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Abstract: This paper describes the transformation of a traditional in silico classification network
into an optical fully convolutional neural network with high-resolution feature maps and kernels.
When using the free-space 4f system to accelerate the inference speed of neural networks, higher
resolutions of feature maps and kernels can be used without the loss in frame rate. We present FatNet
for the classification of images, which is more compatible with free-space acceleration than standard
convolutional classifiers. It neglects the standard combination of convolutional feature extraction and
classifier dense layers by performing both in one fully convolutional network. This approach takes
full advantage of the parallelism in the 4f free-space system and performs fewer conversions between
electronics and optics by reducing the number of channels and increasing the resolution, making this
network faster in optics than off-the-shelf networks. To demonstrate the capabilities of FatNet, it was
trained with the CIFAR100 dataset on GPU and the simulator of the 4f system. A comparison of the
results against ResNet-18 shows 8.2 times fewer convolution operations at the cost of only 6% lower
accuracy. This demonstrates that the optical implementation of FatNet results in significantly faster
inference than the optical implementation of the original ResNet-18. These are promising results
for the approach of training deep learning with high-resolution kernels in the direction toward the
upcoming optics era.
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1. Introduction

One of the major problems of the modern deep learning approach is the speed of
training and inference of architectures where there are a very large number of parameters
to train. Computer vision, which can involve a large number of images with very slight
differences, is considered to be one of the most complex problem areas for AI. Within the
deep learning approaches, convolutional neural networks (CNNs) have become a standard
approach for various computer vision problems. Recently, CNNs have been successfully
applied to image classification [1], object detection [2], localization [3], and segmentation [4],
among many other applications. CNNs are suitable for computer vision tasks because
neurons in CNNs are only connected to the pixels of their receptive field, rather than
to every single neuron of the next layer as in fully connected networks. This approach
reduces the number of trainable parameters, which accelerates the inference and makes
the neural network more immune to overfitting. Although CNNs are computationally less
expensive than fully connected neural networks, accelerating CNNs is also an important
task, especially with the ever growing number of images and videos that are captured.

There are many techniques to accelerate deep learning training, e.g., using shallow
networks, pruning redundant weights, or using lower quantization levels [5]. In addi-
tion, hardware accelerators can be used to speed up the training and inference of neural
networks, for example, in application-specific integrated circuits (ASICs), which can out-
perform standard CPUs and GPUs [6]. Large tech companies are actively working on
their AI accelerators, such as Google’s TPU [7], Intel’s Loihi [8], and IBM’s TrueNorth [9].
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Unfortunately, these accelerators are starting to face limitations in the post Moore’s law
era, since the computational power of the processors is not improving at the same pace as
before [10].

Optical processors are an interesting alternative to processing data with silicon chips.
Optical computing uses photons of light, instead of electrons, as the information carrier
for data processing [11]. Since Moore’s law does not affect optical computing, optical
accelerators can be used for deep learning, offering advantages such as the high bandwidth
of the light beam, high speed, zero resistance, lower energy consumption, and immunity
to overheating [12]. There are two main approaches to optical neural networks: free
space using spatial light modulators (SLM) [13,14] or silicon photonics approach using
Mach–Zehnder interferometers (MZI) [15,16]. Unlike the silicon photonics approach, free-
space optics uses wireless light propagation through a medium which can be air, outer
space or vacuum. Although the silicon photonics approach is faster, as its clock speed can
reach several GHz, it is inferior to the free-space system in parallelism [17].

This research is focused on the 4f free-space approach as described in Li et al. [13], which
takes advantage of the parallelism of free-space optics. The 4f free-space optical system can be
used to perform convolution operations faster than traditional electronic processors.

The Fourier transform is a well-known mathematical operation that decomposes a
signal into its fundamental sinusoids in the frequency domain that, when combined, form
the original function [18]. A Fourier transform is initially defined over one dimension,
and can be extended to two or more dimensions [19]. The computational complexity of this
process increases with the dimensions of the data, and even with fast methods such as the
fast Fourier transform [20], transforming large data can take considerable resources with
complexity in the order of O(n2log(n)), where n2 is the number of pixels of an image [21].
On the other hand, performing a 2D Fourier transform in free-space optics can be easily
achieved by passing the light through the convex lens, where the light only has to travel
two focal distances (f) from the lens [22].

Taking the convolution theorem into account, the convolution of two signals can be
represented as the inverse Fourier transform of the pointwise product of their Fourier
transforms [18]. The 4f correlator is based on the Fourier transform properties of the convex
lenses [23] and performs the convolution operation based on the convolution theorem. Any
convex lens projects a Fourier transform of the input object located on the front focal plane
onto the back focal plane [23], where it can be pointwise multiplied by the kernel in the
Fourier domain. After passing through the second lens, it can be converted back into the
space domain. The system is called 4f because the light in the 4f system travels four focal
distances of the lens. Hence, the 4f approach can accelerate convolutional neural networks
by performing the Fourier transforms at the speed of light. The parallelism advantage of
the 4f system comes from the theoretically infinite resolution that is bounded in reality by
the resolution of the modulators and the camera.

The first optical convolution technique with the 4f system was described by Weaver
and Goodman [24] in 1966. It was not used for the acceleration of neural networks until
neural networks started gaining popularity in the 21st century [25]. A standard 4f optical
system consists of an input source, two convex lenses, two light modulators, and a sensor
(see Figure 1). The input source is the laser emitting the light modulated right in the
beginning with the input image by altering the light intensity. The modulated light passes
through the first convex lens after travelling the focal distance of the lens and is projected
onto the focal plane, where the Fourier transform of the input is formed. On the focal
plane using another modulator, the input is element-wise multiplied with the kernel in
the frequency domain. After the multiplication in the Fourier domain, the light passes
through the second lens to perform the inverse Fourier transform and is captured by the
camera or the array of photodetectors. In some cases, instead of the modulator, the fixed
phase mask is used to perform the multiplication in the Fourier plane, as demonstrated in
Chang et al. [14].
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The 4f system is used in combination with the electronic compound, called an
optical–electronic hybrid system [14]. This system is used only for inference, and training
is performed using the simulator. The networks were trained using the simulator, and the
phase mask of the trained kernels of the first layer was fabricated. Those fabricated kernels
were used only for the inference of the pre-trained first layer. Hence, the inference of the
first convolutional layer is optically computed, and the output of the electronic network
is then fitted into the electronic portion of the network. This allows the multiplication
to be performed passively, i.e., without energy consumption or latency. It also enables
high speed-up, since the first layer of the network is usually the heaviest due to the high
resolutions, which the free-space optics can handle for free. Since the optical–electronic
hybrid system uses kernel tiling, this system can perform several convolution operations
of the first layer in parallel without losing frame rate and power. However, a passive
architecture such as this lacks flexibility and can only be used with one set of kernels,
meaning it cannot be reused for all network layers. This is the reason for considering only
active 4f architecture in our approach, allowing the device to perform all convolutional
layers of the network by altering the kernel on the Fourier plane.

Figure 1. Graphical representation of the 4f system performing the convolution operation, consisting
of the input plane (laser), the convex lens, Fourier plane (modulator or phase mask), and another
convex lens and the camera separated from each other by one focal distance of the lens. When
light passes through the lens, it forms a 2D Fourier transform on the Fourier plane, where it can be
multiplied by the kernel in the frequency domain. The light then passes through the second lens,
which converts it back into the space domain, where the output is read by the camera.

Unlike standard neural networks, optical neural networks involve various bottlenecks
and constraints. Since the read-out camera captures the intensity of light, which is the
square of the amplitude, it is impossible to perform the computations with negative values.
One of the possible ways for getting around this problem is the non-negative constraint,
which can significantly affect the accuracy. One way around this constraint is called pseudo-
negativity, which can address the restriction to positive values by doubling the number
of filters [14]. This method only uses positive values for the kernel by labeling half of the
kernels as positive and the other half negative. After the read-out, the results of ‘positive’
convolutions are subtracted from the ‘negative’ results, thus providing the correct outcome
for the convolution operation. Another bottleneck is the resolution of the modulator and
the camera. Although modern cameras can capture up to 4K resolution, this limit does not
allow many channels to be tiled and high-resolution feature maps to be used in combination
with tiling.

Despite the many advantages of 4f systems, they have not been popular among
the modern AI accelerators. The main problem lies in the very slow cameras and light
modulators used in the system. However, there is the possibility to gain acceleration
using parallelism and through simultaneously performing several convolution operations.
For example, Li et al. [13] proposed kernel, channel, and mixed tiling approaches to better
utilize the resolution of the 4f system. Their approaches enable all convolution operations
for specific output channels and sum them using one inference through the 4f system. In
a technique used by [13], zero-padding is applied to the input channels, which are tiled into
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one big input block, while their corresponding kernels are tiled in the same manner, forming
a kernel block. This method takes advantage of the massive parallelism of free-space optics.
It performs all convolutions of each output channel of the convolutional layer, including
the channel summation via one optical inference. By optically convolving the input block
and the kernel, the summation of all convolutions of those particular input channels with
output channels appears in the middle of the output tensor. This significantly reduces the
number of conversions between optics and electronics. That is why it is essential to use the
high-resolution capabilities of the 4f system.

Tiny kernel resolutions have become one of the nuances of building CNN architectures.
Kernel sizes of 3 × 3 or 5 × 5 are now the standard for CNNs [1]. Although sometimes in
ResNet architectures, a large kernel size can be seen in the first layer of the networks [26].
Theoretically, having a small kernel size has a range of advantages. The reduction of kernel
size not only increases the computational efficiency during training but also decreases the
number of trainable parameters, thereby increasing the robustness of the network against
overfitting [27,28]. Modern neural networks are all trained on CPU/GPU, whose training
time depends on the number of parameters. This led to the development of architectures
with a very small resolution of kernels. For the same reason, all classifier architectures were
developed in the cone shape, where the image is pooled down at every layer, making it
faster for the CPU/GPU process. However, this works entirely differently for optical neural
networks. Due to the nature of free-space optics, the use of large kernels in 4f system-based
neural networks will not affect the inference time. Unfortunately, almost all the attempts
to train the convolutional neural networks on the 4f system are based on the standard
convolutional cone-shaped architectures.

To overcome underutilization of the 4f system, we propose FatNet, which takes
advantage of the high-resolution capabilities of the 4f system by using fewer channels
and larger input/kernel resolution in CNNs. Since the resolution does not affect the
speed of inference in the 4f system, increasing the resolution and reducing the number
of channels results in the network performing fewer convolution operations. This means
fewer translations from optics to electronics, since the main bottleneck of the system is
based on optics–electronics conversions. Our approach does not require pooling between
most layers, which speeds up the inference even more for the small cost of a loss in accuracy.

2. Materials

We trained our network with the CIFAR-100 dataset (see Figure 2) and chose ResNet-
18 as the backbone network. The CIFAR-100 (Canadian Institute For Advanced Research)
dataset consists of 60,000 images of 32 × 32 resolution. It is split into 20 superclasses
sub-grouped into 100 classes, with 600 images per class [29]. Only 50,000 images are used
for training, and the other 10,000 data samples are in the test set. The similarity of classes
under the same superclass in CIFAR-100 makes it harder to train.

Shah et al. [30] managed to train CIFAR-100 using different ResNet models, including
their variation, where ELU (exponential linear unit) [31] was used as an activation function.
Their test error on standard ResNet-101 achieved 27.23%. For this reason, we decided to
use residual networks in our experiments. In our research, we have limited our focus to
serial networks that do not contain branching structures. Therefore, networks that use
depthwise convolutions, such as the highly accurate EfficientNet-B0 [32] with an accuracy
rate of 88.1%, are outside the scope of our analysis.

ResNet-18 is a CNN, one of five networks introduced in He et al. [26] for the Ima-
geNet dataset [33]. The feature distinguishing these networks from others is the residual
connections between layers. Formally, He et al. [26] noted the blocks of the networks as:

y = F(x, {Wi}) + x (1)

where x and y are the input and the output of the residual block, and F(x, {Wi}) represents
the building block of the residual layer, which can contain one or several weight layers.
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Figure 2. Illustration of CIFAR-100 dataset examples. CIFAR-100 contains tiny images of 100 classes,
with a resolution of 32 × 32.

Residual connections are the connections in which one or more layers are skipped.
In ResNet, those connections perform identity mapping, and the outputs of these connec-
tions are added to the output of the stacked layers. This configuration allows the use of
deeper networks by avoiding vanishing/exploding gradient problems.

PyTorch was used to train all our networks [34]. PyTorch is an open source machine
learning framework originally developed by Meta AI. We used PyTorch for its flexibility
and ease in creating custom neural network layers. One example is the simulation of our
optical layer, which we also built using PyTorch. PyTorch was also used by Miscuglio [35]
to precisely simulate an actual 4f system.

3. Methods

Nearly all classifier CNNs are cone-shaped and use either strides or pooling layers
to reduce the resolution of the feature map [28]. This architecture has several advantages.
The main advantage is the training speed, since the network gets simpler after each feature
extraction and ends up with very low-resolution feature maps, which are flattened and
passed to the fully connected layers for further classification. However, this kind of
structure became standard only due to the dominance of electronic computing. Unlike
in electronics, having larger resolutions for inputs and kernels in the 4f system does not
affect the speed of inference, which makes it essential to explore new architectures that are
compatible with optics. Our approach is called FatNet, due to its barrel shaped structure
and most of the kernels having the same resolution as the feature maps (see Figure 3b).

By having larger feature maps and kernel sizes in the classifier CNN, we can ensure
full utilization of the free-space optics. Although higher resolutions come with the problem
of overfitting, our approach uses the same number of trainable parameters as the standard
approach. Essentially, we have created the following rules for turning any classifier into
a FatNet:

1. The FatNet should preserve the same number of layers as the original network to
keep the same number of non-linear activation functions.

2. The FatNet should keep precisely the same architecture as the original network on the
shallow layers until the shape of the feature maps pools down to the shape where the
number of elements of the feature map is less than or equal to the number of classes.

3. FatNet has the same total number of pixels of the feature maps at the output of each
layer as the original networks. Hence, since the feature maps’ shape stays constant
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and does not use pooling, the new number of output channels needs to be calculated,
which will be less than for the original network.

4. FatNet has the same number of trainable parameters per layer as the original net-
work. Since we have reduced the number of output channels based on the third rule,
the number of trainable parameters has also been reduced. Hence, a new kernel size
needs to be calculated based on the number of output channels.

(a)

(b)

Figure 3. Architecture comparison of our modified ResNet-18 used to train CIFAR-100 and FatNet
constructed from ResNet-18 specifically for CIFAR-100 classification. (a) ResNet-18 architecture,
slightly modified from the original. Our version does not use strides, since optics cannot perform
strides in convolutions. We also skipped the second non-residual convolutional layer to make it more
compatible with CIFAR-100. (b) FatNet derived from ResNet-18 for CIFAR-100. Compared with
ResNet-18, this architecture contains fewer channels but larger resolutions. Kernel resolutions can
go up to 10 × 10, while feature maps are not pooled lower than 10 × 10. The last layer is a 10 × 10
matrix flattened to form a vector of 100 elements, each representing a class of CIFAR-100.

It is also important to remember that FatNet is more efficient when the number of
classes is significant; for example, ImageNET contains 20,000 classes. We chose ResNet-18
as the backbone network for proof of concept and trained the network with the CIFAR-100
dataset. We chose CIFAR-100 over CIFAR-10 due to the larger number of classes and the
ability to keep the feature maps in the square shape of 10 × 10. It is essential to know that
one of the limitations of the 4f-based convolution is the failure to perform the convolutions
with the stride. Since most off-the-shelf networks contain stridden convolutions, this can
be a potential problem. However, we can get around the problem by replacing the stridden
convolutions with the combination of standard convolution and pooling. Because we do
not want to reduce the resolution of our feature maps, we decided to ignore the strides in
our ResNet-18 architecture and use 2 × 2 MaxPooling after the first layer.

No modification of the first five layers is carried out, since they all have 16 × 16 resolution.
For the following layers, we have calculated the number of pixels in each feature map and
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measured how many channels the layers should contain if all layers’ feature maps remain
10 × 10. We then calculated the number of trainable parameters in the original network
(excluding bias). Based on the number of trainable parameters and the new number of
channels, we have calculated the new kernel resolutions as shown in Table 1.

Table 1. Construction of FatNet from ResNet-18.

Layer Number of Weights Feature Pixels FatNet Layer

64 × 128, k = (3 × 3) 73,728 8192 64 × 82, k = (4 × 4)
128 × 128, k = (3 × 3) 147,456 8192 82 × 82, k = (5 × 5)
128 × 128, k = (3 × 3) 147,456 82,192 82 × 82, k = (5 × 5)
128 × 128, k = (3 × 3) 147,456 82,192 82 × 82, k = (5 × 5)
128 × 256, k = (3 × 3) 294,912 4096 82 × 41, k = (9 × 9)
256 × 256, k = (3 × 3) 589,824 4096 41 × 41, k = (19 × 19)
256 × 256, k = (3 × 3) 589,824 4096 41, 41, k = (19 × 19)
256 × 256, k = (3 × 3) 589,824 4096 41, 41, k = (19 × 19)
256 × 512, k = (3 × 3) 1,179,648 2048 41 × 21, k = (37 × 37)
512 × 512, k = (3 × 3) 2,359,296 2048 21 × 21, k = (73 × 73)
512 × 512, k = (3 × 3) 2,359,296 2048 21 × 21, k = (73 × 73)
512 × 512, k = (3 × 3) 2,359,296 2048 21 × 21, k = (73 × 73)

FC (512, 100) 51,200 100 21 × 1, k = (49 × 49)

Unfortunately, kernels larger than the input features in the last layer cause a problem.
The main problem is that the convolutions are the same padding type, meaning that the
input and output resolutions are the same 10 × 10 in our case. This means the outer regions
of the kernels larger than 10 × 10 are redundant and will not be trained. This restricts us
to the convolutions of the kernel with a maximum resolution of 10 × 10. Therefore, we
reduced the kernel size by increasing the number of channels in those layers, which violates
the third rule of the FatNet construction (see Figure 3). However, this is the better solution,
since the network may underfit if the number of trainable parameters is reduced.

Usually, the image classifier neural networks are based on the convolutional layers for
the feature extraction and dense layers for the classification. Sometimes, fully convolution
networks end up with a convolutional layer with a 1 × 1 shape and the number of output
channels equal to the number of classes. The FatNet’s output layer is a convolutional layer
with one channel and each pixel representing the probability of the class in the classification
network. In our case with CIFAR-100 training, the output shape is 10 × 10 with one output
channel. The main advantage of FatNet and its suitability for free-space optical training
is that FatNet uses fewer output channels but larger resolution feature maps and kernels.
Moreover, it is a fully convolutional network, which makes it fully compatible with the
4f accelerator.

As part of this work, we developed an application called FatSpitter to convert any
sequential network into a FatNet model. FatSpitter accepts a PyTorch neural network object
as an input and outputs a refined FatNet model that ensures that the size of the kernel never
exceeds the input size of the corresponding convolutional layer. It follows an algorithm
similar to that described above. Initially, a construction table, as demonstrated in Table 1, is
established. Upon obtaining the construction table and determining the index of the layer at
which FatNet has to start, the implementation begins by substituting original convolutional
layers with the new “Fat” convolutional layer, which features altered kernel sizes and
output channels. If the kernel size is larger than the input, the kernel size is adjusted
to match the input, and the number of output channels is recalculated. It is important
to remember that if the number of input channels in the original convolutional layer is
equal to the output channels, this equality must also be maintained in FatNet. If this is
not considered, the number of output channels will keep rising and falling in the network,
making it impossible to train.

To validate our results, we developed a simulator as the custom layer on top of
PyTorch called OptConv2d. OptConv2d replaces the convolution operation of the standard
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convolutional layer with the simulation of 4f inference. In order to achieve this, we had to
simulate the propagation of the amplitude-modulated light using the angular spectrum
of plane waves (ASPW) method. According to the angular spectrum method, if the initial
wavefront is U1(x, y), the next wavefront is calculated as:

U2(x, y) = F−1[F[U1(x, y)]H( fx, fy)] (2)

where H( fx, fy) is the transmittance function for free space.
The transmittance function of free-space propagation comes from the Fresnel diffrac-

tion transfer function:

HF( fx, fy) = exp

[
jkz− jπλz( f 2

x + f 2
y )

]
(3)

where k = 2π
λ , z is the distance travelled by light, and λ is the wavelength [36,37].

Since the 4f system contains two lenses, the transmittance function of each lens is:

tA(x, y) = P(x, y) exp

[
−j

k
2 f

(x2 + y2)

]
(4)

where f is the focal length of the lens, and P(x, y) is the pupil function [37].
The distance at which the angular spectrum method calculates the next wavefront

depends on the pixel scale and is calculated as:

z =
N(∆x)2

λ
(5)

where ∆x is the pixel scale, N is the number of pixels, and λ is the wavelength. In case
when the propagation distance needs to be longer than the above formula for the distance,
the propagation can be calculated in several iterations. We chose such a pixel scale for each
propagation, so z becomes equal to the focal distance of the lens. In this case, we have to do
only one iteration for each focal distance propagation in the 4f system.

The simulator uses pseudo-negativity, so each convolution is run twice to avoid
negative values for the kernels in optics. Moreover, due to the laws of geometrical optics,
the output of the 4f device is always rotated 180 degrees. Luckily, this is not a problem for
convolutional neural networks, since they can continue extracting the future values from
the rotated feature maps.

Experiments

The main goal of FatNet is not to gain accuracy but to demonstrate that the network
with its prescribed architecture can maintain accuracy by being accelerated using free-space
optics while performing fewer inferences through the 4f system than the original network.
Hence, our experiments aimed at testing and comparing the original network and FatNet.

We recreated the modified version of ResNet-18, converted it to the FatNet, and trained
both networks. To validate the accuracy of the FatNet in the optical device, we trained the
network in the simulator. In the real 4f system, we would have taken advantage of the
parallelism of the network by tiling the batches. However, batches were not tiled in the
simulator, since the matrices are represented in PyTorch’s tensor format. All operations were
performed without unwrapping the tensor, and the Fourier transforms and multiplications
were performed directly on the 4-dimensional tensors. We chose this approach since the
simulator-based training of the network was much slower than the standard PyTorch
network. Each epoch of the optical simulation of FatNet takes 67 min, while the epoch in
the standard FatNet with Conv2d layer of PyTorch is 15 s only.
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The wavelength of the laser was set to 532 nm (green), and convex lenses with a 5 mm
diameter and focal distance of 10 mm were assumed. It should also be noted that we have
not taken the device’s quantization and noise into account and used type float32.

We split our training set into training and validation sets according to a 80–20% ratio,
respectively, resulting in 40,000 for training and 10,000 images for validation. The dataset
was normalized using the mean and standard derivation of the CIFAR-100 at all channels.
Moreover, we have applied augmentation methods, including the horizontal flip and
random crop with the padding of four. All networks were trained with the SGD optimizer,
0.9 for the momentum, and the starting learning rate of 0.01, updating every 50 steps by 0.2.
The last layers of all networks were passed through the 20% dropout layer. We trained all
the networks using 2× NVIDIA A100 40 GB GPUs.

ResNet-18 and FatNet were trained with a batch size of 64 (32 per GPU). However,
the optical simulation of FatNet had to be trained with a batch size of 16 (8 per GPU)
due to the high memory requirement of the simulator, as the optical simulation enhances
the computational graph and number of gradients. Although we have not simulated the
parallelism of the 4f system, to gain acceleration, the 4f system needs to take advantage
of high resolution. FatNet’s best acceleration can be achieved if batch tiling is performed.
In order to use batch tiling, all the inputs of the same batch have to be tiled in one input
block, and the kernel has to be padded to the same size as the input block. Before tiling the
inputs, they must be individually padded to M + N − 1, where M × M is the input size,
and N × N is the kernel size. According to this method, the number of possible batch sizes
can be calculated as follows:

n = b R
M + N − 1

c2 (6)

where R is the resolution of the 4f system and b·c is the floor function.

4. Results

Based on the configurations described above, our implementation of ResNet-18
achieved an accuracy of 66%. In comparison, FatNet’s implementations, both with GPU
and simulation of optics, lagged in accuracy with a result of 60% (see Table 2). However,
FatNet implementation performs 8.2 times fewer convolution operations to reach this level
of accuracy and does not require any dense layers for classification.

Table 2. Comparison of the test accuracy and number of convolution operations used in each
tested network.

Architecture Test Accuracy Number of Conv
Operations

Number of Conv
Operations

mean ± std Ratio to Baseline

ResNet-18 66± 1.4% 1,220,800 1 (baseline)
FatNet 60± 1.4% 148,637 0.12

Optical simulation
FatNet 60% 148,637 0.12

The same can be said about the training process. Since it may take more epochs for
the FatNet to reach the desired accuracy, this architecture is only beneficial if accelerated
with the 4f system.

The measured and calculated inference time for FatNet and ResNet-18 with optics and
GPU were obtained and observed (see Table 3). The observations were conducted based on
the batch size of 64, such as in our experiments, and 3136 maximum utilization of 4f system
with 4k resolution modulators and camera.
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Table 3. Inference time in seconds per input for ResNet-18 and FatNet with optics and GPU with
batch sizes of 64 and 3136 for cases when the 4k resolution of the 4f device is fully utilized. The frame
rate of the 4f device is approximated at 2 MHz [13].

Architecture Batch 64 Batch 3136

ResNet-18 (GPU) 1.350× 10−4 1.167× 10−4

FatNet (GPU) 4.565× 10−4 7.942× 10−4

ResNet-18 (Optics) 3.815× 10−2 7.786× 10−4

FatNet (Optics) 4.645× 10−3 9.479× 10−5

5. Discussion

Although FatNet does not converge as well as ResNet-18, it is still 8.2 times faster,
if both are trained with optics. CIFAR-100 is an extended dataset of CIFAR-10, but unlike
CIFAR-10, CIFAR-100 is much harder to train. Numerous researchers have tried different
augmentation and regularization methods to improve the classification performance of the
CIFAR-100. For instance, Mizusawa [38] tried the interlayer regularization method and
improved the accuracy of the classification of CIFAR-100 in ResNet-20 from an average of
64.09% to 65.59%. Shah [30] used ELU activation layers to improve the CIFAR-100 accuracy
from 72.77% to 73.45%. Our modification of ResNet-18 achieved an average test accuracy
of 66%, which is comparable to Mizusawa but lower than Shah. Then, our tests of FatNet
showed that by sacrificing only 6% of test accuracy, we could perform 8.3 times fewer
convolutions in optics, which will mean fewer conversions from optics to electronics and
vice versa. During the training process of the original FatNet on GPU, three trials were
conducted, achieving accuracies of 59%, 59%, and 62%. These results suggest that it may
be possible to achieve a smaller loss with FatNet through further optimization efforts.

In contrast to our approach of reducing the number of convolution operations to
improve speed and adapt the network to optical implementation, other research has
focused on accelerating networks by accepting a small sacrifice in performance when run
on CPU/GPU. For example, Luo et al. [39] accelerated the neural networks by discarding
redundant weights. One of their implementations, ThiNet-Tiny, accelerated the forward
and backward timing of VGG-16 by 6.4 and 7.3 times, respectively, at the cost of a 9%
reduction in top-1 accuracy. Moreover, Rastegari et al. [5] achieved an acceleration of
approximately 58 times by binarizing the inputs and weights of convolutional operations
and estimating convolutions using XNOR and bit counting operations. However, when
testing ImageNet trained on ResNet-18 with this method, they observed a loss of 18.1%
in accuracy.

The training accuracy graph in Figure 4 shows that the network trained with the
optical simulation trains slower than in other experiments. When simulating the 4f system,
PyTorch uses the simulation of light propagation as part of the computation graph of the
neural network, which vastly increases the computation graph. This causes a slowdown in
network training. From the point of view of validation accuracy, the FatNet trained with
GPU, and its optical simulation, are not altered much, especially after the first learning rate
step on epoch 50. Although the validation accuracy of FatNet and optical simulation of
FatNet did not exceed 57% and 58%, respectively, the test accuracy reached 60% in both
cases. This difference is caused by the augmentation applied only to the validation and
training sets and not to the test set.

However, it should be noted that the acceleration in a 4f system with FatNet is only
possible if the parallelism of the 4f system is utilized not with the channel or kernel tiling
but with batch tiling. The increase in resolution and reduction of the number of channels
will not change the performance much if channel tiling is used. Unfortunately, due to the
high latency of modern light modulators and cameras, it is almost impossible to get an
acceptable acceleration over GPU with 4f, with the efficiency batch size shown in Table 3.
However, the 4f system’s acceleration is almost equalized to the GPU in comparison with
non-GPU inference (see Table 3). If we fully utilize the 4K resolution of the 4f system,
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the batch size of 3136 can be used, and the acceleration of the 4f system over GPU becomes
obvious. Moreover, it can be seen that the use of FatNet improves the speed of the inference
in optics and works in a completely opposite way with the GPU, regardless of the batch size.
However, enormous batch sizes such as this are not efficient and will lead to overfitting.
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Figure 4. Training and validation accuracy for each experimented network at every epoch. (a) Training
accuracy of ResNet-18, FatNet and Optical simulation of FatNet. All networks achieved an accuracy
of 99%. However, the ResNet-18 required fewer epochs. On the other hand, the optical simulation
took longer to train since it uses a more extended computation graph to simulate light propagation.
(b) Validation accuracy of ResNet-18, FatNet and Optical simulation of FatNet. ResNet-18 trained up
to 66%, while FatNet could not achieve the validation and test accuracy higher than 60%, although it
performed fewer convolution operations.

Moreover, it should be mentioned that in our experiments, we have not tested the
network with the different quantization levels and noise that can occur in the system.
Low-precision training can potentially affect the test accuracy of the network, but there
have been many successful attempts to train the neural networks with low precision to
save on memory or accelerate the inference. On the other hand, noise can be used as a
regularization method, since random and unpredictable noise can be a sort of augmentation
method for our dataset. If we use a smaller bit depth, the noise may not affect the accuracy,
since the changes in resulting light intensity will be low.

Another issue that is important to consider is the alignment of the optical elements.
One of the main disadvantages of the 4f system compared with the silicon photonics
approach is the alignment of optical elements. A slight alteration in the alignment of the
elements of the 4f system can lead to entirely wrong results and to the inability to correctly
keep track of the graph. Unfortunately, our simulator is not designed to consider alignment
problems. In practice, optical cage systems can be used to keep elements fixed and aligned.

The FatSpitter algorithm, used to convert ResNet to FatNet, follows the rules we have
established but only takes into account serial networks. Hence, it cannot be applied to
networks that use depth-wise separable convolutions. It is possible to integrate branching
into the algorithm for future implementation, but the most significant challenge remains
the implementation of 1 × 1 convolutions. These convolutions can be executed in a 4f
device as normal convolutions, but the question remains whether they need to be converted
into fat layers. The main purpose of 1 × 1 convolutions is to reduce the dimensionality, so
it makes sense not to convert them into FatNet and keep them as they are. On the other
hand, converting 1 × 1 convolutions into FatNet would lead to a further reduction in the
number of channels, which may not be necessary.

The design of the FatNet makes it more suitable for datasets with a large number of
classes, such as 100 in our case, but it can also potentially work with images of a higher
resolution. Unfortunately, the simulation of light propagation takes a large amount of GPU
memory, which is the reason for not using ImageNet in our experiments when it seemed
the most obvious choice for FatNet.



AI 2023, 4 372

6. Conclusions

In this research, we looked at a new way of fully utilizing the high-resolution capa-
bilities of the 4f system for classification. We introduced a transformation method, which
makes the regular neural network designed for the CPU/GPU training more compatible
with the free-space optical device. After testing FatNet with the CIFAR-100 dataset, using
ResNet-18 as the backbone network and the optical simulation of the FatNet using the
angular spectrum method, we reached a test accuracy of 66% with ResNet and 60% with
FatNet. Eventually, it was demonstrated that FatNet performs 8.2 times fewer convolution
operations than ResNet-18 without a loss in frame rate when both were implemented in
optics. Compared with the standard ResNet-18, FatNet is always faster than ResNet-18
when run with the optical device and also than ResNet-18 run with GPU when the batch
size is as large as 3136. Moreover, our research demonstrates the importance of using
high-resolution kernels in CNN, especially in the future, when the speed of cameras and
light modulators improves.
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