the limited memory BFGS methods is provided in the work of Morales [94]. In the
original publication on the NeuralMinimizer optimization method, an RBF neural network
was used to generate the approximation function of the objective function. However, this
would not always be possible in cases where the objective function to be minimized is the
error of an artificial neural network, because an artificial neural network usually has a
large number of parameters, and this would require an extremely large storage space for
training the global minimization method’s RBF neural network. Of course, in some cases
with small artificial neural networks, an RBF neural network could be used as the training
model in the global optimization method NeuralMinimizer. However, when an artificial
neural network is used to approach large and complex problems (something extremely
common) then a relatively under powered RBF neural network should be used. In those
cases, the RBF network will not be able to be an efficient approximation of the artificial
neural network, which is, of course, the original aim of the NeuralMinimizer method.

In the following, the main steps of the modified NeuralMinimizer method for the
training of neural networks are listed. In these steps, the neural network used by the
NeuralMinimizer method will be called NN(x, w).

1. Initialization step.

(a) Set H the number of weights of the neural network. In the current method the
same number of weights was used for both N(x, w) and NN(x, w) artificial neural
networks.

(b) Set NS as the samples that will be initially drawn from N(x, w). At this stage,
the training error for the artificial neural network will be used as an objective
function to minimize

(c) Set NT as the number of points that will be utilized as local minimization method
starters in every iteration.
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(d) Set NR as the number of samples that will be drawn from the NN(x, w) network
in each iteration.

(e) Set NG as the maximum number of iterations allowed.
(f) Set Iter = 0, the current iteration number.
(g) Set (w∗, y∗) as the global minimum discovered by the method. Initially

y∗ = ∞, w∗ = (0, 0, . . . , 0)

2. Creation Step.

(a) Set T = ∅, the used training set for the NN(x, w) neural network.
(b) For i = 1, .., NS do

i. Draw a new sample wi from N(x, w).
ii. Calculate yi = f (wi) using Equation 1
iii. T = T ∪ (wi, yi)

(c) EndFor
(d) Train the NN(x, w) neural network on set T using the L-BFGS method.

3. Sampling Step

(a) Set TR = ∅
(b) For i = 1, .., NR do

i. Produce randomly a sample (wi, yi) from NN(x, w) neural network
ii. Set TR = TR ∪ (xi,yi)

(c) EndFor
(d) Sort TR in ascending with respect to the values yi

4. Optimization Step.

(a) For i = 1, .., NT do

i. Get the next item (wi, yi) from TR.
ii. Train the neural network N(x, wi) on the training set of the objective problem

using the L-BFGS method and obtain the corresponding training error yi.
iii. Update T = T ∪ (wi, yi)
iv. Train the network NN(x, w) again on the modified set T. In this step, the

original training set used by NN(x, w) is updated to include the new discov-
ered local minimum. This operation is used in order to construct a more
accurate approximation of the real objective function.

v. If yi ≤ y∗ then w∗ = wi, y∗ = yi
vi. If the termination rule proposed in [95], then apply the produced network

N(x, w∗) on the test set of the objective problem, report the test error
and terminate.

(b) EndFor

5. Set iter=iter+1
6. Goto to Sampling step.

A flowchart of the proposed method is graphically outlined in Figure 2.
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Figure 2. The flowchart of the proposed method.

3. Experiments

The effectiveness of the proposed artificial neural network training technique was
evaluated using a series of data sets from the relevant literature. These datasets have
been studied by various researchers in the relevant literature and cover a wide range of
research areas from physics to economics. These datasets are freely available from the
following websites:

1. The UCI repository, https://archive.ics.uci.edu/(accessed on 12 July 2023) [96]
2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php(accessed on 17 June 2023) [97].
3. The Statlib URL ftp://lib.stat.cmu.edu/datasets/index.html (accessed on 17 June

2023). This repository is used mainly for the regression datasets.

3.1. Experimental Datasets

The following classification datasets from the relevant literature were used in
the experiments:

1. Appendicitis, a dataset used for medical purposes; it was found in [98,99].

https://archive.ics.uci.edu/
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html 
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2. Australian dataset [100], an economic dataset, related to bank transactions.
3. Balance dataset [101], which is related to psychological experiments.
4. Cleveland dataset, a medical dataset found in the following research papers [102,103].
5. Bands dataset, related to printing problems [104].
6. Dermatology dataset [105], a dataset related to dermatology problems.
7. Hayes-Roth dataset [106].
8. Heart dataset [107], a medical dataset used to detect heart diseases.
9. HouseVotes dataset [108], related to the Congressional voting records of USA.
10. Ionosphere dataset, related to measurements from the ionosphere an thoroughly

studied in a series of research papers [109,110].
11. Liverdisorder dataset [111,112], a medical dataset.
12. Lymography dataset [113].
13. Mammographic dataset [114], a medical dataset related to breast cancer diagnosis.
14. Page Blocks dataset [115].
15. Parkinsons dataset [116,117], a medical dataset applied to the Parkinson’s decease.
16. Pima dataset [118], a medical dataset.
17. Popfailures dataset [119], a dataset related to meteorological data.
18. Regions2 dataset, a medical dataset for liver biopsy images [120].
19. Saheart dataset [121], a medical dataset related to heart diseases.
20. Segment dataset [122], a dataset related to image segmentation.
21. Wdbc dataset [123], a dataset related to breast tumors.
22. Wine dataset, a dataset related to chemical analysis of wines [124,125].
23. Eeg datasets [126,127], an EEG dataset, and the following cases were used in

the experiments:

(a) Z_F_S,
(b) ZO_NF_S
(c) ZONF_S.

24. Zoo dataset [128], suggested for the detection of the proper classes of animals.

A table showing the number of classes for every classification dataset is shown in
Table 1.

Table 1. Description for every classification dataset.

DATASET CLASSES

Appendicitis 2

Australian 2

Balance 3

Cleveland 5

Bands 2

Dermatology 6

Hayes-Roth 3

Heart 2

Housevotes 2

Ionosphere 2

Liverdisorder 2

Lymography 4

Mammographic 2

Page Blocks 5
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Table 1. Cont.

DATASET CLASSES

Parkinsons 2

Pima 2

Popfailures 2

Regions2 5

Saheart 2

Segment 7

Wdbc 2

Wine 3

Z_F_S 3

ZO_NF_S 3

ZONF_S 2

Zoo 7

The following regression datasets were used:

1. Abalone dataset [129], proposed to predict the age of abalones.
2. Airfoil dataset, a dataset provided by NASA [130], created from a series of aerody-

namic and acoustic tests.
3. Baseball dataset, a dataset using baseball games.
4. BK dataset [131], used to predict the points scored in a basketball game.
5. BL dataset, used in machine problems.
6. Concrete dataset [132], a dataset proposed to calculate the compressive strength

of concrete.
7. Dee dataset, used to detect the electricity energy prices.
8. Diabetes dataset, a medical dataset.
9. Housing dataset [133].
10. FA dataset, used to fit body fat to other measurements.
11. MB dataset [131].
12. Mortgage dataset. The goal is to predict the 30-year conventional mortgage rate.
13. PY dataset, (pyrimidines problem) [134].
14. Quake dataset, used to approximate the strength of a earthquake given its the depth

of its focal point, its latitude and its longitude.
15. Treasure dataset, which contains economic data information from the USA, where

the goal is to predict the 1-month CD Rate.
16. Wankara dataset, a weather dataset.

3.2. Experimental Setup

The proposed method was tested on the regression and classification problems men-
tioned previously, and it was compared against the results of several other well-known
optimization methods in the relevant literature. For greater reliability of the experi-
mental results, the 10-fold validation technique was employed for every classification
or regression dataset. Every experiment was executed 30 times, with different initial-
ization for the random generator each time. Furthermore, the srand48() random gen-
erator of the C-programming language was utilized. The used code was implemented
in ANSI C++ using the freely available OPTIMUS optimization library available from
https://github.com/itsoulos/OPTIMUS/(accessed on 18 July 2023). For the case of the
classification datasets, the average classification error was measured for every method. For
regression datasets, the average mean squared error was measured in the test set. The
number of hidden nodes for the neural networks was set to H = 10 for every method. All

https://github.com/itsoulos/OPTIMUS/
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the experiments were performed using an AMD Ryzen 5950X with 128 GB of RAM. The
running operating system was Debian Linux. The methods used in the experimental results
are the following:

1. A genetic algorithm with 200 chromosomes was used to train a neural network with
H hidden nodes. This method was denoted as GENETIC in the tables holding the
experimental results.

2. A radial basis function (RBF) network [78] with H hidden nodes.
3. The Adam optimization method [84]. Here, the method was used to minimize the

train error of a neural network with H hidden nodes.
4. The resilient back-propagation (RPROP) optimization method [34–36] was also em-

ployed to train a neural network with H hidden nodes.
5. The NEAT method (NeuroEvolution of Augmenting Topologies ) [135].

The values used for every parameter are listed in Table 2 and they are similar to the
values used in the original publication of the NeuralMinimizer method.

Table 2. Experimental settings.

PARAMETER MEANING VALUE

H Number of weights 10

NS Start samples 50

NT Starting points 100

NR Samples drawn from the first network 10× NT

NG Maximum number of iterations 200

3.3. Experimental Results

The experimental results for the classification datasets are shown in Table 3 and those
of the regression datasets are shown in Table 4. The column PROPOSED represents the
usage of the proposed method to train a neural network with H hidden nodes. Furthermore,
the Figure 3 shows a scatter plot and the Wilcoxon signed-rank test for the classification
datasets. In the same direction, Figure 4 shows the scatter plot for the regression datasets.

Table 3. Experimental results for the classification datasets. The numbers in cells denote average
classification error of 30 independent runs.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

Appendicitis 18.10% 12.23% 16.50% 16.30% 17.20% 22.30%

Australian 32.21% 34.89% 35.65% 36.12% 31.98% 21.59%

Balance 8.97% 33.42% 7.87% 8.81% 23.14% 5.46%

Bands 35.75% 37.22% 36.25% 36.32% 34.30% 33.06%

Cleveland 51.60% 67.10% 67.55% 61.41% 53.44% 45.41%

Dermatology 30.58% 62.34% 26.14% 15.12% 32.43% 4.14%

Hayes Roth 56.18% 64.36% 59.70% 37.46% 50.15% 35.28%

Heart 28.34% 31.20% 38.53% 30.51% 39.27% 17.93%

HouseVotes 6.62% 6.13% 7.48% 6.04% 10.89% 5.78%

Ionosphere 15.14% 16.22% 16.64% 13.65% 19.67% 16.31%

Liverdisorder 31.11% 30.84% 41.53% 40.26% 30.67% 33.02%

Lymography 23.26% 25.31% 29.26% 24.67% 33.70% 25.64%

Mammographic 19.88% 21.38% 46.25% 18.46% 22.85% 16.37%

PageBlocks 8.06% 10.09% 7.93% 7.82% 10.22% 5.44%
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Table 3. Cont.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

Parkinsons 18.05% 17.42% 24.06% 22.28% 18.56% 14.47%

Pima 32.19% 25.78% 34.85% 34.27% 34.51% 25.61%

Popfailures 5.94% 7.04% 5.18% 4.81% 7.05% 5.57%

Regions2 29.39% 38.29% 29.85% 27.53% 33.23% 22.73%

Saheart 34.86% 32.19% 34.04% 34.90% 34.51% 34.03%

Segment 57.72% 59.68% 49.75% 52.14% 66.72% 37.28%

Wdbc 8.56% 7.27% 35.35% 21.57% 12.88% 5.01%

Wine 19.20% 31.41% 29.40% 30.73% 25.43% 7.14%

Z_F_S 10.73% 13.16% 47.81% 29.28% 38.41% 7.09%

ZO_NF_S 8.41% 9.02% 47.43% 6.43% 43.75% 5.15%

ZONF_S 2.60% 4.03% 11.99% 27.27% 5.44% 2.35%

ZOO 16.67% 21.93% 14.13% 15.47% 20.27% 4.20%

Table 4. Average regression error for the regression datasets.

DATASET GENETIC RBF ADAM RPROP NEAT PROPOSED

ABALONE 7.17 7.37 4.30 4.55 9.88 4.50

AIRFOIL 0.003 0.27 0.005 0.002 0.067 0.003

BASEBALL 103.60 93.02 77.90 92.05 100.39 56.16

BK 0.027 0.02 0.03 1.599 0.15 0.02

BL 5.74 0.01 0.28 4.38 0.05 0.0004

CONCRETE 0.0099 0.011 0.078 0.0086 0.081 0.003

DEE 1.013 0.17 0.63 0.608 1.512 0.30

DIABETES 19.86 0.49 3.03 1.11 4.25 1.24

HOUSING 43.26 57.68 80.20 74.38 56.49 18.30

FA 1.95 0.02 0.11 0.14 0.19 0.01

MB 3.39 2.16 0.06 0.055 0.061 0.05

MORTGAGE 2.41 1.45 9.24 9.19 14.11 3.50

PY 105.41 0.02 0.09 0.039 0.075 0.03

QUAKE 0.04 0.071 0.06 0.041 0.298 0.039

TREASURY 2.929 2.02 11.16 10.88 15.52 3.72

WANKARA 0.012 0.001 0.02 0.0003 0.005 0.002
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Figure 3. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test results
of the comparison for each of the five (5) clas-sification methods (GENETIC, RBF, ADAM, RPROP,
NEAT) with the PROPOSED method regarding the classification error in twenty-six (26) different
public available classification datasets. The stars only intend to flag significance levels for three of the
most used groups. A p-value of less than 0.001 is flagged with three stars (***). A p-value of less than
0.0001 is flagged with four stars (****).

The experimental results and their graphical representation demonstrate the superior-
ity of the proposed technique over the others in terms of the average error, as measured
in the test set. For example, in the case of datasets used for classification, the proposed
method outperforms the remaining techniques in 19 out of 26 datasets (73% percent).
Furthermore, in several cases, the percentage reduction in error exceeds 50%. For the
classification problems, the immediate most effective training method after the proposed
one is the genetic algorithm and, on average, the proposed technique achieves lower classi-
fication error than the genetic algorithm error by 24%. Moreover, in regression problems,
the next most effective method after the proposed one is the RBF neural network with small
differences from the ADAM optimizer. However, in the case of regression problems, the
improvement in average error using the proposed technique exceeds 49%. Of course, the
proposed technique is quite time-consuming, because it requires the continuous training of
an artificial neural network.
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Figure 4. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test of the
comparison for each of the five (5) regression methods (GENETIC, RBF, ADAM, RPROP, NEAT) with
the PROPOSED method regarding the regression error in sixteen (16) different publicly available
classification datasets. The stars only intend to flag significance levels for three of the most used
groups. A p-value of less than 0.01 is flagged with two stars (**). A p-value of less than 0.001 is flagged
with three stars (***). The notation “ns” denotes “not significant”.

4. Conclusions

In this work, the application of a recent global minimization method for the training
of artificial neural networks was proposed. The application of this method was used in
artificial neural networks both for classification problems and for regression problems. This
new global minimization method constructs an approximation of the objective function
using neural networks. This construction is performed with a limited number of samples
from the objective function. However, each time a local minimization takes place, this
approximation is readjusted. Subsequently, the sampling for the minimization is performed
from the approximate function and not from the objective one, even taking samples from
the approximation with the smallest function value in order to speed up the discovery
of the global minimum. In this particular case, the artificial neural network of the global
minimization method is used to train the artificial neural network. However, due to the
large time and storage requirements of artificial neural networks, the RBF network of the
original NeuralMinimizer method was replaced with an artificial neural network that was
trained using the local minimization method L-BFGS. The new artificial neural network
training technique is tested on a wide collection of classification and regression problems
from the relevant literature and is shown to significantly improve the learning error over
other established artificial neural network training techniques. This improvement is 25% on
average for the case of classification problems and rises significantly to 50% for regression
problems. The proposed method outperforms the other methods and models in the majority
of cases. For example, in the classification datasets, the proposed method outperforms the
genetic algorithm in 22 datasets, the RBF model in 21 datasets, the ADAM optimizer in
23 cases, the RPROP optimizer in 22 cases and finally, the NEAT method in 25 datasets.
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Nevertheless, the proposed procedure can be extremely slow, especially as the size
of the artificial neural network increases. The size of the artificial neural network directly
depends on the dimension of the input dataset. Future improvements to the methodology
may include the use of parallel programming techniques, such as parallel implementations
of the L-BFGS optimization method, in order to accelerate the training of artificial neural
networks by taking advantage of modern computing structures. Furthermore, in the
present phase, as a minimization method in step 4 of the proposed training method, a local
minimization method is used. Future extensions could explore the possibility of also using
global minimization techniques in this step, although care should be taken to make use of
parallel computing techniques to avoid long execution times.
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