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Abstract: Protein–protein interactions (PPIs) are involved in an extensive variety of biological pro-
cedures, including cell-to-cell interactions, and metabolic and developmental control. PPIs are
becoming one of the most important aims of system biology. PPIs act as a fundamental part in
predicting the protein function of the target protein and the drug ability of molecules. An abundance
of work has been performed to develop methods to computationally predict PPIs as this supplements
laboratory trials and offers a cost-effective way of predicting the most likely set of interactions at the
entire proteome scale. This article presents an innovative feature representation method (CAA-PPI)
to extract features from protein sequences using two different encoding strategies followed by an
ensemble learning method. The random forest methodwas used as a classifier for PPI prediction.
CAA-PPI considers the role of the trigram and bond of a given amino acid with its nearby ones. The
proposed PPI model achieved more than a 98% prediction accuracy with one encoding scheme and
more than a 95% prediction accuracy with another encoding scheme for the two diverse PPI datasets,
i.e., H. pylori and Yeast. Further, investigations were performed to compare the CAA-PPI approach
with existing sequence-based methods and revealed the proficiency of the proposed method with
both encoding strategies. To further assess the practical prediction competence, a blind test was
implemented on five other species’ datasets independent of the training set, and the obtained results
ascertained the productivity of CAA-PPI with both encoding schemes.

Keywords: machine learning; protein–protein interactions; encoding strategy; feature representation

1. Introduction

The word protein comes from the Greek word “protos”, meaning the first element [1];
undoubtedly, proteins are fundamental to life. Proteins are complexes made from 20 types
of amino acids, which are linked through bonds called α-peptide bonds. Proteins on
their own cannot perform any function; they accomplish their roles by interacting with
other molecules, such as DNA, RNA, or other proteins, which catalyse different biological
functions at the system or cellular level. PPIs can create a novel binding site for small effector
molecules according to various research. PPIs are a consequence of hydrophobic and
electrostatic interactions and hydrogen bonds, all contributing to the binding interaction.
The significance of hydrophobic forces has been proven [2]. There are some important
properties of PPIs that are noteworthy. First, the changes in the kinematic properties of
enzymes due to PPIs might cause delicate fluctuations in substrate binding or allosteric
effects. Secondly, PPIs can form a new binding site for small effector molecules. Next,
they can deactivate or suppress a protein. Interacting with different binding partners,
PPIs can alter the precision of proteins with respect to their substrates. PPIs come in
various types and can be categorized based on their stability, affinity and composition of
the consequential complex [3], and being transient or permanent, non-obligate or obligate
interactions, respectively. Similarly, they can be characterized based on their homo- or
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hetero-oligomeric complexes regarding the similarity of the protein pair involved in the
interaction. The interactions are obligate if the PPI complexes are unsteady in vivo, whereas
the resultant complexes of non-obligate interactions can occur autonomously. Non-obligate
interactions are either transient or permanent. Transient interactions occur provisionally
in vivo, though in permanent interactions, the complexes remain intact after the interaction.
PPIs imply various effects such as the following [4]:

– permitting substrate channelling;
– the formation of a novel binding site;
– deactivating or destroying a protein;
– the alteration of the specificity of a protein;
– forcing a different role in an upstream or a downstream event.

All the above has great influence on many biochemical events; consequently, the ex-
ploration of PPIs allows scholars to uncover the functions and structures of tissues, identify
syndromes, and find drug targets for gene therapy. In the past few years, numerous experi-
mental methods have been employed to detect PPIs, resulting in high-productivity methods
such as immunoprecipitation, the yeast two-hybrid system, affinity purification–mass spec-
trometry (AP-MS), and protein microarrays. On the other hand, biological experiments are
rather expensive and laborious. Furthermore, the FN and FP rates of these methods are
both very high [5]. Thus, developing reliable computational models for PPI prediction has
great practical significance.

As per Galileo’s concept of the book of nature, nature is written in the language
of mathematics; therefore, the possible interactions of proteins can be mapped using
different mathematical approaches by using their properties and associated data as the
input for different computational models.Up to now, multiple research models have been
introduced to predict PPIs, which are categorized into [6] gene data-, network topology-,
structural profile-, and ML-based methods, as shown in Figure 1. Genetic linkage, genetic
fusion, polygenetic profile, and in silico two-hybrid systems for PPI prediction are used
in the genetic approach. Proteins’ three-dimensional information is used in the structural
approach, whereas in the network-topology-based approach, a confidence score matrix
is generated for prediction purposes. ML-based methods train the prediction models on
the diverse features of the interacting proteins, and pre-trained models then predict the
interaction of the proteins.

Figure 1. Computational approaches to predicting PPIs.
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In the proposed approach, an ML-based model named connecting amino acid feature-
based PPI (CAA-PPI) is introduced to predict PPIs. A major contribution of the given
model is the novel feature-generation method using the hypothesis of the association
of different amino acids with a residue in a given trigram. CAA-PPI employs PCA to
eliminate irrelevant and redundant features from the dataset. In addition, the CAA-based
feature extraction approach is implemented with two different encoding schemes named
ES1 and ES2, trailed by an RF classifier to train the model. The performance of CAA-PPI
with the RF classifier model is verified on two different PPI datasets that are Yeast and
H. pylori. The average accuracies of 98.25 and 98.25% were achieved with 98.69% for one
encoding scheme, and 95.49% with another encoding scheme. Moreover, the comparison
results of CAA-PPI with competitive approaches proved it as the more accurate approach.
The proposed model was also tested on a random dataset (five species dataset) termed
as an independent dataset due to its independence from the training dataset. The overall
outcomes of the proposed method proved that this approach was more efficient in the PPI
prediction with both encoding strategies.

The structure of this research article is as follows: Firstly, the importance and challenges
of PPI and the need for PPI prediction are discussed. Next, previously published studies
concerning PPI are deliberated including research related to the encoding strategy and
feature extraction approach. In the next section, the details of the additional materials used
to carry out the experimental work are presented. A detailed description of the proposed
approach, including systematic workflow and pseudo code, is then given with an example
to further explain the CAA-PPI approach. Next, the performance of CAA-PPI with ES1 and
ES2 on two diverse datasets is presented with seven standard measures followed by their
respective Bonferroni post hoc analysis comparisons with state-of-the-art models. In the
end, the research is concluded with possible prospective applications in CAA-PPI.

2. Literature Review

The knowledge to build a PPI prediction model using sequences is primarily depen-
dent on three factors:

– selection of an appropriate manner to cover the possible essential information con-
cerning PPI;

– develop a strategy for protein sequence feature extraction;
– apply a favourable classification algorithm.

This article mainly concentrates on the first two factors and therefore this section
concisely considers their study as collated in Table 1. Several investigations have been
performed to try and develop an encoding scheme to fully capture biological sequence
information [7,8]. Shen [9] suggested seven classes of amino acids centred on their dipole
and side-chain volumes to extract the features of the protein pairs. Another research
work used three different encoding strategies based on the chemical properties, polarity,
and structure of amino acids with three newly created feature sets [10]. In 2017, Zhou
encoded a multi-scale protein sequence using seven properties, covering the qualitative
and quantitative explanation of amino acids. These encodings were then used to represent
each protein sequence in terms of five different protein descriptors, i.e., AC, composition,
frequency, transformation, and distribution [11]. In 2020, researchers used two counterpart
amino acid encoding schemes, compared using CNN, RNN, and a hybrid CNN–RNN
architecture, applied to two challenging problems [12]. In 2020, a broad review was reported
by Jing about various encoding methods for amino acids followed by a systematic analysis
of encoding methods, comparing the performances of 16 different representative encoding
methods classified into five categories [13].
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Table 1. Brief overview of previously reported feature extraction methods for PPI prediction.

S. No. Reference,
Year

Feature
Variant Classifier Approach

1. [14] LD SVM
Considered the residue interactions in both continuous and
discontinuous regions and extracted more information on PPI from
the protein sequence.

2. [9] CT SVM

Used a k-means-based assembly algorithm that divides three
successively occurring nearby amino acids into one collective entity
and computes the frequency of every combination in the whole
sequence.

3. [15] AC SVM
Considered the protein sequence as a set of signals which are then
transformed in digitized form using suitable physicochemical
properties which are promoted to scrutinize protein features.

4. [16] Signature
Descriptor

Signature
kernel SVMs

Derived the signature product of the protein sub-sequences, covering
the signature descriptor from compound facts, used like feature,
for PPI prediction using SVM.

5. [17] AC + CT + LD
+ MAC

Ensemble of
ELM

Used distinctive ELM classifier properties comprising quick learning,
generalization performance, and modest and onerous parameter
tuning to predict PPIs.

6. [18] MCD SVM
Employed the interfaces between serially remote but spatially near
residues of amino acid to appropriately cover many overlying
continuous and discontinuous segments present in the sequence.

7. [19] MLD RF
Used a multi-scale decomposition technique to split a protein
sequence into many fragments of varying size, containing information
of coinciding local sections.

8. [20] PR + LPQ RF
Generated a PR matrix using the amino acid physicochemical
properties united by an LPQ descriptor to generate protein
eigenvalues.

9. [21] HOG + SVD RF Proposed SVD and HOG algorithms for feature vector generation.

10. [22] LCPSSMMF SVM
Proposed a feature extraction method that considered residue
interactions of both continuous and discontinuous sections present in
the sequences.

Numerous computational methods have been proposed by several publishers to
extract sequence features, mostly dealing with the evolutionary information of proteins,
physiochemical information, or structure information. One of the popular feature extraction
methods published by Chou [23] reflects the amino acids’ composition and progressions
of the amino acid locus information. Ref. [14] deliberated the residues’ interaction in both
continuous and discontinuous regions, extracting more information on PPIs present in the
protein sequence and proposed LD and a KNN model.

A notable work by Guo accounted for the discontinuous amino acid fragments of
protein sequence by using an AC-based method [15]. The process considered physico-
chemical properties, and a descriptor ‘signature product’ was developed to determine
PPIs [16]. The research work by [17] proposed a new hierarchical model by first extracting
the information that causes protein sequence interaction using CT, AC, MAC, and LD
and then using PCA and finally employing an E-ELM classifier to predict PPIs. Another
great research work by [18] considered the interfaces between serially remote but spatially
near amino acid residues. Again in 2015, ref. [19] suggested another innovative feature
representation approach, postulating that the interaction between protein pairs could be
possible in unceasing amino acid fragments of different segment lengths. A notable work
was proposed by [20] using image processing methods for feature extraction using a physic-
ochemical PR matrix and then employed LPQ to mine complex and essential coefficients
from obtained features. The RoF classifier was used to predict favourable PPIs, showing an
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efficient performance when compared with existing approaches. The authors of [21] im-
proved the prediction precision using an AAC matrix to obtain an SMR matrix followed by
SVD and HOG algorithms that generate a feature vector. Another brilliant work published
by [22] used both local and global features in a PSSM-based local encoding approach to
create a novel multi-feature fusion matrix (CPSSM). Subsequently, they employed local
average group (LAG) and bigram probability (BP) to extracted key features from the ob-
tained matrix. In the current research article, an innovative feature representation method
CAA-PPI is projected to extract key information present in protein sequence which takes
into consideration the association of different amino acids with a residue in a given trigram.
These novel features were extracted using two different encoding schemes for representing
amino acids. Then, RF was used as a classifier to prove the efficacy of the approach for
predicting interaction between protein pairs. The proposed PPI model achieved prediction
accuracies of 98.25% and 98.25% with one encoding scheme; 98.69% and 95.49% with
another encoding scheme respectively when applied on two diverse PPI datasets including
Yeast and H. Pylori. Further investigations were made to compare the proposed approach
with existing sequence-based methods and revealed outstanding results which proved the
proficiency of the proposed method. Further, to evaluate the practical prediction compe-
tence, a blind test was implemented on five other species’ datasets which are autonomous
to the training set, and obtained results ascertained the productivity of CAA-PPI.

3. Materials and Methods
3.1. Dataset

The data was collected from DIP [24] and PIR to validate the CAA-PPI approach.
Evaluation was performed on Yeast and H. pylori, all having different numbers of interacting
protein pairs. For S. cerevisiae, which is a Yeast protein, their PPI datasets were taken from
DIP with reference from An’s work [22] in PPI prediction. Replication of the protein pair
was performed by scrutiny of a dataset with similarity less than 40%. In total 5594 datasets
of interacting pairs were obtained. For effective testing of model performance, the datsets
needs to include non-interacting pairs to train the model. Consequently, 5594 datasets of
non-interacting or negative pairs are selected consisting of diverse subcellular localizations.
Finally, atotal of 11,188 protein pairs from the Yeast dataset needed to be evaluated. H.
pylori was the next PPI dataset considered, comprising 2916 pairs of proteins containing
1458 interacting or non-interacting pairs [16]. Besides these, the PPI dataset of the following
five species M. musculus, H. pylori, C. elegans, E. coli, H. sapien were also used to test the
performance of CAA-PPI, comprising 313, 1420, 4013, 6954, and 1412 interacting pairs,
respectively [25].

3.2. Cross Validation

A cross-validation system is a typical procedure for circumventing any cross-sectional
prejudices as well as corroborating the reliability of the model [26]. In this article, a five-fold
cross-validation technique was performed to assess the classifier’s performance. In the
X-fold cross-validation technique (X is any valid number), the complete dataset is randomly
fragmented into X equal fragments as folds; out of X folds, X − 1 are used for training and
the remaining one is used as a test set in each fold of the cross-validation. Similarly, this
practice recurs X times to achieve X distinct models. Lastly, the outcomes of X distinct trials
are averaged to contribute to an inclusive assessment.

3.3. Performance Evaluation
With the purpose of quantitatively appraising the efficacy and constancy of a classifier,

a number of broadly performed statistical measures were considered in this work, namely
accuracy (A), sensitivity/recall (Se), specificity (Sp), positive predictive value/precision (Pr),
NPV, F-score (Fs) and Mathew’s correlation coefficient MCC. These measures are expressed
as follows:

A =
TP + TN

TP + FP + TN + FN
(1)
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Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

Pr =
TP

TP + FP
(4)

NPV =
TN

TN + FN
(5)

Fs = 2× SN × PPV
SN + PPV

(6)

MCC =
TP× TN − FP× FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(7)

Here, TP is the measure of true PPI pairs correctly predicted as interacting pairs. TN
defines the quantity of true non-interacting pairs correctly predicted. FP is the amount of
true non-interacting pairs that are incorrectly predicted as interacting ones. FN states the
number of incorrectly predicted true interacting pairs as non-interacting pairs. Though A
is a simple assessment measure, it may lead to a very biased evaluation in the case of a
discrepant dataset. Pr confirms the total number of predicted pairs that are allied in the
PPIs. As Pr and Se contradict each other, Fs is evaluated as the weighted harmonic mean
of Pr and Se to inclusively reveal the prediction performance of PPIs [27]. The higher the
value of Fs, so too is Pr and Se. The MCC is a different objective index imitating the whole
method performance that considers under- and over-predictions [28].

3.4. Principal Component Analysis (PCA)

PCA [29] is an unsupervised linear dimensionality reduction method, used for the
projection of a data space into a smaller dimensional space by using orthogonal transforma-
tion. It is a widely used method for eliminating redundant and noisy data, and extracting
relevant features. The objective of PCA is to condense a big feature set into a smaller one
without losing suitable information from the original set. The process of reduction using
PCA is given below in six basic steps:

• The entire dataset is transformed into matrix of dimension i × j and the class label
is ignored.

• The mean vector of the matrix is calculated.
• The covariance of entire magnitude is calculated.
• The eigenvalues and analogous eigenvectors are computed.
• The eigenvectors are arranged by declining eigenvalues and any p eigenvector with

the highest eigenvalue in a matrix of dimension j × p is selected.
• The resultant j × p matrix is used to convert the sample space to a new subspace.

3.5. Random Forest Classifier

RF is a booming classifier in the area of machine learning. It is a procedure of ensemble
classification that appoints a set of DTs to diminish the resultant variance of distinct trees
to develop a constancy and accuracy of the classification. RFcarefully takes advantage of
two influential ML techniques:

• for each tree, the election of training samples;
• the random feature selection to fragment the dataset.

The selection of training samples is implemented by using a bootstrap sample from
the original data (termed bagging). The outcomes of bagging lead to two dismember bags,
one holding the around 63.2% of the training data and the other holding the remaining
samples, termed out-of-bag (OOB) samples. Usually, in-bag samples are used to build the
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RF classifier and OOB samples are used for prediction assessment. The next powerful ML
technique selects a features’ subgroup at every single node in the respective classification
tree, i.e., RF randomly hand-picked a fixed amount of features at every tree node and one
with a consistent decrease in the Gini index [30] is selected for the split when emerging
from the tree.

Naturally, a forest is made up of trees and more trees mean a more robust forest. In the
same way, the RF algorithm generates DTs on data samples and acquires the prediction
from each to choose the best result through voting. This ensemble scheme is superior to a
solitary DT as this condenses the overfitting by averaging the outcome.

The RF algorithm can be understood with the help of the following steps:

• Firstly, random samples are selected from the assumed dataset.
• Then, a DT is generated by the algorithm for every sample and the prediction outcome

from each DT is achieved.
• Then, for every predicted outcome, voting is implemented.
• In the end, the final prediction result is most voted prediction result.

4. The Workings of CAA-PPI

The proposed approach is based on the fact that interaction possibility-related informa-
tion exists in the sequence of protein pairs. This information can be generated by deriving
different features from the sequence by applying a varied feature extraction approach.
The number of generated features cannot vary when the length of the protein sequence is
changed; hence, the feature is generated with respect to the amino acids.

CAA-PPI can generate these features using a ratio combining the presences of in the
protein sequence and the number of central amino acids present in the same trigram. Here,
a trigram (3-mer) represents a set of three consecutive symbols in the protein sequence.
Since a protein sequence contains 20 amino acids, a trigram contains 203 tri-peptide com-
binations; therefore, a total of 8000 feature values are needed to be generated for each
combination of tri-peptides of a protein. Hence, a protein pair has about 16,000 values in
its feature set. It will therefore be challenging to work with huge feature sets.

Encoding reduces the number of a protein’s features by aggregating 20 amino acids
into seven classes, reducing the number of features from 203 to 73. Encoding enhances
the speed of the proposed model, but still has the performance issues analysed by taking
multiple encoding schemes and selecting the best one. The proposed work evaluates results
based on the encoding scheme proposed in [9] (ES1) and [31] (ES2). Both encoding schemes
aggregate 20 amino acids into seven classes; nonetheless, the combination approaches are
dissimilar, as shown in Figures 2 and 3. In ES1, amino acids are categorized based on
chemical properties such as dipole scale and volume scale; whereas ES2 is based on the
structure of side chains, which influence the deciding properties of the amino acid.

Encoding the protein sequence is the first step of CAA-PPI, which converts amino
acids into specific symbols (‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’). Now, in the case of a trigram, there
are 73 combinations in total for which a feature value is to be generated. For example, if the
sequence is ‘AWGVWEGIAVGWAWG’.

Then for combination ‘AWG’, the feature value will be:
•Number of ‘AWG’ in a given sequence/Number of W in a given sequence = 2/4 = 0.5
For instance, the input dataset has positive (interacting) and negative (non-interacting)

protein pairs, so labelling is performed with 1 and −1, respectively. Now, PCA will apply
to the resultant feature for the feature selection process, followed by a five-fold cross-
validation process of the dataset, as shown in Figure 4. The five-fold process divides
the dataset into five equal parts from which one part is used as the test dataset and
the remaining are used as a training dataset; hence, it represents 1–4 partitions of data.
The selected training dataset is used to train the model using the RF classification method.
The trained model predicts the class of the test dataset, supporting in calculating the
performance measures A, Pr, Se, MCC, Fs, Sp, and NPV.
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Figure 2. Classification of amino acids based on ES1.

Figure 3. Classification of amino acids based on ES2.

Figure 4. Flowchart of the CAA-PPI approach.

The proposed feature generation algorithm is depicted in Algorithms 1–3, representing
CAA-PPI. The main procedure of the model takes the protein sequence (seq), encoding
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pattern style (encoding_pattern), and number of elements in combination (p_gram) as argu-
ments. The first step is encoding, performed by the function encoding_PPI using a sequence
of proteins and an encoding pattern, such as an input argument, and generates an encoded
protein sequence either according to ES1 or ES2 depending on the value of the encoding
pattern. The next step of the procedure generates features of CAA-PPI performed by the
function Generate_Feature_CAA by counting trigrams and central amino acids in a given
sequence, and generating all features for all combinations of a given sequence and return
value CAA_featureset. The PCA function is applied to filter out the correlated data from
feature sets that return CAA_filtered_featureset, which is further labelled by the Add_label
function after testing as to whether the protein pairs are interacting or not.

Algorithm 1: Initialization of CAA_PPI.

Initialize()
Procedure CAA_PPI()

Input : Protein sequence (seq), Size o f combinational p_gram = 3
seq_encoded = Encoding_PPI(seq, encoding_pattern)
CAA_ f eatureset = Generate_Feature_CAA(seq_encoded, p_gram)
CAA_ f iltered_ f eatureset = PCA(CAA_ f eatureset)
If y in CAA_ f iltered_ f eatureset is Negetive_PPI

Add_label − 1 to y
else

Add_label 1 to y
end

end Procedure

Algorithm 2: Encoding a given protein sequence.

Function Seq_encoded = Encoding_PPI(seq, encoding_pattern)
If encoding_pattern is ES1

Aggregation o f amino acid in 7 classes in seq_encoded
{‘I′, ‘L′, ‘F′, ‘P′} as 1, {‘H′, ‘N′, ‘Q′, ‘W ′} as 2, {‘C′} as 7
{‘Y′, ‘M′, ‘T′, ‘S′} as 3, {‘A′, ‘G′, ‘V′} as 4, {‘D′, ‘E′} as 5
{‘R′, ‘K′} as 6

else If encoding_pattern is ES2
Aggregation o f amino acid in 7 classes in seq_encoded
{‘A′, ‘G′, ‘V′, ‘I′, ‘L′} as 1, {‘Q′, ‘N′, ‘T′, ‘S′} as 2,
{‘Y′, ‘F′, ‘W ′} as 3, {‘R′, ‘K′, ‘H′} as 4, {‘D′, ‘E′} as 5,
{‘C′, ‘M′} as 6, {‘P′} as 7

end
end Function

Algorithm 3: Generate feature CAA.

Function f eature_set = Generate_Feature_CAA(seq_encoded, p_gram)
Set list_code to {‘1′, ‘2′, ‘3′, ‘4′, ‘5′, ‘6′, ‘7′}
trigram_set = Generate_Combination(list_code, p_gram)
f orall x in trigram_set

Set k to Central amino acid in x
Set a to Count o f x in seq_encoded
Set b to Count o f k in seq_encoded
Add a ratio b in f eature_list

end f or
Add f eature_list in f eature_set

end Function
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5. Results and Discussion
5.1. Performance of the PPI Prediction

This section discussion the performance of the neighbourhood-based feature repre-
sentation approach to predict PPIs via two diverse PPI datasets with the two encoding
strategies discussed in previous sections. The outcomes are then compared with numerous
existing approaches suggested in previously published work. Subsequently, a blind test
was implemented on five other species datasets (M. musculus, H. sapiens, C. elegans, H. pylori
and E. coli) autonomous to the training set to prove the productivity of CAA-PPI.

5.1.1. Performance of CAA-PPI Model Using ES1 and ES2 on the Yeast Dataset

CAA representation of the protein sequence with RF predictor was tested using
five-fold cross-validation with the Yeast dataset, as shown in Table 2 using ES1 and ES2.
It is noteworthy that from Table 2 a great prediction accuracy of 98.25% was attained for
the CAA-PPI approach with ES1. The values of the other six standard measures were
also assessed for the proposed model to thoroughly evaluate its prediction capability,
achieving a decent performance with both encoding schemes; however, the ES1 performed
comparatively better than ES2.

Table 2. Five-fold cross-validation result of CAA-PPI using ES1 and ES2 on the Yeast dataset.

Performance Metrics Encoding Scheme TS1 TS2 TS3 TS4 TS5 Average SD

A (%) ES1 98.54 98.54 99.27 98.54 96.38 98.25 0.978
ES2 97.08 94.89 95.62 98.54 91.30 95.49 2.439

Se (%) ES1 100 100 100 100 98.59 99.72 0.564
ES2 95.89 90.14 90.77 100 86.84 92.73 4.64

Sp (%) ES1 96.97 97.22 98.44 97.30 94.03 96.79 1.47
ES2 98.44 100 100 97.47 96.77 98.54 1.30

Pr (%) ES1 97.26 97.01 98.65 96.92 94.59 96.89 1.306
ES2 98.59 100 100 96.67 97.06 98.46 1.40

NPV (%) ES1 100 100 100 100 98.44 99.69 0.624
ES2 95.45 90.41 92.31 100 85.71 92.78 4.79

Fs (%) ES1 98.61 98.48 99.32 98.44 96.55 98.28 0.921
ES2 95.45 94.81 95.16 98.31 91.67 95.43 2.11

MCC (%) ES1 97.11 97.12 98.54 97.11 92.83 96.54 1.936
ES2 94.19 90.28 91.54 97.07 83.19 91.25 4.65

TS: Testing Set.

Furthermore, the prediction model using the CAA-PPI with ES1 and ES2 was compared
against methodologies proposed by various publishers [15,18,20,22,25]. The Bonferroni post-
hoc analysis is presented in Table 3. These approaches, discussed in previous sections, dis-
tinctly use LCPSSMMF, PSSMMF, LCPSSMAB, LCPSSMBG, AC + CT + LD + MAC, MCD,
PR-LPQ, LD, ACC, and AC to encode amino acid sequences and predict PPIs using SVM,
RF, RoF, E-ELM classifiers. It is notable from Table 3 that CAA-PPI, using ES1 and ES2,
ouperformed all competitive methods, i.e., it generally had a significant difference in predic-
tion accuracy than the state-of-art PPI predictors for the Yeast dataset, depicted by Figure 5.
The notations in Figure 5 are the same as those mentioned in Table 3.
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Table 3. Bonferroni post-hoc analysis of CAA-PPI using ES2 and ES2 compared with existing
approaches for overall prediction accuracy for the yeast dataset.

Approaches A B C D E F G H I J K L M

A - ◦ ◦ • • • • • ◦ • • • •
B - ◦ ◦ • • • ◦ ◦ • ◦ • •
C - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
D - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
E - ◦ ◦ ◦ • ◦ ◦ ◦ ◦
F - ◦ ◦ ◦ ◦ ◦ ◦ ◦
G - ◦ • ◦ ◦ ◦ ◦
H - ◦ ◦ ◦ ◦ ◦
I - ◦ ◦ • •
J - ◦ ◦ ◦
K - ◦ ◦
L - ◦
M -

A: CAA_ES1 + RF, B : CAA_ES2 + RF, C : LCPSSMMF + SVM, D : PSSMMF + SVM, E : LCPSSMAB + SVM, F :
LCPSSMBG + SVM, G: (AC + CT + LD + MAC) + E-ELM, H: MCD + SVM, I : PR-LPQ + ROF, J : LD + SVM,
K: ACC + SVM, L : AC + SVM, M: LD + KNN, • : Significant Difference, ◦ : Non-significant Difference.

Figure 5. Comparison of CAA-PPI applied to the Yeast dataset using ES1 and ES2 with existing
approaches.

5.1.2. Performance of the CAA-PPI Model Using ES1 and ES2 on the H. pylori Dataset

Further, to evaluate the efficacy of the proposed method, the CAA-PPI model with
ES1 and ES2 was tested on the H. pylori dataset using five-fold cross-validation, as shown
in Table 4. From Table 4, it can be seen that the average accuracy of the proposed model
is 98.25% with ES1 and 98.69% with ES2. Moreover, the performance of CAA-PPI was
comprehensively computed with other evaluation metrics, including Se, Sp, Pr, NPV, Fs,
MCC, as shown in Table 4. Likewise, the performance of CAA-PPI with both ES1 and ES2
was compared with the approaches from previous literature and the Bonferroni post-hoc
analysis are presented in Table 5. These comparative approaches independently used
HOG + SVD [21], AC + CT + LD + MAC [17], MCD [18], DCT + SMR [32]), LD [25],
phylogenetic bootstrap [33], HKNN [34], ensemble of HKNN [35], signature products [16],
and boosting [36] to express amino acid sequence and use a favourable classifier to predict
PPIs. From Table 5, it is worth noting that CAA-PPI is more effective than the other
competitive methods with both ES1 and ES2, i.e., it generally has a significant difference
from the state-of-the-art PPI predictors for the H. pylori dataset, as presented in Figure 6.
The notations in Figure 5 are the same as those mentioned in Table 5.
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Table 4. Five-fold cross-validation results of CAA-PPI using ES1 and ES2 on the H. pylori dataset.

Performance Metrics Encoding Scheme TS1 TS2 TS3 TS4 TS5 Average SD

A (%) ES1 94.89 98.54 100 98.54 99.28 98.25 1.765
ES2 98.54 99.27 99.27 96.35 100 98.69 1.255

Se (%) ES1 100 100 100 100 100 100 0
ES2 100 98.51 98.59 98.63 100 99.15 0.698

Sp (%) ES1 90.41 96.97 100 96.88 98.61 96.57 3.29
ES2 97.14 100 100 93.75 100 98.18 2.475

Pr (%) ES1 90.14 97.26 100 97.33 98.51 96.65 3.402
ES2 97.1 100 100 94.74 100 98.37 2.133

NPV (%) ES1 100 100 100 100 100 100 0
ES2 100 98.59 98.51 98.36 100 99.09 0.745

Fs (%) ES1 94.81 98.61 100 98.65 99.25 98.26 1.79
ES2 98.53 99.25 99.29 96.64 100 98.74 1.149

MCC (%) ES1 90.28 97.11 100 97.1 96.56 96.61 3.2
ES2 97.12 98.55 98.55 92.74 100 97.39 2.497

TS: Testing Set.

Table 5. Bonferroni post-hoc analysis results of CAA-PPI using ES1 and ES2 compared with existing
approaches for overall prediction accuracy for the H. pylori dataset.

Approaches A B C D E F G H I J K L

A - ◦ • • • • • • • • • •
B - • • • • • • • • • •
C - ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •
D - ◦ ◦ ◦ • ◦ ◦ ◦ •
E - ◦ ◦ • ◦ ◦ ◦ ◦
F - ◦ • ◦ ◦ ◦ ◦
G - • ◦ ◦ ◦ ◦
H - • • • ◦
I - ◦ ◦ ◦
J - ◦ ◦
K - ◦
L -

A: CAA_ES1, B : CAA_ES2, C : HOG + SVD, D: AC + CT + LD + MAC, E : MCD, F : DCT + SMR, G: LD, H:
Phylogenitic bootstrap, I : HKNN, J : Signature products, K : Ensemble of HKNN, L : Boosting, • : Significant
Difference, ◦ : Non-significant Difference.

Figure 6. Comparison of CAA-PPI applied to the H. pylori dataset using ES1 and ES2 with exist-
ing approaches.
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5.1.3. Outcomes on Five Species Datasets

To assess the hands-on prediction aptitude, initially, CAA-PPI was trained with PPIs
of the Yeast dataset using ES1 and ES2 separately, and used five independent species’
datasets to test, comprising 6954 interacting pairs of E. coli, 4013 interacting pairs of
C. elegans, 1420 interacting pairs of H. pylori, 1412 interacting pairs of H. sapiens and of
313 interacting pairs of M. musculus. The postulation behind this procedure was that
orthologue proteins have alike functional natures and so is their interacting nature [37].
Henceforth, in this section, the above stated and experimentally demonstrated interaction
of any one species with the Yeast dataset (with 11,188 samples in this case) was employed
to predict the interactions of other ones. Then, a blind test was employed with five other
species’ datasets, autonomous to the training set, using the same proposed approach.
The resultant performances are shown in Table 6. The outstanding results of the proposed
method using both ES1 and ES2 ascertains the significant proficiency (p < 0.05) of the
CAA-PPI compared to the published works from Table 8.

Table 6. Performance of PPI prediction on five species’ datasets taking the Yeast dataset as training
(in terms of accuracy).

Species Testing CAA_ES1 CAA_ES2 HOG + SVD MLD DCT + SMR LD
Pairs (%) (%) [21] [19] [32] [25]

C. elegans 4013 95.94 96.01 90.28 87.71 81.19 75.73
E. coli 6954 93.36 93.72 93.18 89.30 66.08 71.24
H. sapiens 1412 95.89 96.90 94.58 94.19 82.22 76.27
H. pylori 1420 93.59 92.32 92.03 90.09 82.18 N/A
M. musculus 313 97.76 97.12 92.25 91.96 79.87 76.68

5.1.4. Implementation and Comparison with a Similar Approach

A similar approach was followed by [9], the only difference in the input feature of
the proposed study from previous studies is that the former CT was the triad frequency
in a sequence while in the proposed study this frequency was weighted by the frequency
of central amino acids in a triad. Therefore, to prove the benefit of the weighted features,
Table 7 shows the comparison of the CAA-PPI approach with Shen’s approach. For this
implementation, the H. sapien dataset was applied to the proposed approach, same as
Shen’s, and the table shows the average results of the five-fold cross-validation.

Table 7. Implementation and comparison with a similar approach.

Approach A (%) Pr (%) Se (%)

CAA-PPI 97.34 97.67 96.75
CT 83.90 84.21 84.80

5.1.5. Performance Analysis of the Proposed Approach with Varied p_gram Value

With the aim to investigate the performance of the proposed approach to its hyper-
parameters, CAA-PPI was ran with the p_gram value set to 2. Tables 8 and 9 show the
comparison results of the average five-fold cross-validation using ES1 and ES2 on the Yeast
and H. pylori datasets with different p_gram values, respectively. It can be clearly observed
that the outcomes are not satisfactory with 2_gram compared to 3_gram.
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Table 8. Performance analysis of proposed approach using ES1 and ES2 on the Yeast dataset with
different p_gram values.

Encoding Scheme p_gram Value A (%) Se (%) Sp (%) Pr (%) NPV (%) Fs (%) MCC (%)

ES1 2 94.11 93.44 96.24 95.48 91.28 94.24 88.20
ES1 3 98.25 99.72 96.79 96.89 99.69 98.28 96.54
ES2 2 95.31 92.18 100 100 91.35 95.49 91.76
ES2 3 95.49 92.73 98.54 98.46 92.78 95.43 91.25

Table 9. Performance analysis of proposed approach using ES1 and ES2 on the H. pylori dataset with
different p_gram values.

Encoding Scheme p_gram Value A (%) Se (%) Sp (%) Pr (%) NPV (%) Fs (%) MCC (%)

ES1 2 89.00 87.17 93.71 92.00 88.00 88.19 80.43
ES1 3 98.25 100 96.57 96.65 100 98.26 96.61
ES2 2 93.97 100 87.88 89.55 100 94.39 88.70
ES2 3 98.69 99.15 98.18 98.37 99.09 98.74 97.39

6. Conclusions and Future Scope

With the growing number of PPI calculation methods, the codification of numerous
amino acid feature vectors is also evolving. Even though considerable advancement has
been achieved, further operational approaches are required to deal with different areas.
This research presents an ML-based model (CAA-PPI) to predict PPI using two distinct
encoding strategies. A major contribution of the given model is the novel feature gen-
eration method using the association of different amino acids with a residue in a given
trigram. The CAA-based feature extraction approach is implemented with different encod-
ing schemes followed by an RF classifier to train the model. The proposed CAA-PPI with
RF classifier model’s performance was verified with two diverse PPI datasets, Yeast and
H. pylori, and attained favourable outcomes with both encoding schemes. Additionally,
it is worth noting that both encoding strategies were equally effective with the CAA-PPI
approach to better predict new PPIs.

It is said that there is always room for improvement or change, the only challenge is
to discover the same. The next step should be to discover more interacting protein pairs
and generate a new set of features using the proposed approach. Moreover, CAA-PPI
can be assessed using other encoding strategies and applying them to other organisms.
Likewise, a new encoding scheme can be developed with the systematic categorization of
amino acids. The proposed approach can also be extended to investigate the interaction of
proteins with other molecules.
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Abbreviations

AAC Amino Acid Contact AC Auto Covariance
ACC Auto Cross Covariance CAA-PPI Connecting Amino Acids Feature-Based
CT Conjoint Triad PPI Approach
DCT Discrete Cosine Transform DIP Database of Interacting Proteins
DT Decision Tree E-ELM Ensemble Extreme Learning Machine
ES Encoding Strategy FN False Negatives
FP False Positives HKNN K-Local Hyperplane Distance Nearest
HOG Histogram of Oriented Gradient Neighbour
KNN K-Nearest Neighbour LCPSSMAB Local Coding PSSM Average Bigram
LCPSSMBG Local Coding PSSM Bigram Group LCPSSMMF Multi-Features Fusion based on Local Coding
LDA Latent Dirichlet Allocation PSSM Matrix
LD Local Descriptors LPQ Local Phase Quantization
LR Logistic Regression MAC Moran Autocorrelation
MCD Multi-Scale Continuous and ML Machine Learning

Discontinuous MLD Multi-Scale Local Descriptor
MCC Matthew’s Correlation Coefficient NPV Negative Predictive Value
PC Principal Components PCA Principal Component Analysis
PCVM Probabilistic Classification Vector Machine PIR Protein Information Resource
PR Property Response PSSM Position-Specific Scoring Matrix
PSSMMF Multi-features Fusion Based on Original RF Random Forest

Protein Sequence PSSM matrix RNN Recurrent Neural Networks
RoF Rotation Forest SVD Singular Value Decomposition
SD Standard Deviation
SMR Substitution Matrix Representation SVM Support Vector Machine
TN True Negatives TP True Positives
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