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Abstract: Recently, some effort went into explaining intransparent and black-box models, such as
deep neural networks or random forests. So-called model-agnostic methods typically approximate
the prediction of the intransparent black-box model with an interpretable model, without considering
any specifics of the black-box model itself. It is a valid question whether direct learning of inter-
pretable white-box models should not be preferred over post-hoc approximations of intransparent
and black-box models. In this paper, we report the results of an empirical study, which compares
post-hoc explanations and interpretable models on several datasets for rule-based and feature-based
interpretable models. The results seem to underline that often directly learned interpretable models
approximate the black-box models at least as well as their post-hoc surrogates, even though the
former do not have direct access to the black-box model.

Keywords: explainable AI; interpretable machine learning; interpretable models; black-box
explanation; white-box models

1. Introduction

Machine learning methods are widely used in various domains and applications such
as healthcare, finance, etc. In many cases, the learned models are so-called black-box models,
meaning that the learned representation is not easily interpretable. Hence, the predictions
they make are not easily comprehensible to humans.

The necessity of having some explanations to understand how the model works led to
substantial research on explaining learned models [1]. One can distinguish between local
explanations, which try to approximate the black-box model in the vicinity of an example
that should be explained (e.g., [2,3]), or global models, which try to capture the behavior of
the entire black-box model in an interpretable surrogate. Recently, several approaches have
been investigated which try to construct global models from local explanations (e.g., [4,5]).
Furthermore, one can distinguish between model-specific explanation methods, which
are tailored to specific types of black-box models such as deep neural networks (e.g., [6]),
and model-agnostic explanation methods, which do not make any assumptions about the
nature of the learned black-box model (e.g., [2]).

While the importance of explaining black-box models is not deniable in high stake
decision problems, various challenges and issues have renewed the interest in learning
interpretable models, such as decision trees or rule sets, in the first place.

The obvious problem is that post-hoc explanation methods only approximate the un-
derlying black-box model so that the found explanations often do not accurately reflect the
behavior of the model they are meant to explain. This is typically captured by monitoring
the fidelity of the surrogate model, i.e., the degree to which it follows the underlying model.
In addition, if the explanation works ideally without any errors, it might use completely
different features, which means that the explanation is not faithful to the computations in
the black-box model. Furthermore, there might be flaws in black-box models, and in this
situation, troubleshooting gets more complicated since both explanations and black-box
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models must be maintained. For these and other reasons, it has been argued that more
efforts should be devoted to learning more accurate interpretable models [7].

Motivated by this observation, this paper evaluates to what extent post-hoc explana-
tions can be replaced with directly learned interpretable methods unaware of the underlying
black-box models. The goal is to investigate whether the performance of an interpretable
model is accurate enough to be used as a replacement for model-agnostic methods or,
conversely, to see how much information is lost when doing so. To reach this goal, the
performance of local and global explanation methods will be evaluated by putting the
theories to the test, thereby assessing the validity of the assumption. We conduct a series of
experiments to evaluate and compare the performance of several interpretable models to
explain black-box models. Our results on rule-based and feature-based explanatory models
seem to confirm our hypothesis.

This article is organized as follows. Section 2 briefly reviews important works on
interpretability and explainability, Section 3 describes the research goals and the methods
that are used in our experiment, and Section 4 discusses the experimental results.

2. Related Work

Numerous research studies have been conducted on the explainability and inter-
pretability of black-box models. We refer to [8–10] for general surveys and only briefly
recapitulate the most relevant works for our study. In particular, we are interested in
comparing works in two major categories: directly learning interpretable methods and
post-hoc explanation methods.

2.1. Direct Learning of Interpretable Models

Directly learning interpretable methods are a subset of algorithms that create inter-
pretable models without the need for an underlying black-box model. Linear regression,
logistic regression, and decision trees are the most common interpretable models. We are
primarily interested in learning logical rules [11], for which RIPPER (Repeated Incremental
Pruning to Produce Error Reduction) is still a state-of-the-art method that is very hard
to beat [12]. For the case of feature-based explanations, we will consider GA2MS as an
interpretable (white box) model based on Generalized Additive Models. It is designed
to have high accuracy compared to the state-of-the-art machine learning models while
keeping the intelligibility, and explainability [13].

2.2. Local Explanations of Black-Box Models

Post-hoc explanation methods can either provide a global explanation of the entire
black-box model (global surrogate) or a local explanation for a given example (local surro-
gate). Some of the best-known methods are model-agnostic, i.e., they work for any type of
underlying black-box model.

SHAP [3] is an algorithm based on game theory that provides explanations for pre-
dictions in the form of post-hoc weights that reflect the importance of an input value
for the final prediction. Ribeiro et al. [2] proposed Local Interpretable Model agnostic
Explanation (LIME), which focuses on explaining individual predictions of the black-box
model. Although LIME is in principle independent of the type of interpretable model used
for explanations, it is typically also used for feature-weight-based explanations. LOcal
Rule-based Explanations (LORE) is a variant of LIME, which is specifically tailored to rules
as local surrogate models [14]. It provides interpretable and locally faithful explanations
by applying a local interpretable predictor on a synthetical neighborhood generated by
a genetic algorithm. The algorithm then derives a meaningful explanation in the form of
rules from the local interpretable predictor. Model Agnostic Supervised Local Explanations
(MAPLE) is a hybrid system that may serve as both, a highly accurate tree-based predictive
model, as well as a feature-based local explanatory model [15].



AI 2023, 4 428

2.3. Combining Local Explanations into Global Models

While interpretable models are typically global, i.e., they provide a method for classi-
fying every possible instance in the data space, post-hoc explanations are typically local,
i.e., they pertain only to the example for which they were generated. Rule-based models
are particularly interesting in this context because a global model is typically a rule set or a
rule list consisting of individual rules, which may be viewed as local models [16,17]. More
generally, recently, several works have focused on combining local explanations into global
models, which facilitates comparison between local and global models.

For example, Yang et al. [18] proposed Global Interpretation via Recursive Partition-
ing (GIRP), a method to build a global interpretation tree for a wide range of machine
learning models based on their local explanations. This method recursively partitions the
input variable space by maximizing the contribution of input variables averaged from
local explanations between the divided spaces. The method’s output is a binary so-called
interpretation tree, which describes a set of decision rules that approximates the original
model. van der Linden et al. [19] proposed Global Aggregations of Local Explanation
(GALE) as an approach to provide insight into the global decision-making process. This
paper tries to understand to what extent local explanations are able to provide global in-
sights on a black-box model. For this purpose, local explanations from the LIME algorithm
are analyzed and aggregated using several approaches to evaluate how they are able to
represent global insight. Finally, Setzu et al. [4] proposed the GLobal to loCAL eXplainer
(GLOCALX), a “local-first” model-agnostic explanation method. This method aims to use
local explanation methods and their benefits for producing a global explanation. The
algorithm starts from local explanations in decision rules and iteratively generates global
explanations by aggregating them.

3. Methods and Experimental Setup
3.1. Problem Statement

This study addresses the validation of the idea proposed by Rudin [7] that research
should focus more on interpretable models rather than explaining black-box models. To this
end, we select and compare pairs of a model-agnostic post-hoc explanation method and an
independent, directly trained interpretable method, which both produce the same syntactic
class of models. More precisely, as shown in Figure 1, we learn a black-box modelM from
a data set and training set. With training set consisting of n examples {(xi, yi), i = 1 . . . n}
where each example has m features and a label yi ∈ Y. We then employ common methods
from explainable AI to approximateM with an interpretable model IM. In parallel, we
directly learn a syntactically comparable model I from the same data and compare it to IM.

Figure 1. Experimental setup for comparing post-hoc explanations to directly trained interpretable
models.

Thus, the research question that we investigate is to what extent an interpretable model
I that has been directly learned from data can approximate an independently learned black-
box modelM, and how much of this fidelity is lost compared to an interpretable model
IM, which had access toM. One would, of course, expect that IM has a higher fidelity
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(and consequently maybe also a higher accuracy) than I , because IM had access to M,
whereas I was trained independently. However, both are trained on the same data, so that
implicit correlations may emerge.

Moreover, it is well-known that interpretable models I are often less accurate than
M because they typically only approximate the underlying black-box model M. This
approximation is often measured in terms of fidelity, i.e., how well IM approximates the
predictions ofM.

Thus, we intend to find out how the two models I , and IM are compared not only
in terms of commonly used parameters such as their complexity or the accuracy of the
respective models but also in terms of this fidelity.

Furthermore, different ways of explaining a model might exist according to the so-
called Rashomon effect [20], which, in a nutshell, states that in particular with structured
models such as trees or rules, there are often multiple different models which explain the
data equally well. We are interested in understanding whether there are differences in the
explanations provided by our selected interpretation methods for a model.

Generally, we focus on rule-based and feature-based methods, whereby we compare
the methods with respect to the logical rules they learn and the latter according to the
feature weights that are attributed to them. The following sections will introduce the
selected methods and algorithms we are interested in.

3.2. Rule-Based Interpretability Methods

GLOCALX and JRIP are selected as model-agnostic and interpretable models, respec-
tively. Both methods generate explanations in the form of rulesets, which are our preference
as they produce more compact models and are very close to human reasoning language [11].

JRIP [12] is a classic rule learning algorithm that generates rules by executing three
main steps; grow, prune, and optimize. Before learning each individual rule, JRIP splits
the examples it covers into two sets, a growing set from which the next rule is learned
and a pruning set used to simplify the learned rule. The rule set is further optimized
by re-learning individual rules in the context of other rules when a sufficient number of
positive examples have been covered.

GLOCALX [4] generates global explanations for a black-box model using local explana-
tions created by a local surrogate model such as LORE [14], and the predicted labels from
a black-box model. The algorithm takes a set of local explanations as input, and then tries
to iteratively merge and combine them to provide more general rules. At each iteration,
it sorts the local explanations into a queue according to their similarities and samples a
batch of data to merge the candidate explanations. The merge operation gets executed once
a pair of explanations with the closest similarity is popped from the queue. The merge
function consists of cut and join operators, which allow the algorithm to generalize a set
of explanations while balancing fidelity and complexity. To merge two local explanations
Ei and Ej, the join and cut operators apply to non-conflicting and conflicting explanations,
respectively. Thus, join generalizes explanations at the cost of fidelity while cut specializes
explanations at the cost of generality. If the result of the merge function satisfies simplicity
and accuracy constraints, a merged pair is kept, and Ei and Ej would be replaced by the
merged pair. Finally, explanations with low fidelity are filtered out using the α parameter
that indicates a per-class trimming threshold.

3.3. Feature-Based Interpretability Methods

Among various feature-based methods on interpretability, GA2MS [13] is selected as a
glass-box model, intelligible algorithm, and MAPLE is selected as a post-hoc method.

GA2MS and MAPLE are based on linear models and provide feature weights that
explain the contribution of the features in the prediction.

GA2MS algorithm is based on Generalized Additive Models (GAM) which is a gener-
alized linear model. GAM considers that the model could be the sum of arbitrary functions
instead of simple weights.
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GA2MS extends GAM, including terms that capture the interaction of features values:

g(E(Y)) = β0 + ∑
j

f j
(
xj
)
+ ∑

i 6=j
fij
(
xi, xj

)
(1)

The method starts by building up a small tree for each feature separately in a boosting
fashion so that each tree is only related to one feature. This procedure will be repeated for a
fixed number of iterations, so that eventually, for each feature, we obtain an ensemble of
trees. In the next step, the generated trees for each feature are summarized in a graph by
recording the prediction of each tree in a graph. At the end of this step, there is a graph
for each feature that builds the model. Since GA2MS is an additive model, we can easily
reason the contribution of each feature to the prediction [13].

As for the prediction in GA2MS each function fi, for each feature acts like a lookup
table that returns a term contribution. The returned term contributions are added up, and
the final predictions are calculated by passing them through function g. The additivity
enables GA2MS to give us the impact of each feature on the prediction.

MAPLE uses classical linear modeling and a tree interpretation of tree ensembles
as a supervised neighborhood approach and feature selection method to detect global
and example-based explanations. The algorithm first identifies the training points in the
training set that are most relevant to the prediction. It then assigns similarity weights to
each training point xi by calculating how often xi and x are put in the same leaf node in
trees T = {T1, T2, ..., Tk} as defined in (2)

wi =
1
K

K

∑
j=1

I
[
Tj(xi) = Tj(x)

]
(2)

The weights of the training points are then used in the linear model to make a predic-
tion and a local explanation by solving the linear regression problem in

fMAPLE(x) = β̂T
x x where β̂x = argminβ

n

∑
i=1

wi

(
βTxi − yi

)2
. (3)

3.4. Experimental Setup

The two experiments were performed on some commonly used datasets, mostly
from the UCI collection of machine learning databases [21]. All the datasets are binary
classification problems. In the adult dataset, the task is to determine whether a person earns
over 50 K a year. The compas two-year dataset contains recidivism risk score that predicts a
person’s likelihood of committing a crime in the next two years. The German dataset records
whether a loan applicant has good or bad credit risk. The NHANES I dataset is a follow-up
mortality data from the National Health and Nutrition Examination Survey epidemiologic
follow-up study. The credit card fraud dataset contains credit card transactions labeled as
legitimate or fraudulent transactions. Finally, the Bank dataset is from a direct marketing
campaign of a Portuguese banking institution, where the goal is to predict whether the
client will subscribe to a term deposit.

3.5. Experimental Setup on Rule-Based Models

To prepare the experiments, we follow the same procedure as in [4]. As the prepro-
cessing step in the experiment, the dataset is separated into three parts: 60% of the data is
dedicated to training the black-box model (Xbb, Ybb), 20% is for training GLOCALX (Xle, Yle)
and the last 20% is used as unseen data for validation (Xvl , Yvl).

As pointed out in Section 3.2, GLOCALX requires a black-box model and a local
explanation method to extract the global rules. To this end, we use random forests [22] as
a black-box model to predict the labels for the 20% training data for GLOCALX. We use
the LORE algorithm to find local explanations of each sample in the same partition. An
overview of the required blocks is shown in Figure 2.
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Figure 2. An overview of experiment setup for GLOCALX.

For the experiments with JRIP, we employ the first 80% of the dataset as the training
data. Note that JRIP internally also splits the data into 2/3 growing set and 1/3 pruning
set, which is quite similar to the internal split of GLOCALX.

Since rule-based interpretability methods provide label prediction, the evaluation is
done through accuracy and fidelity. In addition, the number of rules is considered another
evaluation metric.

4. Results and Discussion

This section describes the results of rule-based and feature-based models experiments.

4.1. Results on Rule-Based Models

In order to evaluate the performance of the glass-box model JRIP as a substitute for the
explanatory model GLOCALX, we tried various values for the α parameter of GLOCALX,
and compared the resulting rule set against a rule set that can be directly obtained from
JRIP. Table 1 shows the results of JRIP and all α parameters on the adult dataset.

Table 1. Evaluation on adult dataset.

Algorithm α Accuracy Fidelity # Rules

GLOCALX 95 0.723 0.856 96
25 0.752 0.929 26
10 0.762 0.942 10
5 0.752 0.925 6
2 0.729 0.911 2

JRIP 0.839 0.957 28

As can be seen, for the adult dataset, GLOCALX obtained its best results in terms of
fidelity and the number of rules with α = 10. Hence this α value is selected for further
discussion. By comparing the GLOCALX results to the JRIP in Table 1, we see that both
methods obtain a quite comparable performance in terms of accuracy and fidelity: the
most accurate theory in terms of accuracy and fidelity learned by GLOCALX (for α = 10)
has lower accuracy than JRIP, which, however, learns a somewhat more complex rule set.
However, even if we take a look at a rule set with a comparable complexity (α = 25), the
result is still quite similar to the previous observation: Even though JRIP has not seen the
underlying black-box model, it seems to deliver a better explanation of the model than
GLOCALX, in the sense that it has a higher fidelity to the black-box model than GLOCALX,
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despite the fact that GLOCALX tried to mimic the black-box model, while JRIP learned an
independent rule set.

Table 2 shows the results for all datasets, with the best α for each dataset. We can see
that both algorithms obtain a quite comparable performance in the number of rules and
accuracy, with, again, slight advantages for JRIP.

Table 2. summary of Evaluation on datasets.

GLOCALX JRIP

Dataset Accuracy Fidelity Accuracy Fidelity

adult 0.762 0.942 0.839 0.957
German 0.700 0.764 0.712 0.809
NHANES I 0.788 0.819 0.823 0.838
compas-two-year 0.756 0.804 0.782 0.836

To better understand the rules, Table 3 compares the rules learned by GLOCALX and
JRIP for the adult data set. Even though there are some common features such as “age”,
“capital-gain”, and “marital-status” in the global rules of both GLOCALX, and JRIP, in
general, very different rules were learned, which had similar fidelity as global explanations.
This is an instantiation of a phenomenon known as the Rashomon effect [20], namely that
very different models can obtain a similar predictive accuracy and that small changes in a
dataset may often lead to significant changes in a learned symbolic model. However, here
we see this phenomenon from a novel angle: Very different rules may provide different
explanations with the same fidelity to an underlying black-box model.

Table 3. Rules learned on adult.

(a) GLOCALX

y>50k :- 41.0 <= age <= 49.0
hours_per_week >= 57.0

y>50k :- capital_gain >= 6808,
age >= 46.0.

.

.

.

y<=50k :- otherwise.

(b) JRIP

y>50k :- marital-status = Married-civ-spouse
capital-gain >= 5178

y>50k :- marital-status = Married-civ-spouse
education = Bachelors
occupation = Exec-managerial

.

.

.
y>50k :- marital-status = Married-civ-spouse

age >= 29
hours-per-week >= 38
occupation = Sales
education = Masters
age <= 55

y <= 50k :- otherwise
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Furthermore, the trade-off between interpretability and accuracy states that models
with high interpretability might have lower accuracy. By comparing the rules provided by
GLOCALX and JRIP in terms of the rule length and number of conditions for each rule, we
see that in general GLOCALX generates shorter rules with smaller number of conditions
than JRIP. Thus, as a simple inference, GLOCALX can be more understandable for human
since it generates shorter and simpler rules. However, JRIP obtains higher accuracy while
generating more complex rules. It is noteworthy to mention that the interpretability and
understandability of rules can be evaluated from different perspectives and it needs to be
studied deeply.

4.2. Results on Feature-Based Interpretability Methods

As mentioned in previous sections, GA2MS and MAPLE are selected as feature-based
interpretability methods. Again, we aim to evaluate the performance of the two methods
in terms of their stand-alone performance (accuracy) as well as their similarity to a black-
box model (fidelity). We will first show the contribution of features to the prediction by
plotting the feature importance ranks provided by GA2MS and MAPLE. Since the MAPLE
algorithm does not give global feature importance in the form of weights, we use the
average linear regression weights for each feature as the feature importance.

The detailed results of the feature importance plot and feature importance ranks
for GA2MS and MAPLE methods on the adult are tabulated and shown graphically in
Figure 3. By comparing the results from MAPLE and GA2MS methods, we see that
“age” and “capital_gain” have high contributions to the prediction. Some features such as
"marital_status” in MAPLE have low contributions while in GA2MS they highly contribute
to the prediction which, again, illustrates the Rashomon effect, i.e., different feature weights
can be provided as explanations.

Features MAPLE GA2MS

Age 0.187 0.665
Marital Status 0.002 0.629
Capital Gain 0.640 0.551
Relationship −0.050 0.487

education −0.021 0.469
Occupation 0.008 0.416

Sex −0.045 0.354
Hours per week 0.207 0.275

Capital Loss 0.056 0.153
Workclass −0.016 0.107

Race 0.034 0.055

Figure 3. MAPLE and GA2MS feature importance for adult dataset.

In order to compare both methods with respect to fidelity, we need to have an identical
prediction method for both MAPLE and GA2MS. To that end, we use normalized feature
importance weights from the two methods GA2MS and MAPLE as WG ∈ Rm×m and
WM ∈ Rm×m. Then, for each explanation method, we use (4) to calculate the value for each
sample in the dataset.

vG,i = WG · xi

vM,i = WM · xi
(4)
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In (4), for each sample in the dataset, weights derived from MAPLE and GA2MS are
multiplied by the features. To convert probabilities to binary labels, we tune the threshold
th using the ROC curve and as defined in (5):

th = arg min
p
|TPR(p) + FPR(p)− 1|, (5)

where TPR and FPR are true positive and false positive rates, respectively. The obtained
values are then used to measure accuracy and fidelity by computing the AUC.

In this way, the accuracy and fidelity of the two methods are again evaluated on
different datasets, and the results are shown in Table 4. The results confirm that in all the
datasets, GA2MS has higher accuracy and fidelity compared to MAPLE, again underlining
the hypothesis behind this work, namely that directly learned interpretable models may
provide excellent explanations for black-box models, even if they have not seen this model,
simply because well-trained interpretable and black-box models will necessarily correlate
with each other.

Table 4. GA2MS and MAPLE fidelity and accuracy evaluation on datasets.

GA2MS MAPLE
Dataset Accuracy Fidelity Accuracy Fidelity

Adult 0.851 0.901 0.723 0.734
German 0.652 0.764 0.609 0.760
Heart Disease 0.789 0.813 0.734 0.801
Credit card fraud 0.939 0.989 0.947 0.955
NHANES I 0.826 0.867 0.745 0.788
Bank 0.731 0.807 0.713 0.825

5. Conclusions

Interpretable machine learning has gained importance in various problems and appli-
cations. The key idea behind many approaches that aim at explaining a black-box model is
to approximate it globally or locally with an interpretable surrogate model. However, in
this approximation, much of the predictive quality of the original model is lost, and it is
unclear whether the surrogate model is actually sufficiently faithful to the black-box model.
In this work, we showed that maybe somewhat surprisingly, interpretable models, which
have not seen the black-box model, may be equally faithful to the black-box model as the
surrogate models that have been learned from them.

In particular, we selected GLOCALX and JRIP as post-hoc and interpretable rule-based
methods, and MAPLE and GA2MS as post-hoc and interpretable feature-based methods,
respectively. According to the experiment’s results, the performance of interpretable
models in terms of accuracy and fidelity is as good as post-hoc methods. However, various
explanations can be provided by the two methods in the form of rules or feature importance.
Thus, interpretable models can be used instead of post-hoc methods. In addition, differences
in explanations provided by rule-based and feature-based methods can be another research
topic in the future to measure the efficiency of different explanations on a dataset and
determine the most efficient explanation.
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