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Abstract: Besides many sectors, artificial intelligence (AI) will drive energy sector transformation,
offering new approaches to optimize energy systems’ operation and reliability, ensuring techno-
economic advantages. However, integrating AI into the energy sector is associated with unforeseen
obstacles that might change optimistic approaches to dealing with AI integration. From a multidi-
mensional perspective, these challenges are identified, categorized based on common dependency
attributes, and finally, evaluated to align with the viable recommendations. A multidisciplinary
approach is employed through the exhaustive literature to assess the main challenges facing the
integration of AI into the energy sector. This study also provides insights and recommendations
on overcoming these obstacles and highlights the potential benefits of successful integration. The
findings suggest the need for a coordinated approach to overcome unforeseen obstacles and can serve
as a valuable resource for policymakers, energy practitioners, and researchers looking to unlock the
potential of AI in the energy sector.

Keywords: AI unforeseen obstacles; AI-empowered energy policy; computational intelligence;
AI-integrated energy framework; energy sector; policy recommendations

1. Introduction

AI initiatives date back many decades. AI history is linked with the inception of the
computer “Electronic Numerical Integrator Additionally, Computer (ENIAC)” in 1946 [1].
Additionally, its earliest commercial application of AI was automating and speeding up mail
processing using Optical Character Recognition (OCR) in 1970 by the US Postal Services [1].
In the early 1950s, with limited and expensive access to basic computers that could only
execute commands (with no storing commands capability), the concept of computing
machinery and intelligence was explored by Alan Turing [2]. Turning argued that by
analyzing the available information and related reasons, humans can solve problems and
make decisions, so by providing the inputs, why could machines not do the same thing?

The trend of computer development as a faster and cheaper machine with the ca-
pability of executing and storing more data from 1957 to 1974, while at the same time
improving machine learning algorithms, can be called a flourishing period of AI endeav-
ors [3]. After 1980, AI’s ambitious development had been accountable for the development
of correlative technologies (such as machine learning, deep learning, quantum comput-
ing, etc.), audacious investments, and inspiring the young generation to turn AI into the
limelight of future technology. For instance, Japan’s Fifth Generation Computer Project
(FGCP), an industry research consortium, budgeted USD 400 million from 1982 to 1990 to
revolutionize computer processing, implement logic programming, and improve artificial
intelligence [4]. Long before AI’s application at the student level was initiated as the basic
AI logic programing take, it took over 40 years to become intelligence, intimately tied with
great achievements in AI-flavored constructivism between 1980 and about 2017 [5]. A
concise overview of the historical trends in intelligent computational and AI applications
in the energy sector inspired by literature is presented in Figure 1.

AI 2023, 4, 406–425. https://doi.org/10.3390/ai4020022 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4020022
https://doi.org/10.3390/ai4020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-5196-2280
https://doi.org/10.3390/ai4020022
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4020022?type=check_update&version=2


AI 2023, 4 407

AI 2023, 4, FOR PEER REVIEW 2 
 

concise overview of the historical trends in intelligent computational and AI applications 
in the energy sector inspired by literature is presented in Figure 1. 

 
Figure 1. A tentative and historical perspective of AI deployment in energy sector from 1950 to 2022, 
using insights from [6–10]. 

• 1950: Early experimentation with AI in energy engineering. 
• 1960: Development of expert systems for energy management. 
• 1970: AI applications in power system control and optimization. 
• 1980: Introduction of fuzzy logic and neural networks in energy systems. 
• 1990: Integration of AI in renewable energy systems. 
• 2000: Smart grid and demand response with AI integration. 
• 2010: Advancements in predictive maintenance with machine learning. 
• 2011: IBM’s Watson aids energy management for buildings. 
• 2014: Google’s DeepMind applies AI for energy efficiency in data centers. 
• 2018: AI-powered energy storage management systems. 
• 2021: AI used for real-time monitoring and control of energy systems. 
• 2022: AI-driven energy trading platforms and market analysis. 

In the era of the fifth industry, technologies will move forward fast, impacting entire 
sectors, including the energy sector, and exposing new algorithms through the policy de-
velopment process. Modern energy landscapes, besides integration with industry 4.0 to 
comply with industry 5.0 standards, emerge the concept of “man and machine”, known 
as collaborative robots (cobots), aiming systems, and society integration in an agile and 
resilient manner with intelligent technologies [11]. Cobots, unlike conventional robots, are 
designed with kinematic and dynamic capabilities to cooperate with humans autono-
mously [12]. With all the advantages that robots have, there is the concern with taking 
peoples’ jobs and changing the labor market. While cobots cannot replace the labor force, 
they can fill the gaps in society’s aged populations. For example, it is reported that over 
30% of Europeans will be over 65 by 2060 [13], which results in a high workforce demand. 
It has been reported that we should be careful about the increasing use of buzzwords such 
as industry 4.0+, 4.5, 6.0, and 7.0. While these terms may be prevalent in academic writing 
and grant applications, they do not necessarily help make practical business decisions or 
address the real technological challenges [14]. 

Figure 1. A tentative and historical perspective of AI deployment in energy sector from 1950 to 2022,
using insights from [6–10].

• 1950: Early experimentation with AI in energy engineering.
• 1960: Development of expert systems for energy management.
• 1970: AI applications in power system control and optimization.
• 1980: Introduction of fuzzy logic and neural networks in energy systems.
• 1990: Integration of AI in renewable energy systems.
• 2000: Smart grid and demand response with AI integration.
• 2010: Advancements in predictive maintenance with machine learning.
• 2011: IBM’s Watson aids energy management for buildings.
• 2014: Google’s DeepMind applies AI for energy efficiency in data centers.
• 2018: AI-powered energy storage management systems.
• 2021: AI used for real-time monitoring and control of energy systems.
• 2022: AI-driven energy trading platforms and market analysis.

In the era of the fifth industry, technologies will move forward fast, impacting entire
sectors, including the energy sector, and exposing new algorithms through the policy
development process. Modern energy landscapes, besides integration with industry 4.0 to
comply with industry 5.0 standards, emerge the concept of “man and machine”, known
as collaborative robots (cobots), aiming systems, and society integration in an agile and
resilient manner with intelligent technologies [11]. Cobots, unlike conventional robots,
are designed with kinematic and dynamic capabilities to cooperate with humans au-
tonomously [12]. With all the advantages that robots have, there is the concern with taking
peoples’ jobs and changing the labor market. While cobots cannot replace the labor force,
they can fill the gaps in society’s aged populations. For example, it is reported that over
30% of Europeans will be over 65 by 2060 [13], which results in a high workforce demand.
It has been reported that we should be careful about the increasing use of buzzwords such
as industry 4.0+, 4.5, 6.0, and 7.0. While these terms may be prevalent in academic writing
and grant applications, they do not necessarily help make practical business decisions or
address the real technological challenges [14].
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The technology value chain is an integral part of modern society. The industry rev-
olution to the next revolution pushes society to be promoted with new challenges and
opportunities. Industry 4.0 and 5.0 are considered technology-driven and value-driven
((1) human-centric: by promoting talents, diversity, and empowerment; (2) resiliency with
flexible and adaptable technologies; and (3) sustainability: by ensuring substantiality re-
quirements), respectively [14]. The modern technologies at the time of the fifth industry
can be demonstrated with some challenges, such as the following [15]:

• Diverse values and acceptance among people.
• Measuring environmental and social value creation.
• Involving customers and enterprises across the value chain.
• Research spans multiple disciplines and complex systems.
• Innovation policy focused on ecosystems, agility, and outcomes.
• Need for productivity and substantial investments.

There is a limited body of research exploring the integration of AI into energy poli-
cies. The proposed framework addresses this gap by focusing on the techno-economic
aspects and organizing them into eight key knowledge areas: data, technical, operational,
knowledge-based, performance, tolerance, control and monitoring, and automation. By har-
monizing these areas, the framework aims to achieve adaptability for AI implementation,
enhance operational reliability, and accommodate scalability and future expansion. The
comprehensive approach, encompassing the eight main categories of system robustness
and their subcategories, ensures long-term sustainability in the energy sector.

This study aims to identify the energy sector’s key challenges in adopting intelligent
and smart technologies. A comprehensive literature review was conducted to find the
relevant studies using meta-data and content analysis methodologies. The focus was on AI
deployment in the energy sector, analyzed based on common strategic management [16]
approaches: analogous estimation techniques, contingent response techniques, dependency
determination techniques, expert judgment techniques, and brainstorming techniques [17].
This process resulted in an analogous outcome of expert insights regarding challenge
exploration from various aspects. These challenges were then categorized based on expert
judgment in a common-sense approach. It is important to note that this categorization can
differ for various cases depending on the specific scenario conditions and requirements.
This paper is organized into the following six sections: Section 2 reports the unseen
challenges of AI in energy. AI integration requirements and challenges are discussed in
Section 3. Data-driven modeling is addressed in Section 4. Section 5 is dedicated to Robotic
Process Automation (RPA), followed by the AI-integrated energy policy developments in
Section 6. Finally, the study’s findings are concluded in Section 7.

2. Unseen Challenges of AI in Energy

Machine learning (ML) and AI in power systems are essential for advanced monitoring,
control, operation, and integration of massive renewable energy, handling uncertainty and
instability, adapting to changing conditions, and managing new aspects of smart grids [18].
However, these new approaches must also be incorporated into the legacy infrastructure
and practices for machine learning methods that utilize flexibility and optimization. To-
day’s integrated world with enormous amounts of data generation and exchanges requires
robust infrastructures to discover helpful information from multidisciplinary information
exchanges in various domains. The answer to this sophisticated and multidimensional
requirement in the era of the industrial revolution is artificial intelligence (AI). Expedi-
tiously, a tentative categorization of the challenges in Figure 2 will contribute to identifying
key issues and prioritizing solutions based on their relevance to each category, thereby
enabling the development of more focused and effective strategies for AI integration in
energy systems.
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Figure 2. Classification of challenges related to AI integration in energy systems in a big picture in
the context of the four main categories.

The integration of AI into the energy sector is associated with valuable lessons of
success and failure, which primarily depend on data accuracy, algorithm selection, project
management, integration with existing systems, monitoring and evaluation, stakeholder
buy-in, expertise, budget, and resources, realistic expectations, and considerations of the
ethical and social implications [19–22]. The visualization of the challenges’ categories
and factors with their interrelations and flow of variables is shown in Figures 3 and 4,
which highlight the relationships among the main categories and their corresponding
subcategories. The flow direction in Figure 4 provides valuable insights into the intricate
interdependencies among these variables.

AI 2023, 4, FOR PEER REVIEW 4 
 

 
Figure 2. Classification of challenges related to AI integration in energy systems in a big picture in 
the context of the four main categories. 

The integration of AI into the energy sector is associated with valuable lessons of 
success and failure, which primarily depend on data accuracy, algorithm selection, project 
management, integration with existing systems, monitoring and evaluation, stakeholder 
buy-in, expertise, budget, and resources, realistic expectations, and considerations of the 
ethical and social implications [19–22]. The visualization of the challenges’ categories and 
factors with their interrelations and flow of variables is shown in Figures 3 and 4, which 
highlight the relationships among the main categories and their corresponding subcate-
gories. The flow direction in Figure 4 provides valuable insights into the intricate interde-
pendencies among these variables. 

 
Figure 3. AI application in the energy systems’ main challenges and their related factors. Figure 3. AI application in the energy systems’ main challenges and their related factors.



AI 2023, 4 410AI 2023, 4, FOR PEER REVIEW 5 
 

 
Figure 4. AI application in the energy systems’ main challenges relationship map from a diverse 
perspective (animated online version link of this figure is given in the Supplementary Materials 
Section). 

As the world increasingly relies on intelligence technologies to solve complex prob-
lems, several factors come into play when considering implementing AI in various indus-
tries, especially the energy sector. Among these factors, complexity, circumstance, and 
crucialness contribute to AI’s overall impact and successful deployment in energy pro-
jects. Mainly, complexity arises from integrating AI technologies with existing infrastruc-
tures, often requiring high data availability with high-quality levels. This can pose chal-
lenges as implementers strive to use AI optimally while preserving human expertise. A 
medium level of human–AI collaboration and explainability is necessary to ensure that 
individuals can understand and trust the outputs of these techniques. Furthermore, a me-
dium degree of flexibility is crucial for effective energy systems management, which may 
involve adapting to fluctuating demands or incorporating new energy resources. Despite 
the low emphasis on human-in-the-loop and performance evaluations, these factors re-
main relevant for creating more robust and reliable AI strategies. 

The circumstances surrounding AI implementation often dictate the level of success 
and acceptance in various industries. High data availability and quality, privacy, security, 
and integration with new and existing setups are all essential aspects to be addressed. 
High cost and investment requirements can be a barrier for some utilities, making scala-
bility a significant concern. While human–AI collaboration, explainability, human-in-the-
loop, and performance evaluations are given medium to low priority, they still contribute 
to the overall success of AI strategies in diverse settings. 

Crucialness is critical in ensuring AI systems’ responsible and effective implementa-
tion. High priority is given to privacy and security, explainability, reliability, regulation, 
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As the world increasingly relies on intelligence technologies to solve complex prob-
lems, several factors come into play when considering implementing AI in various indus-
tries, especially the energy sector. Among these factors, complexity, circumstance, and
crucialness contribute to AI’s overall impact and successful deployment in energy projects.
Mainly, complexity arises from integrating AI technologies with existing infrastructures,
often requiring high data availability with high-quality levels. This can pose challenges
as implementers strive to use AI optimally while preserving human expertise. A medium
level of human–AI collaboration and explainability is necessary to ensure that individuals
can understand and trust the outputs of these techniques. Furthermore, a medium degree of
flexibility is crucial for effective energy systems management, which may involve adapting
to fluctuating demands or incorporating new energy resources. Despite the low empha-
sis on human-in-the-loop and performance evaluations, these factors remain relevant for
creating more robust and reliable AI strategies.

The circumstances surrounding AI implementation often dictate the level of success
and acceptance in various industries. High data availability and quality, privacy, security,
and integration with new and existing setups are all essential aspects to be addressed. High
cost and investment requirements can be a barrier for some utilities, making scalability
a significant concern. While human–AI collaboration, explainability, human-in-the-loop,
and performance evaluations are given medium to low priority, they still contribute to the
overall success of AI strategies in diverse settings.

Crucialness is critical in ensuring AI systems’ responsible and effective implementation.
High priority is given to privacy and security, explainability, reliability, regulation, and
scalability. These aspects ensure that AI approaches are technically sound and conform
to ethical and legal standards. Human-in-the-loop, ethical concerns, cybersecurity, and
transparency are also important and considered medium priorities, as they help build
trust and confidence in AI systems. Human–AI collaboration, data availability, quality,



AI 2023, 4 411

integration with existing systems, cost and investment, and performance evaluation are
regarded as low-priority factors, but they still contribute to the overall impact of AI on
society through optimum energy systems’ operation. Ultimately, transforming from a
parameter-based model to a data-driven model poses numerous challenges in Triple-C
(complexity, circumstance, and crucialness), which are addressed in Figure 5.
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The relationships between complexity, circumstance, and crucialness provide valu-
able insights into the challenges and opportunities of implementing AI systems across
various industries (Figure 6). Addressing these factors can help ensure the successful
adoption of AI technologies while maximizing their benefits and minimizing the poten-
tial risks. By considering the impact of these factors on AI strategies’ development and
deployment, stakeholders can better understand the implications of AI in their respective
fields (from energy planning to generation, transmission, and distribution), and make more
informed decisions about their adoption and deployment. Investigating the challenges
of transitioning from a parameter-based model to a data-driven model in the context of
Triple-C (complexity, circumstance, and crucialness) across various scenarios and situations
is explored in Table 1.
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Table 1. Summary of key challenges in integrating AI into energy systems [19–22].

No. Challenge Details

1 Data availability
and quality

The availability and quality of data are critical factors for the
successful implementation of AI-based systems in energy
systems. These systems rely on large amounts of data for training
and testing, and the data must be in a specific format and series.
Inadequate or low-quality data can lead to poor results and
inaccurate predictions, making it essential to have a robust data
collection and preprocessing strategy in place.

2 Privacy and security

Using AI in energy systems raises concerns about protecting
sensitive energy consumption and production information. This
information can be collected and stored to identify patterns and
make predictions, but it also creates a risk of data breaches and
unauthorized access. Robust security measures such as
encryption and secure data storage must be implemented to
mitigate these risks.

3 Explainability

One of the challenges of AI systems is their lack of interpretability
and understandability. This can make explaining their
decision-making process to stakeholders challenging, particularly
in critical decision-making tasks involving safety or compliance.
To address this challenge, developing transparent AI systems that
non-technical stakeholders can easily understand is essential.

4 Reliability

AI systems may not always produce reliable results, especially if
they are not properly trained or if the data used to train them do
not represent real-world conditions. To ensure the reliability of AI
systems, it is essential to thoroughly test them and validate their
results before deploying them in production.

5 Integration with
existing systems

Integrating AI systems into existing energy systems can be a
complex process that requires significant changes to existing
infrastructure, such as hardware and software, as well as business
processes and workflows. To ensure successful integration, it is
essential to thoroughly understand the existing energy systems
and plan for the integration of AI systems accordingly.

6 Cost

Developing and implementing AI systems can be expensive,
which may not be feasible for some energy companies or
organizations. It is essential to consider these systems’ costs and
benefits carefully and prioritize investments in areas that will
have the greatest impact.

7 Regulation

The lack of regulation and standards for the use of AI in energy
systems can make it difficult for organizations to ensure
compliance with the legal and ethical requirements. It is essential
to stay informed about regulatory developments and work with
regulators to establish the best practices for using AI in
energy systems.

8 Scalability

AI systems may not be able to handle large-scale energy systems
and the complexity and variability of real-world energy systems.
To ensure that AI systems can scale to handle large-scale energy
systems, developing AI systems that can scale and test them
under realistic conditions is essential.

9 Human-in-the-loop

To ensure that AI systems complement and enhance human
decision-making rather than replace it. Incorporating human
oversight into the decision-making process or providing human
operators with tools to verify and correct AI-generated decisions
is essential.
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Table 1. Cont.

No. Challenge Details

10 Ethical concerns

Using AI in energy systems may raise ethical concerns, such as
potential bias in decision-making and the displacement of human
workers. It is essential to develop and implement ethical
guidelines for using AI in energy systems and to ensure that the
potential risks and impacts of AI systems are carefully considered.

11 Cybersecurity

Ensuring that AI systems are protected from cyber-attacks and
unauthorized access is crucial for the security and integrity of
energy systems. This can include implementing robust security
measures, such as secure data storage and encryption, as well as
regular security audits and vulnerability assessments.
Additionally, it is vital to develop and implement incident
response plans to address any potential security
breaches or vulnerabilities.

12 Adaptability

As energy markets and regulations are constantly evolving, AI
systems need to have the ability to adapt to these changes to
remain effective and efficient. This may require regular updates
and adjustments to the AI system and the development of
methods for detecting and responding to changes in the energy
market or regulatory environment.

13 Transparency

AI systems must be transparent in their decision-making
processes. This can be achieved by providing clear explanations
of the logic and reasoning behind a decision and making the
system’s underlying data and algorithms available for review.
This is also important for ensuring compliance with regulations
and ethical guidelines.

14 Human–AI
collaboration

For AI systems to be effective in energy systems, they must be
able to work effectively with human operators and
decision-makers. This may require the development of interfaces
and tools that allow for accessible communication and
collaboration between humans and AI systems.

15 Real-time decision
making

Energy systems often require real-time decision-making, such as
responding to energy demand or supply changes. AI systems
must be able to make decisions quickly and accurately in
real-time to be effective in these systems.

16 Performance
evaluation

To ensure that AI systems perform well, evaluating their
performance using appropriate metrics is essential. This may
include metrics such as accuracy, efficiency, and scalability.

17 Scalability

As energy systems often have to handle large-scale operations, AI
systems must also be able to scale to handle these operations.
This may require the development of methods for distributed
computing and parallel processing.

18 Robustness

Energy systems are often subject to uncertainty and variability,
such as changes in weather or equipment failure. AI systems
must handle these uncertainties and variabilities to be effective in
these systems.

19 Interoperability

AI systems must be able to work with other systems and
technologies, such as energy management systems or sensor
networks. This requires the development of methods for
integrating AI systems with other systems and technologies.
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Table 1. Cont.

No. Challenge Details

20 Data privacy
and security

Ensuring that sensitive information and data generated by energy
systems are protected from unauthorized access, use, or
disclosure is a significant challenge in integrating AI into energy
systems. This includes protecting data from cyberattacks and
ensuring that data are used in a way that complies with
regulations such as the General Data Protection
Regulation (GDPR).

21 Compliance

Energy systems must comply with various regulations and
standards, such as those related to safety and environmental
protection. Integrating AI into energy systems can introduce new
complexities and challenges in ensuring compliance with
these regulations.

22 Human–AI
collaboration

Ensuring that AI systems work seamlessly with human operators
and decision-makers is a significant challenge in integrating AI
into energy systems. This includes developing interfaces and
workflows that allow human operators to understand and
interact with AI systems easily and ensuring that AI systems
consider human preferences and constraints when
making decisions.

23 Explainability

One of the challenges in integrating AI into energy systems is the
ability of humans to understand and explain how AI systems
make decisions. This is important for building trust in AI systems
as well as ensuring that AI systems are used in a way that is fair
and transparent.

24 Human-in-the-loop

Ensuring that human operators and decision-makers can
intervene in the decision-making process of AI systems is an
important challenge in integrating AI into energy systems. This is
necessary to ensure that AI systems are used in a safe, fair, and
transparent way, and to allow human operators to take into
account factors that the AI system may not capture.

25
Flexibility in
energy systems
management

Energy systems are complex and dynamic, and integrating AI
into these systems can introduce new challenges in terms of
flexibility and adaptability. This includes ensuring that AI
systems can adapt to changing conditions and respond to
unexpected events and that AI systems can work seamlessly with
other systems and devices in the energy ecosystem.

Integrating AI into energy systems presents various challenges, as documented in the
literature. Ensuring seamless integration with new or existing energy systems remains a
concern, necessitating compatibility with legacy infrastructure and processes. This section
addresses the most significant challenges encountered across diverse scenarios and under
different circumstances. An exhaustive list of these challenges is discussed in Table 1.

However, the improper use of machine learning, even when prerequisites are available,
can still lead to undesired results. This highlights the importance of thoroughly under-
standing the underlying models and deploying the appropriate tools and techniques to
ensure the efficacy of machine learning applications. Data quality plays a crucial role in
achieving accurate and reliable outcomes. Utilizing high-quality datasets helps minimize
errors and biases while enhancing the overall performance of machine learning algorithms.
To avoid undesired results, it is essential for practitioners to carefully consider the choice of
models, techniques, and data sources while also closely monitoring the implementation
process to ensure that the machine learning systems perform as intended. According to [23],
in some cases, optimizing neural networks can be challenging due to several factors, such
as ill-conditioning of the Hessian matrix, local minima and saddle points, cliffs, exploding
gradients, deep computational graphs, and the theoretical limits of optimization. These
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challenges can arise even when optimizing convex functions, making it difficult to find
deep models. Hypothetical results also show difficulties in the performance of off-limit
algorithms, but they are not necessarily applicable in practical applications where neural
networks are used. The goal is not to find the exact minimum of a function but to reduce
its value enough to obtain a reasonable generalization error limit.

3. AI Integration Requirement and Conundrum

Artificial intelligence (AI) is a field of computer science established in the 1950s to study
the phenomenon of intelligence using computers to simulate human thought processes,
reaching a scientific understanding of intelligence using the logical operations of computers
for a better understanding and performance of the human mind [24]. Computational
intelligence was born in the twentieth century to enable computers to simulate humans’
learning with decision-making capabilities and become a game-changer in today’s life [25].
Numerical modeling and analysis are carried out without considering factors such as
the accuracy and dependence of the model. A numerical concept of 4E (energy, exergy,
environment, and economics) was implemented to analyze a hybrid waste-to-energy system
to reduce emissions pollution and level the cost of electricity production [26].

A new blueprint is depicted in Figure 7, which indicates that DS makes the foundation
for the analysis and interpretation of data, while AI and ML use these data to inform
and direct energy policy decisions at diverse levels with an interlinked and overlapping
correlation. Data science (DS) bestows a broad range of tasks, including classification,
regression, association analysis, clustering, anomaly detection, recommendation engines,
feature selection, time-series forecasting, deep learning, text mining, etc. AI and ML
are limited to specific applications within desired landscapes [27]. Generalizing these
three levels with close interdependency remains a challenge. Data science establishes
the first step in developing energy policies for AI and ML through data collection and
analysis in a big scheme. AI uses that data to automate tasks and create smart energy
production, transmission, and distribution systems, and ML uses AI to implement self-
learning algorithms and predict energy consumption patterns, market trends, and system
performance [28]. AI and ML are built on top of DS and use the data to identify patterns,
make predictions, and imagine a blueprint [25] that enables policymakers to make informed
decisions on system setup based on a technical and circular economy foundation at the
national, regional, and local levels.
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Data science (DS) lays the foundation for analyzing and interpreting data in energy
policy, which is a crucial aspect of policy development. Artificial intelligence (AI) and ML
build upon this foundation by using data to identify patterns and make predictions [29].
These insights and predictions inform energy policy decisions at various levels, including
the national, regional, and local levels, and drive initiatives that prioritize energy efficiency,
promote the adoption of renewable energy sources, and reduce greenhouse gas emissions.
Furthermore, deep learning (DL), a subfield of ML, leverages artificial neural networks and
vast amounts of data to produce even more precise predictions that assist energy policy-
makers [30]. However, distinguishing these interrelated categorizations can be challenging.
Nonetheless, a conceptual blueprint in Table 2, which is specific to the energy engineering
discipline in the context of policy development, provides a mainstream conception.

Table 2. Contribution of DS, AI, and ML in shaping energy policy from a macro perspective.

Domain The Main Contribution from a Macro Perspective

Data Science (DS)

• Collection and organization of large energy-related datasets.
• Development of data management and storage systems.
• Analysis of energy consumption patterns and forecasting.
• Predictive modeling and optimization of energy systems.

Artificial Intelligence (AI)

• Automation of routine tasks in energy production,
transmission, and distribution.

• Development of smart energy systems.
• Implementation of AI-powered energy management systems.
• Predictive maintenance and fault detection in energy systems.

Machine Learning (MS)

• Predictive modeling and optimization of energy
consumption patterns.

• Prediction and analysis of energy market trends.
• Implementation of self-learning algorithms in energy systems.
• Development of energy-efficient decision-making systems.

The literature [31–35] indicates that experts and professionals face challenges in their
decision-making processes due to the surfeit of advancements and strategic modifications
in integrating AI into energy systems that utilize data-driven models instead of system
parameter-based models. This poses a challenge in singling out the critical aspect for a
feasible policy decision amidst a labyrinth of multidisciplinary factors such as technical,
technological, social, political, environmental, ecological, economic, institutional, and
global limitations.

4. Data-Driven Modeling

Incorporating machine learning into energy policies requires accurate, data-driven
models and appropriate datasets. Breaking down the policy processes into manageable
portions allows for better data analysis and dataset creation. The high volume and variabil-
ity of smart grid data pose challenges for AI algorithms, requiring improved robustness,
adaptiveness, and online processing [36]. Data-driven models identify patterns in historical
data without prior knowledge of system dynamics, while parameter-based models rely on
mathematical equations and system knowledge [37]. Data-driven models offer advantages
such as automatic pattern learning, high accuracy potential, and improvement over time
with new data. However, they have limitations, such as overfitting susceptibility, data
quality sensitivity, and interpretation difficulties [38–40].

Data are a critical component in machine learning and analytics, undergoing multiple
processing stages to ensure quality and usability, yet the term Big Data remains conceptually
vague, despite its popularity in academia and industry [41,42]. The stages of data processing
include data collection, which involves gathering raw data from multiple sources such
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as web scraping, APIs, surveys, and databases. Data cleansing removes inconsistencies,
duplicates, and handles missing values to improve data quality. Data labeling annotates
or tags data with relevant labels for supervised learning tasks, while data augmentation
creates new or modified instances of data to expand and diversify the dataset, improving
model performance [43]. Data encoding transforms data into machine-readable formats,
such as one-hot encoding and label encoding. Feature extraction extracts the essential
characteristics from the raw data to represent and summarize it [44]. Feature scaling
standardizes and normalizes data features to ensure equal contribution to model training,
and feature engineering creates new features or transformations to enhance the dataset’s
predictive power [45]. Data imputation fills in missing values with estimates based on
existing data, and data integration combines datasets from multiple sources to create a
unified dataset.

Dimensionality reduction reduces the number of features while maintaining the most
relevant information. Data anonymization protects the sensitive information in datasets
through techniques such as data masking and generalization [44]. Data splitting divides the
dataset into training, validation, and testing subsets to evaluate the model’s performance,
and data shuffling rearranges the order of data samples to prevent bias in the model
training process [45]. Data versioning tracks change and maintain historical records of
datasets for reproducibility and auditing purposes [46]. Data storage manages data storage
in various forms, such as cloud storage, local storage, and databases. Data validation
ensures data correctness and consistency using statistical tests, visualizations, and outlier
detection. Lastly, data monitoring observes the data pipeline for performance metrics,
real-time monitoring, and notifications to maintain data quality and integrity [44].

5. Robotic Process Automation (RPA)

Computational intelligence and data science have the potential to contribute to policy
development processes and improve the operational efficiency and performance of energy
systems through the implementation of Robotic Process Automation (RPA) and other forms
of automation. However, there are concerns regarding these solutions’ integration and
smooth operation [47,48], as elaborated in Figure 8. The application of RPA technolo-
gies in the energy sector is increasing to automate repetitive and manual tasks, reduce
labor and machinery costs, and improve accuracy, efficiency, satisfaction, and speed [49].
Autonomous complexity in energy systems refers to the degree of automation and the
level of interdependence between human operators and autonomous systems in a power
plant setup [48]. RPA creates software bots to perform tasks by mimicking human actions
and interacting with existing software systems. The future direction of RPA in energy is
expected to grow with a focus on integrating RPA with other technologies, such as AI
and IoT, to create advanced automation solutions [50]. Energy utilities aim to continue to
use RPA to streamline processes, reduce costs, and improve customer satisfaction. Given
the significance of RPA in the energy sector, deploying this technology necessitates the
mitigation of complexities that may hinder its implementation. An exhaustive examination
of the potential complexities associated with the performance of RPA in the energy sector
is presented in Figure 8.
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Autonomy is an automation system’s ability to complete a cognitive task without
human intervention, emerging from the aggregation of autonomous tasks in a percep-
tion/situational awareness/decision-making/action chain [47]. The coexistence of multiple
autonomous systems may require human intervention, with technological barriers of
complexity, adaption, and interactions with autonomous systems and operators [51].

6. AI-Integrated Energy Policy Development

With an increasing demand for collecting, exploring, and analyzing big data, AI is
prioritized in handling these big datasets and automated operations, which is versatile in
terms of numerous applications within various platforms. Adequate energy supply and
demand planning are linked with analyzing enormous amounts of past data to respond
to current demand efficiently and predict future growth patterns optimally. Balancing
supply and demand through optimization of efficiencies and minimizing losses can be
achieved by combining domain expertise (technical, technological, economic, institutional,
social, etc.) [16] and scientific methodologies (mathematics, statistics, algorithms, etc.)
backed by technological innovations (coding, processing, operating, etc.) called data
science, a central part of an AI platform.

The coordinate systems of AI application in the energy sector to optimize and automate
the system and energy policy objectives to ensure standardized methods for a reliable
techno-economic operation closely cross each other based on their goals from application
perspectives [52]. This common point will enable policymakers to utilize AI optimally by
shaping an integrated roadmap based on emerging dual optimization factors for a single
purpose [53]. Tackling AI limitations in energy system applications requires a harmonious
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approach that optimizes energy management implementation in policy development in
terms of a course of action [54]. Followed by human resources’ capacity building to
empower humans to collaborate with cobots and humanoids, achieving the organizational
goals. With real-time access to stakeholders’ information at different hierarchy levels,
privacy and its ethics are more crucial than before, which was not considerably addressed
in the previous energy policies [55]. So, it warns policymakers to strictly consider this
concern along the policy development journey from development to update. For example,
using drones to conduct preventive or corrective maintenance of transmission lines or
wind turbines.

Many interdisciplinary terms are used interchangeably in various knowledge domains
in the context of energy policy development. The two main shortcomings demonstrate
this. The terminology of specific terms represents particular quantitative and qualitative
attributes for the specific domain usage. The mostly interchangeably use of such termi-
nology in any other than the particular domain can be confusing and misleading. On the
other hand, non-observing the terminology and disordered usage of their hierarchy can
contribute to the misunderstanding of the policy in implementation by experts from differ-
ent domains. Such problems can be found in energy policies, which are poorly coordinated
among different stakeholders and experts or are less focused on policy terminology. Most
rely on the technical aspects since policy development is a collaborative and high-endeavor
task for a vital outcome within feedback look of revision and update. The existing policies
have the opportunity to be polished and standardized for interdisciplinary domains, better
understanding, and effective deployment. So, an essential hierarchical presentation of the
critical terms of professional and methodological are listed below [56,57]:

• Paradigm: from a philosophical framework to an idea, linking conceptual phenomena
to real-world life.

• Framework: from assumptions to hypotheses, linking models and methods to define
parameters’ relationships, characteristics, behavior, etc., in a big image.

• Model: from a general to descriptive representation of any framework with details of
operations, performances, mechanisms, etc.

AI enables policies to have a black-box operation mechanism and tools with feedback
flow for better performances, ensuring high forecasting accuracy and viable applications.
The literature suggests a multifaceted approach to dealing with the complexity of energy
and environmental sustainability, encompassing the technical, technological, economic,
social, institutional, and political dimensions [,[58]]. Building upon this idea, Figure 9
investigates the factors influencing energy policy development and achieving sustainable
development goals, categorized into various dimensions.

As the primary focus of this study is on the AI challenges in the development of energy
systems, the energy policy development process is briefly introduced in Figure 10. This
illustration highlights the hierarchy of formulation, levels of the process, methodologies,
indices, and the main building blocks, providing a comprehensive overview as a reference.

From a technical policy perspective, resilience relies on cogitating and critiquing,
dealing with a persistent flow of decision-making [59] that is controlled by the policy
indicators for self-organizing, learning, adapting, and maintaining inertia, ensuring long-
run system sustainability [60]. At regional and national levels, energy policies can be
developed to incentivize energy efficiency, promote renewable energy technologies, reduce
greenhouse gas emissions, etc. Regional levels can be tailored to address specific energy
challenges, e.g., access to energy, energy security, etc. [61]. Additionally, at the local
level, energy policies can be designed to support energy conservation, encourage the
development of sustainable energy infrastructure, etc.
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7. Conclusions

AI is poised to revolutionize the energy sector by offering innovative solutions to
optimize system operations and improve reliability while ensuring techno-economic ad-
vantages. These advantages result in improved efficiency, optimized demand balancing
and forecasting, enhanced system stability and reliability through optimal preventive and
corrective maintenance, high-yield economic operation, proper unit commitments, and
demand–supply control that can achieve market optimization. Streamlining decision-
making processes and reducing operational and capital expenses contribute to a more
cost-effective energy sector. Lastly, enhanced cybersecurity is ensured through data-driven
solutions, making the energy systems economically viable, accessible, and sustainable.
However, the successful integration of AI into the energy sector comes with its share of
unforeseen obstacles, which may alter the optimism surrounding the adoption of AI. This
study explores, identifies, categorizes, and evaluates the challenges from a multidimen-
sional perspective and provides a detailed roadmap. Shedding light on the main challenges
facing the integration of AI in the energy sector suggests that a coordinated approach is
essential to overcome these unforeseen challenges and can serve as a valuable resource for
policymakers, energy practitioners, and researchers looking to unlock the full potential
of AI in the energy sector. Meanwhile, a novel policy development and implementa-
tion framework is proposed, which aims to contribute to a more efficient, resilient, and
sustainable future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/mirsayedshah/AI-in-Energy-Overcoming-Unforeseen-Obstacles.git (accessed on
8 March 2023): Animated versions of Figures 4 and 9, along with their HTML code for easy un-
derstanding and observation of the utilized weights. These animations can be adapted for various
purposes, making it easier to interpret and analyze the data in the figures. The repository contains
animated versions of Figures 4 and 9, which help visualize the relationships and weights between
various challenges in AI applications for energy systems and factors in energy policy development
with AI integration. The accompanying HTML code allows for easy modification and adaptation for
other purposes or datasets. Using these resources can enhance understanding of the data and tailor
these visualizations for related research or projects.
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