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Abstract: Besides the many advances made in the facial detection and recognition fields, face recogni-
tion applied to visual images (VIS-FR) has received increasing interest in recent years, especially in the
field of communication, identity authentication, public safety and to address the risk of terrorism and
crime. These systems however encounter important problems in the presence of variations in pose,
expression, age, occlusion, disguise, and lighting as these factors significantly reduce the recognition
accuracy. To prevent problems in the visible spectrum, several researchers have recommended the
use of infrared images. This paper provides an updated overview of deep infrared (IR) approaches in
face recognition (FR) and analysis. First, we present the most widely used databases, both public and
private, and the various metrics and loss functions that have been proposed and used in deep infrared
techniques. We then review deep face analysis and recognition/identification methods proposed
in recent years. In this review, we show that infrared techniques have given interesting results for
face recognition, solving some of the problems encountered with visible spectrum techniques. We
finally identify some weaknesses of current infrared FR approaches as well as many future research
directions to address the IR FR limitations.

Keywords: face recognition; deep learning; face analysis; feature extraction; infrared imaging;
face synthesis

1. Introduction

In the last few years, deep learning researchers have shown increasing interest in
the usage of face recognition (FR) since it is the main biometric technique for identity
authentication. The development of FR tools has had an impact on the expansion of many
areas such as the defense, finance, and service industries. Facial recognition uses computer-
generated filters to transform face images into numerical values that can be compared to
determine their similarity. This process consists of four steps:

• Face detection: Scanning the full image to identify whether or not the candidate area
is a face.

• Face preprocessing: Performed on the detected area, which may consist of noise
reduction, contrast enhancement, or similar operations.

• Feature extraction: The extraction of facial features such as eyes, nose, mouth, brows,
and cheeks and the geometrical relation between them from the preprocessed facial
image. In addition to Face recognition, the feature extraction step is used for emotion
and pain detection.

• Feature matching: Use the extracted Feature vector to perform a comparison with a
set of known faces.

Recent research has focused on the visible spectrum [1–6]. FaceNet [6] showed human-
like performance after reaching an accuracy of 97.35% by training a 9-layer model on
4 million facial images therefore becoming the reference point for FR.
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Despite the progress and results obtained in this field, FR remains a complex task
as many factors may affect the results of the identity feature extraction including light,
wearable accessories like hats and eyeglasses, facial expression, and head orientation [7–9].
Solving the poor illumination problem in images has become a necessity. Thanks to the
availability of advanced infrared (IR) technology cameras, researchers have considered the
use of IR images since they are less influenced by lighting in most of the normal operating
conditions allowing for better results.

Many surveys have been conducted on the literature related to FR but most of them
focus on visible FR (VIS-FR). These two surveys [9,10] presented a comprehensive review
of classical infrared FR methods. Ouyang et al., Jin et al. and Dey et al. [11–13] discussed
fusion techniques as researchers have found that combining visible and infrared techniques
provides good performance rates and overcomes the limitations of both spectrums [9].
Kakkirala et al. [14] presented recent advances in thermal infrared face recognition and
suggested new methods that could be explored to advance research.

1.1. Classic Face Recognition Methods

Research on the task of visible FR has made a major impact in the biometrics field by
enabling the development of several holistic techniques. These techniques are currently
used for infrared face recognition and include Principal Component Analysis (PCA) known
as Eigenfaces [15], Linear Discriminant Analysis (LDA) [16], Independent Component
Analysis (ICA) [17], Support Vector Machine (SVM) [18] and many other techniques.

The fusion of visible and infrared images has recently been used to achieve higher
recognition results by merging either images or results. This process is used to maximise
the amount of useful information that is gathered from various images and to convert all
images into a single image. In this context, Heo et al. [19] have shown the efficiency of these
techniques by achieving high results. This fusion approach solved several issues as shown
in the work of Chen et al. [20]. The authors used a decision-based scheme and a fuzzy
integral [21] to merge the objective evidence provided by each modality which considerably
improved recognition performance. In the work of Akhloufi et al. [22], a fusion framework
operating in the infrared spectrum has been developed. Both active and passive infrared
modalities are used in this framework. The proposed method uses intra- and inter-spectral
fusion and operates in texture space. Compared to non-fused images, multi-scale fusion
techniques (pyramidal and wavelet-based) improve the recognition performance.

The sensitivity of IR thermal images to the facial occlusion caused by eyeglasses was
discussed by Bebis et al. [23]. The authors suggested combining IR and visible imaging
to get around this issue. Since the features of the faces are captured differently by IR and
visible imaging, a more accurate description of the face might be found by combining the
complementary data from the two spectra. Also, Kong et al. [24] used an elliptical fitting
method to find the location and shape of eyeglasses. They then replaced the eyeglass regions
with an average thermal eye template to reduce the eyeglasses’ effect. This technique helped
confirm the study of Bebis et al. [23]. Most of the Fusion-based methods used FaceIt [25] (a
commercial face recognition software) as a single recognition module.

For multispectral face identification, non-linear learning and subspace recognition
techniques have been proposed by Akhloufi et al. [26]. The performance of global and local
non-linear approaches was compared to the performance of traditional linear techniques.
Undesirable variations caused by illumination changes, facial emotions, posture, and other
factors can be avoided or reduced by using non-linear methods.
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Holistic techniques aim to discriminate features that are only related to the identity
of the face and to ignore domain information. LBP (local binary pattern) [27] is one of the
most common infrared face recognition techniques. The facial area is first divided into
small regions from which local binary patterns (LBP) are extracted. The histograms are then
concatenated into a single vector. This vector provides an efficient representation of the face
which is used to calculate the similarity between images. In the work of Li et al. [28], the
authors presented two statistical learning methods for face recognition invariant to indoor
lighting using NIR images. With the goal of building face recognition classifiers from a
variety of LBP features, they used LDA [29] and AdaBoost [30] to achieve a high accuracy
face recognition engine. Furthermore, in the work of Mendez et al. [31], the merits of the
Local Binary Pattern (LBP) representation are studied in the context of face recognition
using long-wave infrared images. These images are invariant to lighting, but at the same
time they are affected by the fixed background noise inherent to this technology. The
fixed pattern is normally compensated for using a non-uniformity correction method. This
study shows that the LBP approach performs well under fixed noise and in the presence of
glasses. No noise suppression pre-processing was required, however, if a non-uniformity
correction method is applied, the image texture is amplified and the performance of
LBP is degraded. The application of this approach as texture descriptors for efficient
multispectral face recognition was presented by Akhloufi et al. [32]. The success rate of
texture identification algorithms exceeded that of untransformed images, especially in
the infrared spectrum. The effects of noise, light change, and facial expression are less
significant in the suggested texture space. For this single technique (LBP), we can cite
several related methods. Huang et al. [33] used ELBP (Extended Local Binary Pattern) [34]
for face recognition in near-infrared (NIR) lighting conditions to solve the issues caused by
lighting variations. Also, Zhao et al. [35] presented an illumination invariant dynamic facial
expression recognition in NIR video sequences. The LBP-TOP feature descriptor (local
binary patterns of three orthogonal planes) [36] can describe appearance and movement
and is invariant to monotone grayscale changes. Zhao et al. used it on NIR images to
provide an accurate result for video-based facial expression recognition with an invariant
illumination system. Another method used in the work of Xie et al. [37] is the LBP co-
occurrence matrix [38]. Xie et al. presented a new method of IR face recognition based
on the LBP co-occurrence matrix to extract spatial relations between LBPs to describe the
infrared face as traditional LBP-based feature fails to consider space location information.

SIFT (Scale-invariant Transform function) [39] is a face recognition algorithm that uses
computer vision techniques to detect and define the spatial features of images. The key
points of SIFT objects are first extracted from a collection of reference images and stored in a
dataset. Faces are then recognized in a new image by individually comparing each attribute
of the current image to the dataset and by identifying similar features for the candidates
according to the Euclidean distance of their vectors. Yang et al. [40] presented a partial face
alignment method based on the Scale Invariant Characteristic Transform (SIFT). First, a
reference model is trained using holistic faces where anchor points and their corresponding
descriptor subspaces are learned from the initial key points of the SIFT. The relationships
between the anchor points are also extracted. Then, for the alignment, they used a mapping
between the partial face key points and the anchor points of the learned face model to
match the learned holistic face model to an input partial face image. To eliminate outlier
correspondence, a shape constraint is used in this case and a temporal constraint is applied
to find more outliers. Alignment is finally achieved by solving a similarity transformation.
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In addition to the various techniques presented above, Zou et al. [41] proposed a
new method presented under the name of active near-infrared lighting to overcome the
illumination problem. This method uses an LED light source to provide a constant invisible
lighting condition by enhancing the automatic detection of the eye through this light pupil.
For experiments on such data, they used the Weka Machine Learning Toolkit [42]. In the
work of Friedrich et al. [43], they focused on researching the effect of pose and facial
expressions in FR using IR images showing that their results are less affected by these
factors than with visible images. In another context, Wu et al. [44] tried to find a way to
improve the performance of IR face recognition in different environments. They used, for
this paper, blood perfusion rates that were obtained from the distribution of appearance
temperature and they considered that these physiological characteristics are invariant to
changes. In the infrared spectrum, Akhloufi et al. [45] proposed a method for extracting
facial physiological features. The network of blood vessels under the skin is represented
by these features. They used a distance transform to obtain an invariant representation
for face recognition [45]. The extracted physiological features are related to the location of
blood vessels under the skin of the face. Each person’s blood network is unique, and it can
be used in infrared face recognition.

1.2. Contributions and Outline

Our paper aims to provide a comprehensive review of recent advances in IR facial
analysis and recognition research, particularly for deep learning methods. Most of the
suggested work is focused on deep convolution neural networks (CNN) and synthesis
techniques, especially heterogeneous techniques. CNN are a class of neural networks
programmed to learn the parameters of the convolution from a collection of available
data during training. They are composed of multiple layers, such as convolution layers,
deconvolution layers, pooling layers, and so on. In recent years, new architectures have
been proposed to improve performance and solve some traditional CNN limitations. CNN
are one of the most common deep learning methods in face analysis. Image synthesis for
machine learning applications provides the means to produce vast volumes of training
data effectively. Synthetic data can become a critical component of the training pipeline
of deep learning applications. Many training approaches for producing data have been
developed during the last decade.

In the following, we will present the main datasets used for IR Face recognition
research in Section 2 and we will introduce the different metrics and loss functions in
Sections 3 and 4. Common techniques used to assess deep learning models are presented in
Section 5. The techniques are divided into three categories: Synthesis methods (Section 5.1),
Feature learning methods (Section 5.2), and NIR-VIS alignment methods (Section 5.3).
Some applications are also introduced (Section 5.4). Comparative analysis of the different
algorithms is presented and discussed in Section 6.

2. IR Datasets

Data is a critical asset for many research fields. This is particularly true for facial images
for face recognition research. For infrared face recognition, the first problem encountered
is the availability of accessible infrared datasets. This is not the case for visible spectrum
datasets as multiple are available [46–52]. Compared to the datasets available for visible
face recognition, we can notice the lack of resources for IR face recognition. Table 1 gives a
summary of the IR face recognition datasets.
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Table 1. IR FR Datasets (HO: Head Orientation, FE: Facial Expression).

Dataset #Images #Subjects Accessories Variations Spectrum

CASIA [53] 3940 197 glasses HO, FE NIR

PolyU [54] 3500 350 - HO, FE VIS, NIR

USTC-NVIE [55] - 215 glasses HO, FE VIS, thermal

Oulu-CASIA [35] 80 - FE VIS, NIR

IRIStcite [56] 4190 30 - HO, FE Thermal

CSIST [57] 1000 50 - - VIS, NIR

UL-FMTV [58] - 238 glasses HO, FE Thermal

High-Resolution Thermal Face
Dataset [59] 300 30 glasses HO, FE Thermal

Fully Annotated Thermal Face
dataset [60] 2500 90 - HO, FE Thermal

RGB-D-T [61] 45,900 51 - HO, FE VIS, thermal

HIT LAB2 [57] 2000 50 - HO, FE VIS, NIR

SunWin [62] 4000 100 - HO, FE VIS, NIR

University of Notre Dame’s UND
collection X1 [63] 4584 82 - HO, FE VIS, LWIR

µ-faces dataset [64] 11,660 35 glasses HO, FE VIS, NIR, MWIR, LWIR

ARLV-TF [65] 500,000 395 glasses HO, FE VIS, LWIR

BUAA-VIS-NIR [66] 2700 150 - HO, FE VIS, NIR

ND-NIVL [67] 24,605 574 - - VIS, NIR

Polarimetric thermal dataset [68] 800 60 - HO, FE VIS, LWIR

SC3000-DB [69] 766 40 - - NIR

CARL [70] 7380 41 - - VIS, Thermal, NIR

Terravic [71] - 20 glasses HO, FE Thermal

The IIIT Delhi occluded dataset [72] 1362 75 multiple HO, FE VIS, Thermal

INF [73] 470 94 - - NIR

TUFTS [74] 10,000 113 glasses HO, FE VIS, NIR, Thermal

Charlotte-ThermalFace database [75] 1000 10 - HO, FE Thermal

2.1. CASIA NIR Dataset

The CASIA NIR dataset [53] contains 3940 images of 197 subjects with a resolution
of 640 × 480 pixels. Figure 1 shows the variations in head orientation, facial expressions,
and wearable accessories that are present in this dataset. The images were captured in an
environment using a NIR light-emitting diode (LED) as an active radiation source. To allow
the NIR light to pass through, they blocked the visible light using a long-pass optical filter.
For this dataset, they used a custom camera with a wavelength of 850 µm.

2.2. PolyU NIR Face Dataset

The PolyU-NIRFD [54] dataset includes images of 350 subjects, each appearing in
100 images at a resolution of 768 × 576 pixels. It contains NIR and visible images showing
different head positions and facial expressions with scale variations and time intervals. A
JAI camera with a wavelength of 850 µm was used to collect the images.

2.3. USTC-NVIE Dataset

The USTC-NVIE dataset [55] includes 2 sets of 215 subjects, spontaneous and posed,
containing infrared and visible images with different orientations (frontal, left, right), facial
expressions, and glasses (See Figure 2). To obtain the images, an SAT-HY6850 infrared
camera capturing 25 frames per second with a resolution of 320 × 240 pixels and wave
bands of 8–14 µm was used.
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Figure 1. VIS and NIR face images, with variations in resolution, lighting conditions, pose, and age,
of one subject in the NIR-VIS2.0 dataset [53].
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Figure 2. VIS and NIR face images with and without glasses [55].

2.4. Oulu-CASIA NIR-VIS Dataset

The Oulu-CASIA [35] dataset consists of 80 subjects aged 23–58 years (73.8% of subjects
are male). Six variations of expression were considered while capturing the dataset: anger,
disgust, fear, happiness, sadness, and surprise. The dataset consists of two parts, one
taken by the Oulu University artificial vision group, comprising 50 subjects, mostly Finns.
The other part was taken in Beijing by the Chinese Academy of Sciences National Pattern
Recognition Laboratory and includes 30 subjects, all Chinese. The subjects were facing
the camera. A USB 2.0 cameras for PC (SN9C201 & 202) including an NIR sensor and a
VIS camera was used to capture the same facial expression with an image resolution of
320 × 240 pixels.

2.5. IRIS Dataset

The IRIS dataset [56] consists of images collected from 30 people totaling 4190 thermal
images. Subjects performed subtle head movements. On average, 11 heads pose images
per subject are presented. The dataset captures three facial expressions: sad, surprised, and
laughing. The IRIS dataset was recorded with the Raytheon Palm-IR-Pro-camera with a
spatial resolution of 320 × 240 pixels.

2.6. CSIST Dataset

The Harbin Institute of Technology Shenzhen Graduate School published the CSIST
dataset [57]. It contains facial images captured in various lighting environments. It has
two main datasets: Lab1 and Lab2. The Lab1 dataset includes 500 visible and 500 NIR
images of 50 subjects at a resolution of 100 × 80 pixels and the Lab2 includes 1000 visible
and 1000 NIR images of 50 subjects at a resolution of 200 × 200 pixels.

2.7. UL-FMTV

The dataset [58] consists of 238 subjects divided in two categories, genuine and impos-
tor, composed of 134 subjects and 104 subjects, respectively. The face photos were taken
between 2010 and 2014 to have a period of two to four years between the face photo sessions
for most subjects. Pose, facial expressions, ethnicity, aging, time lapse, and eyeglass opacity
are all considered in this dataset (See Figure 3). The researchers used a high-resolution
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Indigo Phoenix thermal camera to capture the dataset and provided an image resolution of
640 × 512 pixels.

Figure 3. A sample of UL-FMTV after a time lapse with different head orientations, glasses and
temperature exposure [58].

2.8. RGB-D-T Face Dataset

This dataset [61] is composed of 45,900 images from 51 subjects, mostly white males
between the ages of 20 and 40. Their faces were captured under different conditions of
movement, facial expressions, and lighting. A Microsoft Kinect for Windows was used to
capture RGB and depth images and an AXIS Q1922 sensor was used to capture thermal
images. The resolutions of the RGB, depth and thermal images are 640 × 480, 640 × 480,
and 384 × 288 pixels, respectively.

2.9. ND-NIVL

The dataset [67] contains images of 574 subjects obtained between fall 2011 and spring
2012 that are visible light and near-infrared images. 2341 visible light facial images and
22,264 near-infrared facial images are present in this dataset. At least 402 participants
had both visible and near-infrared images. The NIR images and the visible images have a
resolution of 4770 × 3177 pixels and 4288 × 2848 pixels respectively. This makes ND-NIVL
the largest database of high-resolution NIR and VIS images.

2.10. CARL Dataset

For the CARL dataset [70], visible and thermal images were acquired using a TESTO
880-3 thermographic camera equipped with an un-cooled detector with spectral sensitivity
ranging between 8 and 14 µm. For the near-infrared, a customized Logitech Quickcam
E2500 messenger was used, equipped with a silicon-based CMOS image sensor with
sensitivity for the entire visible spectrum and half of the near-infrared. The thermographic
camera offers a resolution of 160 × 120 pixels for thermal images and 640 × 480 for visible
images and the webcam offers a maximum resolution of 640 × 480 pixels for near-infrared
images. The dataset includes 41 subjects: 32 men and 9 women. Each person participated



AI 2023, 4 207

in four acquisition phases and provided five shots in three lighting conditions (See Figure 4)
totaling 7380 images.

Figure 4. Example images from Carl dataset [70].

2.11. University of Notre Dame’s UND Collection X1

The dataset [63] was assembled using an un-cooled LWIR sensor from Merlin and a high-
resolution visible color camera. The resolution of the visible images is 1600 × 1200 pixels and
the resolution of the thermal images obtained by LWIR is 312 × 239 pixels. The collection
includes images in three experimental settings: expression (neutral, smile, laugh), light
change, and time lapse. The data set includes 4584 images of 82 subjects in the visible and
thermal range.

2.12. µFaces Dataset

µ-faces is a multispectral database used to conduct experimental tests of face recogni-
tion presented in [64]. This dataset contains the following spectra: visible, near-infrared,
mid-infrared, and long-wave infrared. The dataset consists of 35 individuals and 11,660 im-
ages. The camera allows direct acquisition of visible and NIR images at a resolution of
640 × 480 pixels. The resolution of the MWIR camera is 640× 512 pixels, and the resolution
in LWIR is 160 × 128 pixels. This dataset contains faces in various scenarios with varying
facial expressions, glasses, varying time and metabolic changes.

2.13. ARLV-TF Dataset

The DEVCOM Army Research Laboratory visible and thermal face (ARLVTF) was
collected by Poster et al. [65]. The ARL-VTF dataset is the largest collection of matched
visible and thermal facial images to date, with over 500,000 images of 395 individuals. A
modern long-wave infrared (LWIR) camera was installed alongside a stereo arrangement
of three visible spectrum cameras to collect the data. The camera gives an image resolution
of 640 × 512. Variations of expression, head poses, and eyeglasses have been carefully
captured in order to replicate real-world situations.

2.14. UNC Charlotte Thermal Face Database

The UNC Charlotte Thermal Face is the first publicly available new thermal database [75].
The Charlotte-ThermalFace database contains more than 10,000 infrared thermal images of
10 healthy subjects under different thermal conditions, at different distances from the camera,
and with different head positions. It contains an annotation of the thermal sensation of each
subject under different thermal conditions. The images were taken at 10 different distances
from the camera for each temperature range. They used the FlirA7000 for this purpose. The
original resolution of the thermal sensor is 640 × 480 pixels, and the resolution of the cropped
facial area varies for each distance range.
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2.15. Small Datasets

On top of the public datasets presented in the previous sections, less known and
smaller datasets are available. We can present the HIT LAB2 face dataset [57] that contains
2000 face images of 50 volunteers. The dimensions of the images are 200× 200 pixels. These
images were taken under special lighting conditions. The images often show significant
changes in posture or facial expression. The dataset is collected and distributed by the
Harbin Institute of Technology. The BUAA-VIS-NIR face dataset [66] contains images of
150 subjects, with 9 VIS and 9 NIR images taken simultaneously for each subject. The
nine images of each subject correspond to the neutral expression frontal, left rotation, right
rotation, upward tilt, downward tilt, joy, rage, sadness, and surprise. Hu et al. proposed
the polarimetric Thermal dataset [68]. It contains polarimetric LWIR images and visible
spectrum images of 60 distinct subject’s collections. This dataset was acquired using a
polarimetric long-wave infrared imager, specifically a division-of-time spinning achromatic
retarder system, which acquires geometric and textural details of the face that are not
available in conventional thermal imaging. Subjects were asked to count out loud from
1 to 10 to capture mouth movements and, to some extent, to produce variations in facial
imaging. Five hundred images are recorded with the polarimeter, and 300 images are
recorded with a visible spectrum camera. Ariffin et al. [71] proposed the terravic Face IR
Dataset composed of 20 individuals, including for each them various combinations (front,
left, right, indoor/outdoor, hat) as shown in Figure 5. The format of the images is an 8-bit
grayscale JPEG with a resolution of 320 × 240 pixels. This dataset was captured using
Raytheon L-3 Thermal-Eye 2000AS. The IIIT Delhi occluded dataset [72] contains visible
and thermal spectrum images of 75 participants with disguise variations. The dataset has
6 to 10 images per individual. There is at least one frontal neutral face image and at least
five frontals disguised face images for each individual. There are 681 images for each
spectrum. A thermal camera with a micro-bolometer sensor operating at 8–14 µm was used
to collect the thermal images. The thermal images have a resolution of 720 × 576 pixels.
All the images of the faces were taken with consistent lighting, neutral expressions, and in
a frontal position. The dataset’s images presents disguise variations such as variations due
to different hairstyles and to the presence of beards and mustaches, glasses, caps and hats,
and masks.

Figure 5. A sample of Terravic dataset [71].

2.16. Private Datasets

Besides the datasets presented above, many others have been created for the same
purpose of infrared face recognition. The high-resolution thermal face dataset for Face
and Expression Recognition [59] and the fully annotated thermal face dataset [60] are both
private datasets. The first is divided into 2 sets of images containing 30 subsets. The
subsets each contains 30 subjects, including 10 image sets of subjects with glasses collected
over 12 months. The images show subjects with different head positions and expressions.
The second dataset was developed from 2500 high-resolution (1024 × 768 pixels) fully
annotated images of 90 subjects. It contains various presentations of head poses and facial
expressions such as basic morphological changes, fundamental emotions, and arbitrary
expressions. To obtain this dataset, the images were taken with a high-resolution thermal
infrared camera with a 30 mm f/1.0 prime lens Infratec HD820.
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Another private dataset to mention is the Sunwin dataset [62]. It features 4000 images
of 100 subject faces. This data set is divided into two subsets; the first subset contains
2000 visible-light images from the 100 subjects. The second set contains 2000 near-infrared
images of the 100 subjects. For both sets, 10 images are taken under normal light for
each person, and the remaining 10 images are taken under abnormal light. The extracted
collection includes various facial expressions, lighting, and other changes. Data was
collected using a visible light camera and a near-infrared camera at the same time.

Szankin et al. [69] created the SC3000-DB dataset while studying the influence of
thermal imagery resolution on the accuracy of deep learning. The dataset was created
using a FLIR ThermaCam SC3000 infrared camera with a resolution of 320 × 240 pixels in
a noise reduction mode. It contains 766 images of 40 volunteers from a cohort of 19 males
and 21 females.

Other datasets used in the papers presented below that are important to cite include
the INF dataset [73] and TUFTs dataset [74]. The INF dataset consists of 470 near-infrared
images taken by a near-infrared camera of 94 subjects. Each participant has five NIR facial
images with a resolution of 640 × 480 pixels. TUFTS is the most complete, large-scale face
dataset available, with over 10,000 pictures taken from 74 females and 39 males from over
15 countries, ages 4 to 70, and with six image modalities: visible, near-infrared, thermal,
computerized sketch, recorded video, and 3D images. A large-scale thermal facial database
is included in the Tufts face dataset with pose variance and facial expressions.

3. Metrics

We must keep in mind that for any non-trivial problem, no machine learning algorithm
is perfect. It is therefore crucial to evaluate the performance of the algorithm in order to
adapt it to an application. Many metrics have been developed to evaluate face recognition
methods in the visible and infrared spectrum. In this section, we mention the most well-
known metrics used for infrared FR.

3.1. Receiver Operating Characteristic (ROC)

The ROC (Receiver Operating Characteristic) approach [76], which was originally
used in the early 1980s, has since become a widely used method for assessing detection
performance. It was first used to assess the diagnostic capabilities of medical imaging
systems, especially in radiology. The ROC analysis for a single-target problem involves
the true positive rate tpr and the false positive rate f pr. These parameters are calculated in
the ROC analysis to identify the binary response of the detection system to a stimulus (an
image), with:

tpr =
TP

total positives
(1)

f pr =
FP

total positives
(2)

A point in the ROC plane is represented by the pair ( f pr;tpr). ROC curves are created
by altering the detection system’s parameters and calculating tpr and f pr for each value
of the fixed parameters. ROC analysis is an excellent approach for assessing detection
performance since it accounts for the rate of each class and offers two direct antagonistic
measurements that are crucial to the system’s calibration.

3.2. Mean Accuracy (ACC)

The accuracy (Acc) [77] is computed by dividing the total number of correct predictions
by the total number of data points in the dataset. The highest value of accuracy is 1.0 and
the lowest is 0.0. The accuracy is the probability of properly classifying a random example
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and it is correlated to the actual and predicted classes. It is mathematically defined by the
equation below:

Acc =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN, FP and FN represent true positives, true negatives, false positives and false
negatives respectively.

3.3. Validation Rate (VAL) and False Accept Rate (FAR)

The validation rate is proportional to the number of times the same person’s face was
properly identified. The false acceptance rate is proportional to the number of times two
separate people’s faces have been mistakenly recognized as being the same individual [6].
Psame denotes all pairs of faces (i,j) having the same identity, whereas Pdi f f denotes all
pairings of differing identities. For a given face distance d, the validation rate VAL(d) and
the false acceptance rate FAR(d) are defined as:

VAL(d) =
TP(d)
Psame

(4)

FAR(d) =
FP(d)
Pdi f f

(5)

where TP(d) and FP(d) represent true positives and false positives respectively.

3.4. Cumulative Matching Characteristics (CMC)

The cumulative matching characteristics [78] are used for assessing the measured
accuracy performance of a biometric system as it performs identification in a closed envi-
ronment. The templates are compared and ranked based on how similar they are. Based on
the match rate, the CMC indicates how frequently the biometric subject template appears
in the ranks (1, 5, 10, 100, etc.). The identification rate is compared to the rank (1, 5, 10, 100,
etc.) in a CMC.

3.5. Precision-Coverage Curve

Precision-coverage curves are used to assess the accuracy of identification under a
changing threshold t. When the probe’s confidence score falls below t, it is rejected. The
algorithms are compared in terms of the proportion of probes passed (or coverage) and a
high recognition accuracy is around 95% or 99%.

3.6. Minimum Squared Error (MSE)

For pattern recognition, the Minimum Squared Error (MSE) method [79] is commonly
employed and it performs well for face classification. In terms of classification, MSE has
many advantages. It is straightforward and simple to implement. The MSE approach may
be used not only for two-class classification but also for multi-class classification. The MSE
algorithm utilizes the training sample and its class label from the training mapping to
predict the test sample’s class label. It then uses the resulting mapping to predict the test
sample’s class label. MSE then selects the training sample that is the most similar to the test
sample. Finally, MSE classifies the test sample within the the training sample’s class.

4. Loss Functions

The loss function used by a model is arguably the most important element in deter-
mining its performance. Algorithms learn by means of a loss function. They determine
how effectively a particular algorithm models the data. The loss function will provide a
very high value if the predictions diverge too far from the actual results. The loss function
gradually learns to minimize the prediction error with the help of an optimization function.
Several loss functions used in IR FR will be discussed in the following.
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4.1. Softmax Loss

The categorical cross-entropy loss with Softmax activation in the final layer is known as
Softmax loss. In multi-class classification problems, categorical cross-entropy is a common
loss function. This is a task in which an example may only fit into one of several categories
and the model must choose which one to classify them in. Its formal purpose is to calculate
the difference between two probability distributions. The softmax activation resizes the
model’s output to give it the proper properties. The following is how the softmax loss
is defined:

LS = −
m

∑
i=1

ln
exp

{
WT

yi
xi + byi

}
∑n

j=1 exp
{

WT
yj

xi + bj

} (6)

The feature vector of the ith image is defined as xi. The jth column of weights is defined
as Wj, and the bias term as bj. The number of classes and images is n and m, respectively,
with yi denoting the class of the ith image.

4.2. Triplet Loss

The triplet loss is a loss function that focuses on reducing the distance between an
anchor (an image of a person) and positive example data (another image of the same
person). Faces with the same identification should look closer to each other than faces with
different identities. The triplet loss function is used to train the neural network’s parameters
so that it can encode images properly. Comparing pairs of pictures is the purpose of this
function. As inputs, three images are used: an anchor image, a positive image, and an
image of a different person is used as a negative image.

L =
1
N

N

∑
i

max
(
‖ f (Ai)− f (Pi)‖2 − ‖ f (Ai)− f (Ni)‖2 + m, 0

)
(7)

Anchors, positive examples, and negative example pictures are represented as Ai,
Pi,and Ni, respectively. The embedding of these pictures in the feature space are represented
as f (Ai), f (Pi), and f (Ni). m is the profit margin. N is the cardinality of all possible triplets
in the training set.

4.3. Center Loss

The authors in [80] came up with the notion of central loss to overcome the limitations
of Softmax loss. First, they discovered that the distribution of data in the feature space has
a lot of intra-class variance. They illustrate this with a model with only two fully connected
nodes in the final layer. To address this issue, they included an extra term to the softmax
loss that penalizes the model if the data points are distant from the class centroid:

Lc =
1
2

m

∑
i=1

∥∥xi − cyi

∥∥2
2 (8)

L = LS + λLc (9)

The softmax loss is denoted by the symbol LS. The centroid of all points corresponding
to the yi class of the ith data point in feature space is cyi in Lc. Lc is the total of all point’s
squared distances from their respective class’ centroid. The size of the mini-batch is defined
as m. Instead of computing the centroid for the full data set, it is computed for each batch
separately. The circle loss explicitly penalizes intra-class variation.

4.4. Mutual Component Analysis Loss

For mutual component extraction, the original MCA uses pairs of pictures with the
same identity for its input. However, because we want to conduct offline feature extraction
in real-world applications, feature extraction from a single picture is more convenient for
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computer vision applications. Therefore, in [81] they propose the MCA loss which enforces

each modal-dependent component, i.e., ~E1,k
Mi

to approach the mutual component, i.e., ~E1
Mi

.
In other words:

~E1,1
Mi

= ~E1,2
Mi
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(10)

which can be written as
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The modal discrepancy is fully removed in this perfect situation, as shown by this
equation. However, there is no proof that this is always the case. As a result, they attempt

to keep the gap between ~E1,k
Mi

and ~E1
Mi

as small as possible. As a result, the MCA loss may
be expressed as
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where K denotes the number of modalities and N is the number of training images in
modality k. They feed image pairs into the network so the total number of images is N × K.

4.5. Modality Discrepancy Loss

The MD loss, introduced in [82], reduces modal disagreement by reducing the cosine
distance between modalities. Given that we generally utilize cosine similarity to determine
the difference between two face pictures, Deng et al. used the cosine distance as di f f (∗, ∗).
To that aim, the modality discrepancy loss (MD loss) between (X̂v

i ,X̂n
i ) is defined as follows:

LMD =
1
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N

∑
i=1
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1− cos(X̂v

i , X̂n
i )
)

(13)

The cosine similarity of two inputs is cos(∗, ∗) and the total number of picture pairings
is N. By optimizing LMD, it forces two facial representations to be similar. The entire loss
may be expressed as follows:

L = LS + λLMD (14)

where LS is the facial classification cross entropy loss and λ is a hyper-parameter that acts
as a trade off these two components.

4.6. Component Adaptive Triplet Loss

Xu et al. [83] proposed a component adaptive triplet loss function (LCAT ) that takes
into account changes in pose or emotion by assigning adaptive weights based on the visible
region of the face. The positive example is a picture with the same ID as the anchor example
and the negative example is a picture with a different ID. The authors sampled anchor and
positive into distinct domains and negative into the same domain to reduce the intra-class
distance between the different domains of the same individual rigorously. In addition, an
adaptive weight is applied to the loss of each part-representative vector generated by the
part-relationship attention module (PRAM) which allows the consideration of different
deviations for each component feature induced by pose and emotion variations.
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CS represents the cosine similarity, and m the conditional margin. xi indicates the
feature vector of each component, and a, p, n represents the anchor, positive and negative
example, respectively. λi is the intersection over union of the extracted masks of the anchor
and positive examples.
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5. Deep Learning Methods

Deep learning is an effective approach for face recognition which has been shown
to produce interesting results. Since its appearance in 2012 with AlexNet [84], which
showed powerful learning capabilities, deep learning has become the go-to method for
solving complex problems. Its ability to process large datasets makes it the first method
to be applied today to biometric problems such as face recognition. This method contains
many approaches to address face recognition problems, the most used to date being
synthetic methods and VIS-NIR alignment methods. In this section we will list the different
methods that help in IR face recognition, starting with synthetic methods, then discussing
feature extraction and NIR-VIS alignment methods, and then presenting applications of
these methods.

5.1. Synthesis Methods

This method performs face image synthesis from one spectrum to another. It links
the domain divergence to the image preprocessing step. After the transformation into
the new spectrum, it directly performs the face matching of the heterogeneous images.
Reconstruction of the face image in the visual band allows for a more efficient extraction of
facial features that will be used to classify and validate the images. By providing only IR
images of faces as probes, Lai et Yanushkevich [85] explored the possibility of verifying
and identifying faces in the visible range. They considered the following approach to
achieve this goal. A generative adversarial network (GAN) was used to generate visible
images from thermal images, and then face recognition techniques are applied to the
computer-generated images. They started with a set of visual and thermal images and then
normalized pairs of these images using facial landmarks. After normalization, they applied
a GAN to learn and generate the correspondence between the thermal and visual images.
Finally, to evaluate the face recognition performance, they injected the synthesized visible
images into three different CNNs: inceptionV3 [86], Xception [87] and MobileNet [88].

Litvin et al. [89] proposed an accurate deep network architecture for the reconstruction
of RGB facial images to thermal images for use in face recognition. As shown in Figure 6,
RGB image generation is performed by applying a modified FusionNet [90] architecture.
To optimize the results, they used a decoding block with a resized convolution instead
of a transposed convolution. Besides that, a drop-out block was added between the
bridge and the new decoding block, and a Randomized leaky ReLU (Randomized Leaky
ReLU) [91] replaced the standard rectified linear units (ReLU) to decrease the overfitting
effect. Litvin et al. [89] trained a face classifier to test the reconstructed RGB images and
compared the results with a reconstructed dataset using FusionNet as well as the original
RGB images.

To simplify the synthesis of heterogeneous faces, He et al. [92] presented a high-
resolution heterogeneous face synthesis divided into three main parts as shown in Figure 7;
a Gp pose correction network that estimates normalized shape information, a Gt texture
inpainting network that learns to produce a pose invariant facial texture representation,
and a fusion warping network that combines the results of the previous two parts. To
supervise the visual quality and minimize intra-class variance, they used a multi-scale and
a fine-grained discriminator respectively. To obtain high synthesis results, three types of
losses were employed: a UV loss, an adversarial loss, and a pixel loss.

Wu et al. [93] used the Disentangled Variation Representation (DVR) for intermodal
NIR-VIS face matching. To disentangle the NIR and VIS facial representations, they imple-
mented a variational lower bound to estimate the space of the posterior variable and the
latent variable. To facilitate the modeling of the compact and discriminant disentangled
latent variable spaces for heterogeneous modalities, they offered a way to minimize the
identity information for the same subject and the relaxed correlation alignment constraint
between the variations of the NIR and VIS modalities. They used the LightCNN-9 and
LightCNN-29 [94] models as backbone networks. These are pre-trained on the MS-Celeb-
1M dataset [95].
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Figure 6. The proposed modified FusionNet based on the work of [89].

Figure 7. NIR-VIS face completion network based on [92].

One of the problems encountered in the identification or recognition of IR faces is
the low resolution of IR spectral images. Existing approaches to infrared and visible
face verification assume that infrared and visible images of faces have similar resolution.
This is unlikely in real-world long-range surveillance systems because humans are far
away from the cameras. Guei and Akhloufi [96] addressed this issue by providing a
deep convolutional generative adversarial network (DCGAN) [97] for the enhancement of
infrared facial images. The proposed algorithm synthesizes a super-resolution facial image
from its lower resolution equivalent as shown in Figure 8.
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Figure 8. DeepSIRF 2.0 results for the thermal LWIR images, from left to right: low-resolution images;
bicubic; DeepSIRF 2.0; high-resolution image [96].

To address the image resolution issue, Immidisetti et al. [98] introduced the task of
thermal to visible face verification from low-resolution thermal images. The proposed
task is difficult due to the significant domain disparity between the thermal and visual
pictures and the low resolution of the thermal images. To address it, they suggested a
hybrid network that combines axial-attention layers with an image conditional generative
adversarial network (GAN). The generator generates images of visible faces which are then
compared to a gallery of visible images using an available face matching algorithm.

Reflected light is created around the eyes in NIR face pictures of eyeglass-wearing
subjects due to active NIR light sources and this is one of the primary performance de-
grading factors in NIR face recognition. To solve this problem, Kim et al. [99] proposed
a Glasses2Non-glasses (G2NG) data augmentation. They adapted CycleGAN to imple-
ment synthetic oversampling and generated realistic facial images of subjects with and
without glasses. They then combined the synthetic images with the database to build an
augmented training database which improved the reflected light resistance of the NIR face
recognition system.

In the work of Luo et al. [100], a new generative adversarial network was proposed for
facial image translation in thermal to RGB visible light named ClawGan: Claw connection-
based generative adversarial networks. Luo et al. [100] proposed a mismatch metric (MM)
to measure the mapping relationship of paired images and used template matching to
reduce the MM of the dataset. To form a new objective function, they added the synthesized
loss and the generative reconstructed loss to the adversarial loss and the cycle-consistency
loss. And to improve feature preservation, they replaced the U-Net network structure of
the generator with a claw-connected network. The proposed ClawGAN image translation
system preserves the thermal properties of the images while improving their quality. It also
improves the recognizability of the images in both dark and bright light.

5.2. Feature Learning Methods

The method of learning features consists of locating faces by extracting facial structural
features. It is first trained as a classifier and then it is used to differentiate between facial
and non-facial regions. The idea is to go beyond the limits of the instinctive knowledge
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of faces. In the work of Wu et al. [101], they introduced a convolutional neural network
(CNN) architecture for thermal face recognition as a new approach to automatically learn
efficient features from raw data. The results of experiments on the RGB-D-T face dataset
show that the proposed CNN architecture can achieve a higher recognition rate compared
to traditional recognition methods such as LBP, HOG [102], and invariant moments.

The high-level features of deep convolutional neural networks trained on images
of visual spectra are potentially domain-independent and can be used to code for faces
detected in different image domains. Pereira et al. [103] presented a generic framework
of domain-specific units for the recognition of heterogeneous faces using a deep neural
network architecture with low-level features. With this approach, the learning of shallow
feature detectors of each new image domain is possible.

In Peng et al. [104], a convolutional neural network (CNN) for NIR face recognition
(specifically face identification) in non-cooperative-user applications is presented. The
proposed NIRFaceNet is a modified GoogLeNet [105] but it has a more compact structure
specifically designed for the NIR dataset of the Chinese Academy of Sciences Institute of
Automation (CASIA) and it can achieve higher rates of identification with less training
time and less processing time. The experimental results show that when image blur and
noise are present, NIRFaceNet has an overall advantage over other approaches in the face
recognition domain of NIR images.

To extract modality-invariant and identity-discriminative features, Hu et al. [106]
proposed a Disentangled Spectrum Variations Network. This deep learning framework
deals with the NIR-VIS disentangle spectrum variations matching problem. To do so,
two strategies are presented: Stepwise Spectrum Orthogonal Decomposition (SSOD) and
Spectrum adversarial Discriminative Feature Learning (SaDF). The first one consists of
assigning the task of disentangling spectrum variations to several layers of the network
to model the process of layer-by-layer removal of spectrum information in the network.
The second is to learn the identity discrimination features which consists of an identity
discrimination subnetwork (IDNet) and an auxiliary spectrum opposition subnetwork
(ASANet). IDNet is composed of a Gh generator to generate an invariant spectrum feature
and a Du discriminator to extract the identity discrimination feature. ASANet contains
a Gh generator to remove modality-variant spectrum information with the help of a Dm
discriminator as presented in Figure 9.

Figure 9. An illustration of the proposed DSVNs architecture based on [106].

Kim et al. [107] introduced an approach to solve the problem of applying a complex
deep CNN architecture directly to NIR FR with limited size NIR face datasets. To improve
the performance of FR NIR, a fine-tuning approach was used to pre-process the information
of an FR RGB model from a deep CNN model using the pre-trained RGB parameters as
the initial parameter for the NIR deep CNN model. The proposed approach achieved high
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performance with small public datasets and better generalization for various environments
in a real-world FR scenario.

Before diving into more complex methods, some researchers choose to adapt existing
methods from VIS FR to the IR FR. Shavandi and Paeen Afrakoti [108] studied the function
of a sparse processing classification algorithm in thermal face recognition. This processing
is applied directly to the input image to test the capacity of the sparse classifier to receive
information directly from thermal images without using a feature extraction algorithm. The
results showed that this algorithm successfully overcame challenges such as different facial
states, images with and without glasses, images with noise present, thus outperforming
the Eigenface and KNN algorithms.

By using a model trained on RGB images, Szankin et al. [69] studied the influence of
thermal imagery resolution on the accuracy of Deep Learning-based face recognition. They
used thermal images for the embedding phase which helped increase accuracy. A more
efficient result was presented by using a new deep super-resolution model (SR) to enhance
down-scaled images and increase accuracy by 6.5% on small data.

To perform face recognition on a thermal dataset, Mahouachi et Akhloufi. [109] devel-
oped a deep convolutional neural network architecture based on the FaceNet architecture
and the MTCNN model. FaceNet was used as an embedder. The authors built an interme-
diate model by concatenating three outputs of FaceNet models. The model accepts three
images as its input and creates three 128-D vector embeddings as its output. Its goal is then
to freeze some levels of the first layers and retrain the last layers to perform the task. Later,
Mahouachi et Akhloufi. [110] adapted the work of [109] on NIR images. The authors used
raw data without image quality enhancement and chose not to use pre-trained weights on
the RGB datasets and trained the model from scratch using multiple fine-tunings.

Jo et al. [111] conducted experiments on the application of deep learning on NIR face
recognition. Two deep learning networks were trained (FaceNet and NIRFaceNet [104])
on five public datasets. This experiment showed that simple networks perform well on
NIR face datasets as shown in Figure 10. They presented a data augmentation method to
improve the recognition of users with glasses which helped to overcome this category’s
problems without constructing an additional training set.

Figure 10. Comparisons between FaceNet and NIRFaceNet [111].

Also, Gavini et al. [112] proposed a method to improve thermal classifier accuracy
by using transfer learning. They proposed a two-classifier technique for thermal face
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recognition in which the source classifier is taught first. The target classifier is then trained
using the source classifier’s information. The suggested approaches (CNNDSDTL1

t and
CNNDSDTL2

t ), in which the fine-tuned weights of the sparsified source network are trans-
ferred, enhance the target classifier model’s capacity (CNNt). The results of these methods
show an increase in the accuracy of thermal to visual face recognition.

Residual Compensation Networks (RCN) were introduced in [82]. The authors used
a novel two-branch network architecture (RCN) to acquire separate features for different
modalities in Heterogeneous Face Recognition (HFR). The RCN incorporates a residual
compensation (RC) module and a modality discrepancy loss (MD loss) into traditional
convolutional neural networks. The RC module reduces modal discrepancy by adding
compensation to one of the modalities so that its representation can be close to the other
modality. The MD loss alleviates modal discrepancy by minimizing the cosine distance
between different modalities.

A two-step method is considered in the work of Guo et al. [62]. This paper uses public
VIS data resources to train a deep network model which is referred to as the first model.
As a next step, they used several near-infrared face images to retrain the obtained deep
network model. After retraining is completed, they used the last deep network model as
a feature extractor of near-infrared face images. Then they apply the cosine distance to
calculate the score of both features for the test sample and training sample. Here, the score
could be considered to be the correlation intensity between the test sample and training
sample. They then used the weighted combination strategy to perform score fusion by
applying an adaptive score fusion strategy and the nearest neighbor algorithm to conduct
the final classification (See Figure 11).

Figure 11. Score fusion process [62].

A novel CNN structure is proposed based on characteristics of thermal infrared
faces [113]. Convoluted edges are taken as the initial features to refine and extract uncom-
mon thermal infrared facial features for identification. This paper suggested a regional
parallel structured CNN algorithm (RPSNet) to obtain multi-scale features based on edge
information. The structure of the proposed network contains three main cascaded compo-
nents as shown in Figure 12: initial edge feature extraction, multi-scale feature extraction,
and feature vector classification. The initial edge feature extraction module is composed of
a convolution layer and a cascaded maximum clustering layer. In order to generate multi-
scale features, they design the convolutions with different kernels as three parallel channels.
Finally, the fully connected layer and the softmax loss transform the convolutional feature
maps into feature vectors.
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Figure 12. Regional parallel structure convolutional neural network based on [113].

A new Wasserstein convolutional neural network (W-CNN) is introduced in [114].
This approach learns the invariant features between near-infrared and visual images. The
overall architecture is presented in Figure 13. The low-level layers of the W-CNN are trained
with VIS images and the high-level layer is split into three parts: the NIR layer, the VIS
layer, and the shared NIR-VIS layer. The first two layers aim to learn the specific features of
each model and the NIR-VIS shared layer is built to learn a subspace of invariant features
of the modality. The Wasserstein distance is introduced in the NIR-VIS shared layers to
measure the similarity between distributions of heterogeneous characteristics. W-CNN
learning is implemented to minimize the Wasserstein distance between the NIR and VIS
distribution for invariant deep feature representations of heterogeneous face images. They
imposed a correlation prior on the fully connected W-CNN layers to avoid the problem of
over-fitting on small-scale heterogeneous face data by minimizing the size of the parameter
space. This prerequisite is implemented by a lower rank constraint in an end-to-end array.

Figure 13. An illustration of the proposed Wasserstein CNN architecture in [114].
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To extend the developments in deep learning for VIS face recognition to the NIR
spectrum without having to reconsider the underlying deep models that can only see VIS
faces, Lezama et al. [115] proposed an approach that includes two essential elements,
cross-spectral hallucination and low-level embedding, to respectively optimize the input
and output of a deep model using the VIS spectrum for cross-spectral face recognition.
Cross-spectral hallucination generates VIS faces from NIR images using a deep learning
approach. Low-level integration provides a low-level structure for the deep features of
faces in the NIR and VIS spectrum.

No attempt was made to reduce the complexity of DCNN models for NIR face recogni-
tion until Kim et al. [99] suggested a fast NIR face recognition system based on the DCNN
that is resistant to reflected light. They used Glasses2Non-glasses (G2NG) data augmenta-
tion to create synthetic face images of people with and without eyeglasses. Also, in this
study, they produced LiNFNet by reducing the complexity of VGG-16 using depthwise
separable convolutions and linear bottlenecks. The initial convolution layers are simpler
functions for extracting output activations than the rest of the convolution layers. The
output activations extracted from the initial convolution layers of VGG-16 for an NIR
face image have similar patterns and structures of intensity values. From this analysis,
they conclude that the activations contain redundant information. Thus, to implement
the LiNFNet architecture, they reduced the number of filters in the first convolution layer
of the network by half. Then, to extract the rich information for NIR FR from the input
activation, they adapted linear bottlenecks to the last three convolution layers of VGG-16.

Due to the lack of datasets, heterogeneous FR techniques commonly rely on pre-trained
features from a large-scale visual dataset, including generic face data. However, due to the
texture mismatch with the visual domain, these pre-trained features result in worsened
performance. Based on this reasoning, Cho et al. [116] presented the Relational Graph
Module (RGM), a graph-structured module that collects global relational information as
well as generic facial features. Since the relational information of each identity between
intra-facial components is the same regardless of modality, understanding the relationship
between features can facilitate cross-domain matching. Using GMR, relationship propa-
gation reduces texture dependence while retaining the benefits of pre-trained features. In
addition, the GMR identifies long-range connections by capturing global face geometries
from locally linked convolutional features. The authors also proposed a node attention unit
(NAU) which performs node-wise recalibration to focus on the most informative nodes
emerging from the relationship-based propagation.

Kumar et al. [117] presented the Occluded Thermal Face Recognition using the Bag
of CNN (BoCNN) architectural framework for recognizing occluded thermal faces. They
began by examining the effectiveness of preprocessed models using transfer learning to
find that they produce good results for thermal faces that are not occluded. Since occlu-
sion reduces performance, they used other decision-level fusion techniques after transfer
learning to improve the performance of the pre-trained models. Compared to a single
CNN architecture, all fusion techniques used in the presented study produce better results.
Several pre-trained serial DAG and CNN models, such as VGG-19, Resnet-50, Resnet-101,
Inception-V3, and InceptionResnetV2, have been combined into the proposed BoCNN
model as seen in Figure 14. The characteristics generated differ due to the differences
in architectural design and depth of each CNN model. It has also been empirically de-
termined that each network’s misclassification is not mutually inclusive. These models
were fused at the decision level utilizing two distinct types of fusion techniques. Various
fusion techniques, namely majority voting, maximum score, and average score at level 1
and majority average and majority-maximum at level 2, were used to combine different
networks formed after training.

Xu et al. [83] presented a part relationship attention module (PRAM) that extracts
connections between components from a domain-independent face semantic mask to learn
domain-independent features as well as fluctuations in pose and emotion. To express
domain-invariant identification information, the relationships between facial components
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are crucial. PRAM involves four steps. According to a previously extracted mask, a face
image is first cut into four parts: left eye, right eye, nose, and mouth. The light CNN-9
backbone receives the four partial images and the global image of the face for a total of
five images. Representative features of each part are carefully extracted at this stage. The
out-of-order pairwise combinations were retrieved and organized in a predefined order in
the second phase to illustrate the relationship between two sections. All combinations are
then sent to a common FC layer (L2) in the third phase, which ensures that the network
learns the same functional connection between two representative features. The association
between specific locations and a consistent standard is derived from this calculation. A
learning weight is used in the final phase to reflect the strength of each relationship.

Figure 14. The BoCNN architecture proposed in [117].

5.3. NIR-VIS Alignment Methods

Near infrared-visual face recognition (NIR-VIS) is a task that involves matching face
data from multiple modalities, and it has a wide range of applications in areas such as
multimedia information retrieval and criminal investigations. However, due to significant
intra-class variability and small NIR-VIS datasets, it remains a challenging task. Several
methods are used for the alignment approach. Sarfraz et al. [118] presented the first
attempt in using deep neural networks to bridge the modality gap in thermal-visible face
recognition. The learned projection matrices capture the non-linear relationship and are
able to bring the two closer to each other. In [119] a new invariant deep representation
approach is presented by He et al. This method maps NIR and VIS images to a compact
Euclidean space using a network that is composed of two layers. The low layers are trained
on VIS data and the high layers contain two subspaces; a modality invariant identity
information and a modality variant spectrum information. For optimization, an alternation
of minimization is used at the training phase. Wu et al. [73] presented an image-image
translation to enhance NIR face recognition. This method is divided in three sub-methods:
face alignment by using the MTCNN network [120], NIR-VIS image translation using the
CycleGan framework [121] to generate VIS images from NIR images, and an Inception-
ResNet-v1 model to use as a face embedding based on FaceNet. This method shows
an efficient way to transform NIR face images into VIS images by maintaining identity
information needed for recognition. Deng et al. [81] propose a new heterogeneous face
recognition modal invariant deep neural network. They first extract modal independent
hidden factors for different modalities using a mutual component convolutional neural
network layer instead of backpropagation to prevent overfitting. An MCA loss is then
presented for modal invariant feature extraction of single images.
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Considering a heterogeneous face recognition problem, the significant domain gap
between the NIR and VIS modalities presents great challenges to accurate face recognition.
To overcome the domain gap problem, Wang et al. [122] proposed a Parallel-Structure-
based Transfer learning method (PST) (See Figure 15), which fully utilizes multi-scale
feature map information. PST consists of two parallel streams of the network; a source
stream (S-stream) with fixed parameters from being pre-trained on a large-scale VIS dataset
and a transfer stream (T-stream) that absorbs multi-scale feature maps from S-stream and
transfers the NIR and VIS face embeddings to a unique feature space. S-stream preserves
the discriminative ability learned from the large-scale source dataset.

Figure 15. Parallel-Structure-Based Transfer learning method based on [122].

The use of unpaired VIS images to improve the NIR-VIS recognition accuracy is an
ongoing issue. Liu et al. [123] presented a deep TransfeR NIR-VIS heterogeneous facE
recognition neTwork (TRIVET) for NIR-VIS face recognition. First, a deep convolutional
neural network (CNN) with ordinary measures was used to learn discriminative models
to utilize large numbers of unpaired VIS face images. The ordinal activation function
(Max-Feature-Map) was used to select discriminative features and to make the models
robust and lighter. Second, to transfer these models to the NIR-VIS domain, they fine-tuned
two types of NIR-VIS triplet losses. The triplet loss not only reduces intraclass NIR-VIS
variations but also augments the number of positive training sample pairs. This makes
fine-tuning deep models on a small dataset possible.

To address the misalignment problem, Zhao et al. [124] proposed a self-aligned
generation architecture to semantically align data distributions between two modalities.
To generate matched images with different domains, they used two encoders and two
decoders. To train the network, a training method is promoted with the same latent code
and a self-aligned block. While the self-aligned block works as a secondary rectifier of the
unaligned attributes, the same latent code might virtually impact alignment performance.
These methods ensure that images from two domains are aligned. In addition, they
presented a multi-scale patch discriminator for the high quality of the generated aligned
NIR-VIS images.

Hu et al. [125] presented a new method to solve the NIR-VIS matching problem called
Dual Adversarial Disentanglement and Deep Representation Decorrelation (DADRD).
Three major components of the DADRD model are designed to reduce the gap between NIR-
VIS images: Cross-Modal Margin Loss (CmM), Dual Adversarial Disentanglement Variation
(DADV) and Deep Representation Decorrelation (DRD). First, as shown in Figure 16, the
CmM loss collects the intra-class and inter-class information from the data, and then uses a
central variation element to reduce the modality difference. The mixed face representation
(MFR) layer of the backbone is then divided into three sections: the identity-related layer,
the modality-related layer, and the residual-related layer. The DADV is intended to decrease
intra-class variations such as adversarial disentangled modality variations (ADMV) and
adversarial disentangled residual variations (ADRRV). Specifically, ADMV and ADRRV
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use an adversarial method to remove spectral and residual variations such as lighting,
posture, emotion, and occlusion. Finally, they apply DRD to the three deconstructed
features to make them uncorrelated which more effectively separates information from the
three components and improves feature representations.

Figure 16. The flowchart of DADRD model proposed in [125].

To reduce the difficulty of learning cross-mode invariant features, Sun et al. [126]
proposed a method of decomposing the cross-mode data gap by auxiliary modality (DGD)
for HFR NIR-VIS. The authors used the brightness component (Y component) of the YCbCr
color space of the VIS image to decompose the cross-mode data gap as an auxiliary modality.
The huge gap between the NIR data and the VIS data is decomposed into two smaller gaps.
This is because the brightness component retains the structural information of the VIS image
and it is similar to the color information of the NIR modality which reduces the difficulty
of network learning. Then, during the learning process, they designed the intermodal gap
decomposition loss and intramodal gap loss to guide intermodal knowledge exchange and
back-propagation optimization.

Recently, Cheema et al. [127] proposed a unified end-to-end cross-modality discrimina-
tor network (CMDN) for HFR. This work presents a cross-modality discriminator network
and unitary class loss for heterogeneous face recognition. In order to learn deep rela-
tionships between features for cross-domain face matching, the proposed network uses a
deep relational discrimination module. At the same time, it is used to extract modality-
independent embedding vectors for face images. The unit class loss aids in the parameter
optimization of the CMDN network which shows high stability and accuracy. The pro-
posed loss can learn invariant identity features from unaligned facial images. This network
can be used not only to extract embedding vectors from faces but also to perform HFR
classification and to create a fusion of embedding vectors and classification probabilities.

5.4. Applications

Infrared Face recognition has been tested in real-world situations. Menon et al. [128]
proposed a solution to identify drunk drivers using images captured with the thermal
spectrum. Two steps are necessary. First, face identification is performed to detect faces
using a CNN. The detected face is classified into one of two classes, drunk or sober, using
a Gaussian Mixture Model along with the Fisher Linear Discriminant for dimensionality
reduction. To do so, a set of selected points on the same faces with different levels of alcohol
show the temperature distribution of the face allowing the classification of the images.
Kamath et al. [129] presented TERNet, a powerful emotion detection system based on
thermal pictures. To achieve this, a modified convolutional neural network with strong
generalization characteristics was used. The architecture uses features from the VGG-
Face CNN model that were learned using transfer learning and fine-tuned with thermal
expression face data from the TUFTS face database. Mohamed et al. [130] presented a
multi-spectral face anti-spoofing method working with both visible (VIS) and near-infrared
(NIR) spectra imaging. A novel solution based on active near-infrared images is proposed
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for face spoofing detection. Unlike most existing spoofing detection techniques, they used
the NIR spectrum and they analyzed differential images. To detect the existence of spoofing
media, they calculated the context consistency between face and non-face areas. Extreme
circumstances, such as cropped fake media, necessitate the use of lighting texture.

Since the newly emerged difficulties during the COVID-19 pandemic, individuals
are required to wear facial masks during this period to prevent the virus from spreading.
From the perspectives of training data and training techniques, Du et al. [131] tackled the
problem of NIR-VIS masked face recognition with the aid of semi-Siamese networks. They
presented a unique heterogeneous training technique to optimize the mutual information
provided by the face representation of two domains. Furthermore, to synthesize a masked
face from an existing NIR image, a method based on 3D face reconstruction is used. Using
these techniques, the approach generates a domain invariant face representation that is
robust to mask occlusion. Tests on three NIR-VIS face datasets indicate the effectiveness of
the method and its ability to be generalized to other datasets. It achieves a validation rate
of 98.58%, 83.0% and 70.6% respectively on the CASIA NIR VIS dataset, the Oulu-CASIA
NIR-VIS dataset and the BUAA-VisNir dataset.

6. Discussion

Infrared facial identification is able to overcome the limitations of visual face recogni-
tion such as changes in light. Infrared (IR) imaging in FR systems has attracted increasing
interest due to the consistant quality of the images acquired under various lighting condi-
tions. In this section, we summarize and discuss all the findings based on the reviewed
papers. For that purpose we present Tables 2–5 to summarize the results.

Infrared recognition of faces suffers from several problems. One of the major problems
is the lack of datasets containing IR images. The size of current IR face datasets is only one
tenth the size of the well-known CASIA WebFace dataset for RGB FR. For that reason, a
lot of work was oriented towards synthesis methods to overcome this problem. The idea
is to generate visible images from infrared images to then perform face recognition using
methods tested and trained over RGB images. We summarize the results obtained by these
approaches in Table 2.

Table 2. Comparison of synthesis approaches results.

References Methods Metrics Datasets

Lai and Yanushkevich [85]

CycleGAN
InceptionV3

Xception
MobileNet

95.35% (Rank-1 acc) Carl dataset [70]

Litvin et al. [89]
FusionNet+RReLu

VGG classifier 97.52% (Rank-1 acc) RGB-D-T [61]

He et al. [92]

CFC
(pose correction

+texture inpainting
+fusion wrapping)

99.21% (Rank-1 acc)
99.70% (Rank-1 acc)
99.90%\(Rank-1 acc)

CASIA NIR VIS 2.0 [53]
BUAA-Vis-Nir [66]

Oulu-Casia [35]

Wu et al. [93]
DVR

(LightCNN-9,
LightCNN-29)

99.10% 99.70% (Rank-1 acc)
99.30% 100.00% (Rank-1 acc)
97.90% 99.20% (Rank-1 acc)

CASIA NIR VIS 2.0 [53]
Oulu-CASIA [35]

BUAA-VIS-NIR [66]

Guei and Akhloufi [96]
DCGAN

(DeepSIRF2.0)

243.21 ( MSE )
140.16 ( MSE )
140.16 ( MSE )

Terravic Facial IR [71]
CBSR NIR [53]

CASIA NIR VIS 2.0 [53]

Immidisetti et al. [98]
Axial-attention layers

C-GAN 94.40% (AUC) ARL-VTF dataset [65]

Kim et al. [99]
Glasses2Non-glasses (G2NG)

data augmentation
CycleGAN

94.60% (VR@FAR + 0.1%) LFW [46]

Luo et al. [100] Claw-GAN 95.70% (AUC) IRIS dataset [56]
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Table 3. Comparison of feature extraction approaches results.

References Methods Metrics Datasets

Zhan Wu et al. [101] CNN 98,00% (acc) RGB-D-T [61]

Pereira et al. [103]
DCNN

(Inception Resenet v2
+ adapting bias and kernels )

90.10% (Rank-1 acc)
92.20% (Rank-1 acc)
50.90% (Rank-1 acc)

CASIA NIR-VIS2.0 [53]
NIVL NIR VIS [67]
Pola Thermal [68]

Peng et al. [104] Modified GoogleLeNet
(NIRFaceNet) 98.28% (acc) CASIA NIR [53]

Hu and Hu [106]

Stepwise spectrum
orthogonal decomposition (SSOD),

spectrum adversarial discriminative
feature learning(SaDF)

(IDNet, ASANet)

99.00% (Rank-1 acc)
100.00% (Rank-1 acc)

CASIA NIR VIS 2.0 [53]
Oulu-CASIA [35]

Kim et al. [107]
Fine tuning pre-trained

CNN models for RGB FR
(FaceNet)

94.47% (VR@FAR = 0.7%) PolyU-NIRFD [54]

Shavandi andAfrakoti [108]
Sparse processing classification

(minimizing normed zero-norm,
orthogonal matching pursuit)

96.50% (acc without any noise) USTC NVIN [55]
CBSR NIR [53]

Szankin et al. [69] DNN (FaceNet)
Face enhancement

99.33% (acc)
81.87% (acc)

SC3000DB [69]
IRIS [56]

Mahouachi et Akhloufi [109]
FaceNet
MTCNN

Fine tuning
88.81% (VR@FAR = 50.66%) USTC-NVIE [55]

Mahouachi et Akhloufi [110]
FaceNet
MTCNN

Fine tuning

96.68% (VR@FAR = 0.001%)
94.57% (VR@FAR = 49.01%)

CASIA NIR VIS 2.0 [53]
USTC-NVIE [55]

Jo and Kim [111]
FaceNet

NIRFaceNet
Data augmentation

94.80% (VR@FAR = 0.1% without augmentation)
96.40% (VR@FAR + 0.1% with augmentation)

CASIA NIR-VIS 2.0 [53]
+PolyU-NIRFD [54]

+ND-NIVL [67]

Gavini et al. [112] Transfer learning 94.32% (acc)
90.33% (acc)

RGB-D-T [61]
UND-X1 [63]

Deng et al. [82]
Residual Compensation

Convolutional Neural Network,
Modality Descripency loss

99.32% (Rank-1 acc)
99.44% (Rank-1 acc)

CASIA NIR VIS 2.0 [53]
CUHK NIR VIS [132]

Guo et al. [62]
DNN

Cosine distance
Adaptive score fusion

99.56% (acc weak light), 95.31% (acc strong light)
99.89% (acc weak light), 93.98% (acc strong light)

Sun Win [62]
HIT LAB2 [57]

Wang and Bai [113]

RPSNet
(edge feature extraction,

multi-scale feature extraction,
feature vector classification)

95.97% (acc) Private dataset

He et al. [114] W-CNN
Low rank correlation constraint

98.70% (Rank-1 acc)
98.00% (Rank-1 acc)
97.40%\(Rank-1 acc)

CASIA NIR VIS 2.0 [53]
Oulu [35]

BUAA NIR VIS [66]

Lezama et al. [115] Deep Cross-spectral Hallucination
Low Rank Embedding 96.41% (acc) CASIA NIR VIS 2.0 [53]

Kim et al. [99] Lighten DCNN 94.60% (VR@FAR + 0.1%) LFW [46]

Cho et al. [116] Relational Graph Module 95.97% (VR@FAR = 0.1%)
99.22% (VR@FAR = 1%)

CASIA NIR VIS 2.0 [53]
BUAA NIR VIS [66]

Kumar et al. [117]

Bag of CNN(BoCNN)
VGG-19, Resnet-50,

Resnet-101, Inception-V3,
InceptionResnetV2

99.20% (mean score acc) IIIT Delhi occluded thermal face
dataset [72]

Xu et al. [83]
Part relationship attention module

(PRAM)
lightCNN-9

97.94% (VR@FAR = 0.1%)
98.44% (VR@FAR = 1%)

CASIA NIR VIS 2.0 [53]
BUAA NIR VIS [66]

Another solution adapted for the lack of large dataset is a simple end-to-end IR feature
extraction using transfer learning. This method uses pretrained weights on RGB images
as input and then fine-tunes the model using an IR dataset to train an IR face recognition
architecture. We summarize these approaches results in Table 3.
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Table 4. Comparison of NIR VIS alignement approaches results.

References Methods Metrics Datasets

Sarfraz and Stiefelhagen [118] Feed Forward DNN
Non-linear mapping 83.73% (Rank-1 acc) UND X1 [63]

He et al. [119] DNN
Orthogonal subspace embedding 95.82% (VF@FAR = 0.1%) CASIA NIR VIS 2.0 [53]

Wu et al. [73] MTCNN
CycleGAN

99.80% (acc)
99.60% (acc on Lab1), 90.70% (acc on Lab2)

INF [73]
CSIST [57]

Deng et al. [81]
Mutual Component

Convolutional Neural Network,
MCA loss

99.22% (Rank-1 acc)
99.44% (Rank-1 acc)

CASIA NIR-VIS2.0 [53]
CUHK NIR VIS [132]

Wang et al. [122] Transfer Learning
Multi-Scalefeature mapping 99.96% (Rank-1 acc) CASIA NIR VIS 2.0 [53]

Xiaoxiang Liu et al. [123]

DNN
Max-Feature-Map

Fine-tuning
Triplet loss

95.74% (Rank-1 acc)
91.03% (VR@FAR = 0.1%) CASIA NIR VIS 2.0 [53]

Zhao et al. [124] Self-aligned generation architecture
Multi-scale patch discriminator

99.60% (VR@FAR = 0.1%)
93.20% (VR@FAR = 0.1%)
97.30% (VR@FAR = 0.1%)

CASIA NIR VIS 2.0 [53]
Oulu CASIA [35]

BUAA NIR VIS [66]

Hu et al. [125]
Dual Adversarial Disentanglement

and
Deep Representation Decorrelation

97.60% (VR@FAR = 0.1%)
92.90% (VR@FAR = 0.1%)
99.30% (VR@FAR = 0.1%)

CASIA NIR VIS 2.0 [53]
Oulu CASIA [35]

BUAA NIR VIS [66]

Sun et al. [126] Dual Adversarial DGD 99.80% (VR@FAR = 1%)
85.30% (VR@FAR = 1%)

CASIA NIR VIS 2.0 [53]
Oulu CASIA [35]

Cheema et al. [127]
End-to-end cross-modality

discrimination network for HFR
Unit-Class Loss

95.21% (Rank-1 acc)
98.50% ((Rank-1 acc)
99.70% (Rank-1 acc)
99.50% (Rank-1 acc)

TUFTS [74]
UND-X1 [63]

USTC-NVIE [55]
CASIA NIR VIS 2.0 [53]

Table 5. Comparison of results on real-word application.

References Methods Metrics Datasets

Menon et al. [128] CNN Gaussian mixture model
Fisher Linear Discriminant 97.00% (acc) Private Dataset

Kamath et al. [129] CNN Transfer Learning 96.20% (acc) TUFTs dataset [74]

Mohamed et al. [130] CNN 96.78% (acc) Msspoof Dataset [133]

Du et al. [131] Heterogeneous semi-Siamese
method 3D face reconstruction

98.58% (VR@FAR = 0.1%)
83.0 % (VR@FAR = 0.1%)
70.6% (VR@FAR = 0.1%)

CASIA NIR VIS 2.0 [53]
Oulu CASIA [35]

BUAA NIR VIS [66]

One additional problem for the infrared spectrum is the occlusion due to the opacity
of the glasses. Glasses lead to the occlusion of a large part of the face, resulting in the loss
of important discriminant information. People with identical facial parameters can have
different heat signatures. MWIR and LWIR images are sensitive to the ambient temperature,
as well as to the emotional, physical, and health status of people. The consumption of
alcohol alters the thermal signature of people, which can lead to performance degradation
as shown in the work of Mahouachi et al. [109]. Yet, Menon et al. [128] used this property
to identify drunk drivers using thermal images with a 97.00% accuracy as shown in Table 5.

For the synthesis methods, the best accuracy is obtained by Wu et al. [93]. Tested on
CASIA NIR-VIS2.0, Disentangled Variational Representation using LightCNN-9 achieved
99.1% on rank 1 accuracy. When the backbone is replaced by LightCNN-29, DVR gains a
further 0.6% on rank 1 accuracy. For the Oulu-CASIA NIR-VIS and BUAA-VIS-NIR datasets,
while the quantity of samples in the training set is not large enough, they achieved 99.30%
and 97.90% on LightCNN-9 and a gain of 0.7% and 1.3% on LightCNN-29 respectively.
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A highly structured method that rivals the results of [93] is the Cross-spectral Face
Completion used in [92]. The improved performance of CFC benefits in part from the use of
Light CNN. They obtained 99.21%, 99.70% and 99.90% respectively on CASIA NIR-VIS2.0,
BUAA-VIS-NIR and Oulu-CASIA NIR-VIS.

Although CycleGAN was developed for unpaired or unsupervised image synthesis,
large face variations like pose and expression make CycleGAN fail to capture all the
differences between the NIR and VIS domains. For that reason, Lai and Yanushkevich [85]
only obtained a performance of 95.36% on the Carl dataset.

Most of the best performing techniques for feature extraction use small or private
datasets. For this reason, we will only discuss performance on larger datasets. We find
that Kim et al. [107], Deng et al. [82], and Hu and Hu [106] have the best rank 1 accuracy
surpassing 99.0% accuracy. By fine-tuning the pre-trained RGB CNN model, Kim et al. [107]
achieved 99.70% accuracy on the PolyU NIR face dataset. Gavini et al. [112] used transfer
learning and achieved 94.32% on RGB-D-T and 90.33% on the UND-X1 dataset. For NIR-
VIS alignment, transfer learning outperforms all other methods with accuracies of 99.96%
in the work of Wang et al. [122] and 99.80% in the work of Wu et al. [73].

Briefly, this survey revealed that it is challenging to design a robust and reliable face
representation that is based on both local and global features (hybrid method) in the NIR
domain which is crucial for accurate FR. We expect that hybrid methods could offer better
performance than methods based on single-type features. In Table 4, good recognition rates
were reported using hybrid methods for IR FR.

A notable limitation of most of the studies reviewed is that while each of the previous
methods was accurate in the presence of some challenges, their accuracy diminished in
the presence of other challenges. For example, an invariant feature in facial expressions or
eyeglasses works well as long as there is no misalignment or noise. The main reason is that
most of the related work in the field of IR has focused on the problem of lighting. However,
far too little attention has been paid to the other problems, such as noise, misalignment, and
occlusion, which can occur in IR FR systems. For future work, we propose to incorporate
image reconstruction and high-resolution methods into IR FR.

Since the different models were tested on different datasets with different augmenta-
tions, the comparison between their performances is not simple. Still, the analysis helps
point out some of the important characteristics of a robust deep learning architecture for IR
facial detection/recognition.

7. Conclusions

In this study, we have presented various deep IR face recognition and detection models
that share the goal of improving the facial detection results. It is found that deep learning
has achieved a degree of accuracy that facilitates deployment as a powerful tool that can be
considered for many security applications. Research reveals that deep learning approaches
have achieved high success rate using IR images for facial detection and recognition. Deep
convolutional neural networks (CNNs) form the basis of the proposed techniques. For
facial detection and recognition in IR, potential future studies could improve convolutional
architectures. The performance could be improved by introducing new architectures and
by analyzing current architectures. Both local and global features are used for recognition.
Methods based on local features were found to be more efficient than global features. When
visible and IR imaging is available, fusion and DNN-based methods are used to find the
common feature space. A comparative analysis of the best performing architectures on
the available datasets using similar metrics can help in their evaluation. Finally, one of the
current limitations in this field is data accessibility. With more datasets we believe better
results can be obtained. The results published to date show that the research in IR FR is
still in its early stage but that it has the potential to improve significantly.
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IR FR Infrared Face Recognition
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