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Abstract: Numerous publications showing that robust prediction models for microorganisms based
on Raman micro-spectroscopy in combination with chemometric methods are feasible, often with
very precise predictions. Advances in machine learning and easier accessibility to software make it
increasingly easy for users to generate predictive models from complex data. However, the question
regarding why those predictions are so accurate receives much less attention. In our work, we use
Raman spectroscopic data of fungal spores and carotenoid-containing microorganisms to show that it
is often not the position of the peaks or the subtle differences in the band ratios of the spectra, due
to small differences in the chemical composition of the organisms, that allow accurate classification.
Rather, it can be characteristic effects on the baselines of Raman spectra in biochemically similar
microorganisms that can be enhanced by certain data pretreatment methods or even neutral-looking
spectral regions can be of great importance for a convolutional neural network. Using a method
called Gradient-weighted Class Activation Mapping, we attempt to peer into the black box of
convolutional neural networks in microbiological applications and show which Raman spectral
regions are responsible for accurate classification.

Keywords: Raman; convolutional neural network; Grad-CAM; microorganisms; carotenoids; conidia

1. Introduction

Rapid and accurate identification of microorganisms is important for a variety of rea-
sons. For example, in medical diagnostics for rapid and correct treatment of patients and in
food processing to ensure safe products. Many methods for differentiating microorganisms
are based on their cultivation. This is always associated with a high expenditure of time and
materials. There are faster options such as DNA-based methods or matrix-assisted laser
desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS). Methods based
on optical molecular spectroscopy such as Raman spectroscopy can also be used to differen-
tiate microorganisms [1]. For this, it is necessary to create a reference data set of appropriate
Raman spectra and then train models to be able to make predictions for new unknown
spectra. Numerous studies have shown that robust prediction models for microorganisms
based on Raman micro-spectroscopy in combination with chemometric methods are not
only feasible, but often very accurate [1–4]. Even single cells of bacteria can be differentiated
using surface-enhanced Raman microscopy or specific metal substrates [5–7], which could
make time-consuming pre-enrichment and cultivation unnecessary. In our own studies,
we used Raman microscopy to develop predictive models to identify different isolates and
species of fungal spores [8] and to differentiate between 21 species of bacteria and yeasts [9].
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Here, we were able to get very accurate predictions with accuracies of over 98% using
support vector machines (SVM). Advances in machine learning and publicly available
software make it increasingly easy for users to generate reliable predictive models from
complex data.

When these methods are used outside of the core machine learning research field, one
aspect is not discussed as often, and that is the question of why these models allow such
accurate predictions. A publication that partially addresses this question by Kanno et al.
uses random forest machine learning to highlight the top features of a Raman spectral-
based predictive model for differentiating microorganisms [10]. Small differences in the
biochemical composition of the microorganisms lead to different Raman spectra, which
makes the differentiation possible [1,11] with the right amount and quality of data. There
can be various influences on a Raman spectrum, most of which can be eliminated by
standardizing the measurement and environmental parameters. Influencing factors on
Raman spectra of microorganisms, such as the culture medium used [12,13] or the incu-
bation time [14] can be easily standardized. Despite standardization of many parameters,
mathematical pre-treatment of the data is in many cases not only recommendable but
crucial for effective prediction models [15]. Influences on the baseline, for example caused
by interfering fluorescence, or differences in the overall intensity of a Raman spectrum, can
be eliminated by baseline correction and normalization. Smoothing algorithms may also be
able to prevent nonspecific noise from being misinterpreted as a feature. Predictive models
can also be optimized by reducing dimensions of data via principal component analysis
(PCA), and the associated elimination of features that are unnecessary or disturbing for
accurate predictions [16].

In this work, we investigate whether it is really small differences in the bands of the
Raman spectra that allow differentiation or whether completely different effects play a role.
To address this question, we trained convolutional neural network (CNN) models with
two data sets from previous publications [8,9]. One of the datasets contains the Raman
spectra of fungal spores, which partly shows an extremely high similarity between some
fungal isolates and species, and the other dataset [9] contains certain microorganisms
with carotenoid pigments, which are considered to be a particularly good distinguishing
feature [17].

While neural network-based methods have successfully propelled the fields of artificial
intelligence (AI) to new heights, the interpretability and exploitability of such methods
are still an active research area [18,19]. One of the most established methods for visual
explanation of classification results using CNN is Gradient-weighted Class Activation
Mapping (Grad-CAM) [20,21]. Grad-CAM is able to identify important neurons of the
model given the classification task. This can be used to visually explain “where” the
network places its attention when making a prediction. Grad-CAM is applicable to a wide
range of convolutional network models; in this work, we use it to highlight the Raman
spectra parts that are most crucial for prediction by considering the spectra as a 1D image.

2. Materials and Methods
2.1. Fungal Spores and Carotenoid-Containing Microorganisms

Parameters for cultivation and isolation of fungal spores can be taken from the 2021
publication by Hetjens et al. [8]. The details of cultivation of the microorganisms can be
taken from the March 2022 publication by Tewes et al. [9]. The names and abbreviations of
each used species are depicted in Table 1, as well as the number of Raman spectra.
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Table 1. All used fungal spores and carotenoid-containing microorganisms.

Microorganism Abbreviation Number of Spectra

Fungal spores

Metarhizium brunneum Cb16III Cb16III 642
Metarhizium brunneum Ca8II Ca8II 562

Metarhizium brunneum Cb15III Cb15III 525
Metarhizium pemphigi X1c Mpemp 847

Beauveria bassiana Bbass 372

Carotenoid-containing

Chryseobacterium indolgenes Cin 684
Kocuria rosea Kro 639

Micrococcus luteus Mlu 1842
Staphylococcus aureus Sau 1094

Xanthophyllomyces dendrorhous Xde 658

2.2. Sample Preparation

The conidia and bacterial suspensions were placed on a SiO2-protected silver mirror
slide (PFR14-P02, Thorlabs, Lübeck, Germany) under sterile conditions. The silver slide
was placed on the motorized stage of the Raman system. Areas with spores or carotenoid-
containing microorganisms were localized using the microscope (100×). Before analyzing
new samples, the slide was cleaned with acetone using a cotton pad, afterwards with
ethanol and a virgin fibre tissue wiper, and rinsed with sterile deionized water. The
detailed description of sample preparation can be found in publications [8] (fungal spores)
and [9] (carotenoid-containing microorganisms).

2.3. Spectral Recording

For all measurements a confocal Raman microscope (inVia Renishaw, Gloucestershire,
UK) with an excitation wavelength of 633 nm and a 100× lens (numerical aperture of 0.85)
was used. The conidia spores were measured using 1.5 s exposure time at about 0.7 mW on
sample (laser diameter about 5 µm) and 15 accumulations per spectrum. All carotenoid-
containing microorganisms were analyzed with an exposure time of 1.5 s at about 3.5 mW
laser power on sample (laser diameter about 7.5 µm). The spectral resolution is about
1.1 wavenumbers. The detailed description of the spectral recording parameters can be
found in publications [8] (fungal spores) and [9] (carotenoid-containing microorganisms).

2.4. Data Preprocessing and Model Development

For data preprocessing, MATLAB R2021b was used (MathWorks, Natick, MA, USA).
After the spectra were interpolated, baseline correction and smoothing using a low pass
filter (LPF) was carried out. The appropriate LPF code for this can be found in the Sup-
plementary Material of [22]. All spectra were normalized (z-score). To visualize first data
patterns and to allow a rough estimation on the classifiability, a PCA was performed. How-
ever, for a later application of the neural networks, the complete pre-treated spectra were
used and not principal components (PCs). Two independent models with the same architec-
ture were created for fungal spores and for the carotenoid-pigmented microorganisms. For
both types of data (spores and carotenoid-containing microorganisms), two models each
were trained with the same settings but different weight initialization to localize possible
random changes in the areas important to the model (later determined by Grad-CAM).

The models, trained using TensorFlow version 2.6.2, consist of three convolutional
layers with 16 filters and a kernel size of five for each layer. The convolutional layers
are followed by batch normalization, rectified linear unit (ReLU) activation layers, and
a max pooling layer. After a global average pooling operation, a fully connected layer
with 256 neurons, ReLU activations and dropout of 0.3 is added before at the output layer
of dimension 5 using a softmax activation. In total the model consists of 8421 trainable
parameters. We employ the commonly used Adam optimizers with a learning rate of 0.0001
and use the Sparse Categorical Cross-Entropy loss. The model is trained for 1500 epochs
using a batch size of 64.
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2.5. Grad-CAM

We use Grad-CAM in order to retrieve the activation given an input data and correct
prediction. As Grad-CAM returns the pooled gradients up to the last convolutional layer,
a heatmap of the size 256 was obtained and resized to the input data using OpenCV [23]
resize function with a bilinear interpolation. Each class-specific sample is aggregated in
order to obtain the mean activation maps of a class, if the prediction of it was correct.

3. Results and Discussion
3.1. Raman Spectra Untreated and Preprocessed

Due to diverse influences on Raman spectra that are not based on the bio-chemical
differences of individual species, some data pretreatment is of great importance for the
classification of different microorganisms [24,25]. For this reason, models with untreated
data were not generated and examined in this work.

Figure 1 shows the spectra of the fungal spores. Particularly high similarities can be
seen between Cb16III and Cb15 and between Ca8II and Mpemp. The greatest internal varia-
tion of the spectra is present at Bbass, where interfering fluorescence was most prevalent.
Noticeable are the effects at the beginning and at the end of the pretreated Raman spectra
(Figure 1b), which are caused by the LPF used, where the spectra appear to be “pulled”
downwards (approx. 600 cm−1) or show a kink (approx. 1675 cm−1).
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Figure 1. All Raman spectra of the fungal spores in grey and arithmetic mean spectra highlighted in
black (displayed with a Y-axis offset). Untreated-but-normalized Raman spectra (a) and preprocessed
spectra (baseline subtraction, smoothing, z-score normalization) (b).
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The untreated Raman spectra of the carotenoid-containing microorganisms (Figure 2a)
show the largest scatter in the range between 600 and 1000 wavenumbers; particularly
well observable in Cin and Sau. After data pre-treatment, this variation is much smaller
(Figure 2b). The two most pronounced peaks in all spectra from Figure 2 at about 1150 and
1525 cm−1 represent carotenoids [17]. It can be observed that these peaks shift slightly to
the left or right depending on the species, which already suggests a good classifiability.
Slight negative slopes are also seen in the pretreated spectra (Figure 2b) before and after the
strongly pronounced peak at about 1525 cm−1. Sau and Xde also show a clear drop after
the second strongly pronounced peak at about 1150 cm−1.
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Figure 2. All Raman spectra of the carotenoid-containing microorganisms in grey and arithmetic
mean spectra highlighted in black (displayed with a Y-axis offset). Untreated-but-normalized Raman
spectra (a) and preprocessed spectra (baseline subtraction, smoothing, z-score normalization) (b).

3.2. PCA for General Estimation of the Classifiability

PCs describing the most variance are not always the best variables for classification [26].
It is possible that PCs describing less variance are better for classification as PCs describing
much variance. Nevertheless, PCA is a relatively simple and solid method to recognize
patterns in large data sets [27].
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Figure 3a shows quite clearly that the first three PCs have difficulty spatially separating
Cb16III and Cb15. The clusters of Ca8II and Mpemp also merge. Bbass is the most distinct
from the rest of the data and is clearly separated. As already suggested by the observation
of the peaks triggered by the carotenoids in Figure 2b, the Raman spectra separate clearly
from each other when the first three PCs are plotted (Figure 3b).
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Figure 3. First three PCs of a PCA with the pretreated Raman spectra of the fungal spores (a) and
carotenoid-containing microorganisms (b).

3.3. Predictive Models and Cross-Validation

In order to evaluate the predictive CNN models, 5-fold cross-validation was performed,
resulting in a test split of 20% of the data. In order to avoid overfitting, we use 15% of the
training dataset as a validation set and save the best performing model on it. This model is
then evaluated on the held-out test set. The average precision, recall, F1-score and support
for model 1 with fungal spores is reported in Table 2. The precision for Cb16III (0.98), Cb15
(0.96) and Bbass (1.0) is very high. Model 1 is less precise for the spores Mpemp (0.89) and
Ca8II (0.88), but the correct predictions are still almost 90%. The model 2 for fungal spores
with the same architecture as model 1 shows similar values for precision, recall, F1-score
and support (Table 3). Large differences would be a sign of an insufficient data set; this is
not the case here.

Table 2. Precision, recall, F1 score and support with model 1 for fungal spores.

Microorganism Precision Recall F1-Score Support

Cb16III 0.98 0.97 0.97 131
Ca8II 0.88 0.83 0.86 133
Cb15 0.96 0.97 0.96 105

Mpemp 0.89 0.92 0.90 181
Bbass 1.00 1.00 0.99 74

accuracy 0.93 624
macro avg 0.94 0.93 0.94 624

weighted avg 0.93 0.93 0.93 624
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Table 3. Precision, recall, F1 score and support with model 2 for fungal spores.

Microorganism Precision Recall F1-Score Support

Cb16III 0.97 0.98 0.98 131
Ca8II 0.90 0.82 0.85 133
Cb15 0.98 0.97 0.97 105

Mpemp 0.87 0.93 0.90 181
Bbass 1.00 1.00 0.99 74

accuracy 0.93 624
macro avg 0.94 0.94 0.94 624

weighted avg 0.93 0.93 0.93 624

Both the performance parameters for the first model for carotenoid-containing microor-
ganisms (Table 4) and those for the second model (Table 5) show a value of 1.0 everywhere,
indicating a 100% correct identification of every species.

Table 4. Precision, recall, F1 score and support with model 1 for carotenoid-containing microorganisms.

Microorganism Precision Recall F1-Score Support

Cin 1.00 1.00 1.00 137
Kro 1.00 1.00 1.00 128
Mlu 1.00 1.00 1.00 368
Sau 1.00 1.00 1.00 219
Xde 1.00 1.00 1.00 130

accuracy 1.00 983
macro avg 1.00 1.00 1.00 983

weighted avg 1.00 1.00 1.00 983

Table 5. Precision, recall, F1 score and support with model 2 for carotenoid-containing microorganisms.

Microorganism Precision Recall F1-Score Support

Cin 1.00 1.00 1.00 137
Kro 1.00 1.00 1.00 128
Mlu 1.00 1.00 1.00 368
Sau 1.00 1.00 1.00 219
Xde 1.00 1.00 1.00 130

accuracy 1.00 983
macro avg 1.00 1.00 1.00 983

weighted avg 1.00 1.00 1.00 983

3.4. Grad-CAM Results

The Grad-CAM visualization results are obtained by aggregating the activation plots
for each correctly predicted classification results and normalizing them between 0 and 1.
The mean and variance of the specific class spectra is plotted as solid line and shaded
region, respectively. The activations are plotted as vertical strips over the spectra signal.
The darker a particular stripe at a certain wavelength appears, the more relevant the region
is for the model to make its prediction (scale next to each plot in Figures 4 and 5). Note
that as the aggregation over all correctly classified spectra of a particular class is shown, we
can infer what regions are generally more or less important for the model to make correct
predictions, however, it does not necessarily mean that each signal triggers the attention on
all highlighted areas.
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Figure 4. Mean Raman spectra of fungal spores Cb16III (A1), Ca8II (A2), Cb15 (A3), Mpemp(A4),
Bbass (A5) and normalized Grad-CAM indicator of CNN used signatures of model 1. Mean Raman
spectra of fungal spores Cb16III (B1), Ca8II (B2), Cb15 (B3), Mpemp (B4), Bbass (B5) and normalized
Grad-CAM indicator of CNN used signatures of model 2. Z-score normalized Raman intensities on
the Y-axis and Grad-CAM indicator normalized from zero to one (white to dark red).
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Figure 5. Mean Raman spectra of carotenoid-containing microorganisms Cin (A1), Kro (A2), Mlu (A3),
Sau (A4), Xde (A5) and normalized Grad-CAM indicator of CNN used signatures of model 1. Mean
Raman spectra of carotenoid-containing microorganisms Cin (B1), Kro (B2), Mlu (B3), Sau (B4), Xde (B5)
and normalized Grad-CAM indicator of CNN used signatures of model 2. Z-score normalized Raman
intensities on the Y-axis and Grad-CAM indicator normalized from zero to one (white to dark red).

3.4.1. Fungal Spores

Figure 4(A1–5,B1–5) show the mean spectrum of the respective fungal spores and
the spectral areas used by the neural networks for classification. In the case of Cb16III
(Figure 4(A1)), many areas in the shorter wavenumber regions (about 600–1200 cm−1) are
used by the model. This spectral region has comparatively weak signals, and the somewhat
more pronounced signatures at about 753 and 1001 cm−1 are even considered less important
by model 1. The more distinct signatures in the range of 1200 to 1565 cm−1 are also used less
and it is mainly the edges just before and after signatures that are highlighted by Grad-CAM.
Thus, for Cb16III in model 1 (Figure 4(A1), the areas 1464 cm−1 and 1668 cm−1 are highly
important for classification, although there are no peaks there. The regions highlighted by
Grad-CAM in the second model (Figure 4(B1)) are relatively similar to model 1, but the
regions in the short wavenumber range (600 to 1200 cm−1) receive somewhat less attention
than in model 1. The only distinct peak of Cb16III highlighted in deep red by Grad-CAM
in model 2 is the sharp partial peak at 1538 cm−1.

The marked Grad-CAM regions of model 1 of the spore isolate Cb15 (Figure 4(A3)),
which is Raman spectroscopically very similar to Cb16III, looks almost complementary to
Cb16III (Figure 4(A1)). The short wavenumber region receives less attention except for the
signatures at about 753 and 1001 cm−1 (Figure 4(A3)). Additionally, exactly complementary,
model 1 completely omits the regions before and after the most pronounced peak at about
1649 cm−1, whereas these regions are important in Cb16III. The Grad-CAM marked areas of
Cb15 of model 1 (Figure 4(A3)) that are similar to Cb15 of model 2 (Figure 4(B3)), where in
model 1 it is exactly the area between the double peak at 1383 and 1413 cm−1 that is marked
in deep red, and in model 2, it is more the actual peaks and not the area that is in between.
Noticeable in Cb15 in both model 1 and model 2 are the Grad-CAM highlights in the area
after 1647 cm−1 which is mainly due to the baseline filter used (comparison to untreated
spectrum of Cb15 in Figure 1a). It is likely that the effect on small differences in fluorescence
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on Raman spectra after data pretreatment will lead to boosted features. Of course, it must
not be ignored that if other baseline subtraction methods had been used, the models would
likely have used other spectral regions for classification. We have started to investigate this
as well, but even baseline filters that perform better lead to models where rather supposedly
unspecific regions are used for classification (Supplementary material Figure S1).

Metarhizium-species include, like the carotenoid-containing microorganisms, col-
ored pigments. The Raman spectra of Metarhizium showed characteristic bands at about
1380–1400 cm−1 and 1580–1600 cm−1, indicating that both conidia might contain melanin [28].
Since under the consideration of the collected Raman spectroscopic data, the type of pig-
ment of the studied Metarhizium fungal isolates does not differ, it is other variations that
provide the rash for a successful classification. Comparing the untreated spectra from
Figure 1a of Cb16III and Cb15, it is clear, firstly, that the spectra are extremely similar, and
secondly, that the expression of the peaks is generally slightly weaker for Cb15. After data
pretreatment, this effect is hardly perceptible (Figure 1b).

Similar to the behavior between Cb16III and Cb15, the CNN behaves for Ca8II and
Mpemp in model 1 Figure 4(A2,4) and model 2 Figure 4(B2,4). For Ca8II and Mpemp, it is
particularly evident that models 1 and 2 draw very different ranges, although the models
are identical in their parameters. For Mpemp, the spectral regions after 1640 cm−1 are of
great importance for the CNN in both models, although there are no significant signatures
there, but instead a distortion effect due to the baseline filter (comparison of Mpemp from
Figure 4 with Mpemp untreated/treated from Figure 1).

The Raman spectra of Bbass are particularly different from the rest of the fungal spores.
The model does not focus on a few salient features; multiple signatures are considered; for
example, the peaks at 714 cm−1, 744 cm−1, the Phe peak at 1003 cm−1 (more for model 1)
and the band at 1450 cm−1. Although there are differences in the Grad-CAM-marked
regions of Bbass between model 1 and model 2, these are much smaller than, for example,
Mpemp, a species that is more difficult to differentiate due to its high spectral similarity
to Ca8II. Bbass are conidia that are very different from the rest of the species by Raman
spectroscopy. It could be assumed that a very few features are sufficient to identify this
class. However, it is clear from Figure 4(A5,B5) that diverse signals attract attention. Thus,
the CNN behaves completely different from the mentioned, obviously logical, assumption.
For future work, it could be interesting to train a model only with two species and check
the effects of losses and Grad-CAM results to concretize our statement above.

3.4.2. Carotenoid-Containing Microorganisms

The bands at about 1133 and 1530 cm−1, which are caused by the carotenoids in
Cin, remain largely irrelevant by the CNN in model 1 (Figure 5(A1)) and also in model 2
(Figure 5(B1)). The negative slope at about 1504 cm−1, but also the quite neutral region at
about 1176 cm−1 is of high importance for the CNN.

Particularly striking when comparing the Grad-CAM highlights of Kro (Figure 5A,B))
is the nearly opposite markings. In model 1, it is mainly the peak at about 1154 cm−1

and the short area thereafter, as well as the short negative slope at about 1538 cm−1 that
are marked in deep red by the Grad-CAM, whereas all other spectral regions are hardly
significant (Figure 5(A2)). In model 2, almost all regions are significant for the CNN except
for the carotenoid band at about 1513 cm−1.

The Grad-CAM markings for Mlu (Figure 5(A3,B3) shows that especially areas near
the carotenoid peaks are of interest for the CNN, whereas in model 1 (Figure 5(A3)), it is
the area before the peak at about 1528 cm−1 that is important for the CNN. A short spectral
region after the peak at about >1003 cm−1 also receives attention in the classification of
Mlu, whereas the peak itself (caused by phenylalanine (Phe) [29]) is of less importance for
the CNN.

At Sau, both models have a large number of areas marked by the Grad-CAM
(Figure 5(A4,B4)). Noticeable in model 1 is the omission of the negative slope at about
1496 cm−1, whereas in model 2, the area after the Phe peak at about 1003 cm−1 is omitted
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(Figure 5(B4)). Conversely, the peak at about 781 cm−1, which is caused by a phosphate
bond, cytosine, uracil, or thymine [7,30] is not very important for model 2 (Figure 5(B4)), but
is more strongly marked for model 1 (Figure 5(A4)). Most important for the classification
of Sau, however, are the signals associated with carotenoid at about 1158 cm−1.

Although the dense cluster of Xde in the PCA from Figure 3b suggests a simple
distinction, many regions are important for the CNN in model 1 (Figure 5(A5)). The Grad-
CAM markers for Xde of the second model (Figure 5(B5)) assign much less attention to most
areas than model 1, and it is especially the strongly pronounced peak at about 1516 cm−1

that enables the classification there.
Contrary to what one might expect, it is not exclusively the very characteristic bands

triggered by carotenoids that are used for differentiation, but also completely different areas
within the spectra. Since these carotenoid-caused peaks differ significantly in wavenumber
(e.g., Cin: 1530 cm−1, Kro 1514 cm−1, Mlu: 1528 cm−1, Sau: 1522 cm−1, Xde: 1516 cm−1),
a predictive model might also succeed if it used only these features. So here, the CNN
decides rather unintuitively.

4. Conclusions

It is widely accepted that it is the differences in the biochemical composition of different
microorganisms that lead to different Raman spectra and thus to possible differentiability.
This statement can of course be confirmed by the authors. Nevertheless, our quick look into
such predictive models via Grad-CAM has shown that it is often not clear signatures that
enable classification, but rather often minor nuances that make the difference. This work
shows that models with identical data and training parameters can use completely different
spectral regions for differentiation of the classes (microorganisms). CNN predictive models
always take those features from the data that minimize their loss [31]. This may in some
cases affect features that human experts would also use, but if there is another or an easier
way to minimize the loss, CNN may use completely different spectral areas. Our results
suggest that anthropomorphizing CNN models is dangerous because the networks often
make unintuitive decisions that may be very different from human procedures, making the
use of methods such as Grad-CAM important.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ai4010006/s1. Figure S1: Mean Raman spectra of fungal spores
Cb16III, Ca8II, Cb15, Mpemp, Bbass and normalized Grad-CAM indicator of CNN used signatures
using a different baseline subtraction procedure as in the actual publication.
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