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Abstract: Transformer architectures are highly expressive because they use self-attention mechanisms
to encode long-range dependencies in the input sequences. In this paper, we present a literature
review on Transformer-based (TB) models, providing a detailed overview of each model in compari-
son to the Transformer’s standard architecture. This survey focuses on TB models used in the field
of Natural Language Processing (NLP) for textual-based tasks. We begin with an overview of the
fundamental concepts at the heart of the success of these models. Then, we classify them based on
their architecture and training mode. We compare the advantages and disadvantages of popular
techniques in terms of architectural design and experimental value. Finally, we discuss open research,
directions, and potential future work to help solve current TB application challenges in NLP.
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1. Introduction

NLP as the practical and applied aspect of computational linguistics [1] combines
linguistics and artificial intelligence (AI). In other words, it is a technique for handling,
deciphering, and understanding enormous amounts of text data. There are numerous NLP
tasks that can be used in numerous domains and languages [2–4], including healthcare [5–8],
financial services [9], and social media [10–14]. Massive datasets, deep neural network
architectures, and specialized tools made it possible to solve problems more quickly and
accurately. This increase in data accessibility across all domains has benefited deep neural
networks (DNNs) [15] and improved the performance of the models. Nowadays, DNNs are
frequently used to complete various tasks and serve as the fundamental building block of
AI systems. Generally, DNNs have revolutionized image, text, and audio processing. By
incorporating various types of networks, DNNs have significantly improved the state-of-
the-art in a range of NLP tasks and applications. Recurrent neural networks (RNNs) enable
computational models with multiple layers to learn input representations with different
levels of abstraction [16], making them particularly effective at processing sequential data,
such as text. RNNs also use recurrent cells to analyze sequential or time-series input. Long
short-term memory units (LSTMs) [17], an RNN architecture that is frequently used, differ
from traditional feed-forward neural networks [18] in that they have feedback connections.
An LSTM is used to find patterns in input data sequences, such as numerical time-series
data. Because they specify a temporal dimension to take time and sequence into account,
RNNs set themselves apart from convolutional neural networks (CNNs) [19,20]. CNNs use
a number of structural components, such as fully connected layers, convolution layers, and
pooling layers, to automatically backpropagate the spatial hierarchies of input features in
shift-invariant data, such as images. RNNs have the drawback of being slow and sequential.
Additionally, they are unable to capture longer dependencies because of vanishing gradients.
RNNs also assign the same weight to every word sequence relative to the currently processed
word. Additionally, because sequence activations are collected in one vector, the learning
process loses track of words that have already been fed to it.
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Recent breakthroughs in the field of NLP have been made possible by a new deep
learning (DL) architecture that has gained popularity. Vaswani et al. [21] suggested the
concept of the Transformer. They significantly advanced the quality of the research on
DL and NLP. The model architecture has demonstrated exceptional efficiency for typical
NLP tasks. The Transformer is a kind of neural network that primarily makes use of the
self-attention mechanism [22] to extract intrinsic features and has a great deal of promise
for widespread use in AI applications. On a variety of NLP tasks, using the attention
mechanism outperforms traditional CNN and RNN models [23–25]. The main goal of
attention is to enable each word to react to inputs in a unique manner based on similarity
scores. The model can use attention between sequences or even within one sequence in
the case of self-attention. Transformer-based (TB) models have been used extensively to
solve problems involving sequential data. Parallel to this, cutting-edge research studies
have developed strategies to successfully overcome the limitations of convolutional DNN
architectures. By paying attention to lengthy sequences, Transformers can easily achieve
rapid learning, where the data that must be gradually learned over millions of training
steps are stored in weight matrices. A Transformer can store information as key-value
pairs in long-term memory and then later retrieve that information by creating a query
that takes that information into account. By using attention as a method of information
retrieval, the model is able to look up information that it has already seen. As a DNN model,
the Transformer [21] also requires a large amount of data for training. However, these
large datasets are not always accessible. This frequently happens with many challenging
NLP tasks. Consider for example neural networks for machine translation, where it
may be impossible to curate such vast datasets, particularly for languages with limited
resources or for NLP domains where datasets are not frequently collected in large amounts.
Examples of NLP tasks include text categorization, text generation and summarization,
keyword searching, machine translation, named-entity recognition, information retrieval,
and question answering [26,27]. DL models’ high computational resource requirements
are another disadvantage. Because of these barriers, researchers have questioned whether
large, highly trained models can effectively transfer knowledge. The need for transfer
learning is growing as more large models are developed.

Transfer learning has been widely utilized recently in NLP. The most popular tech-
nique for transfer learning is sequential fine-tuning. These trained language models (LM)
for knowledge communication have helped to solve many textual-based NLP processing
problems [28–31]. The process of language modeling entails learning a probability distribu-
tion over a collection of tokens taken from a predetermined vocabulary. Transfer learning
is a procedure or activity where knowledge gained from unlabeled data can be applied
to tasks with a small labeled dataset. NLP Transformers have become more accurate over
time compared to machine learning (ML) and DL methods [32]. Transfer learning is an
alternative to active learning and supervised learning that can be used to achieve high
performance with less human supervision. For example, with a little adjustment, a system
that has been trained to classify legal documents could also be used to classify financial
records. For this, less training time and data will be needed. The focus theme of this survey
runs throughout Transformers and its applications [33,34].

NLP uses machine learning algorithms to process speech and text. End-to-end speech
processing techniques such as automatic speech recognition (ASR), speech translation (ST),
and text-to-speech (TTS) have all made extensive use of sequence-to-sequence models. The
recent incorporation of TB models in speech processing boosted the results. There are TB
models that are significantly influencing speech-based tasks, such as TransformerTTS for
text-to-speech proposed by Li et al. [35] and Wav2Vec 2.0 for speech recognition proposed
by Baevski et al. [36]. It is an end-to-end speech recognizer that does not require data
alignment nor the need to model word pronunciation. It does not matter if these tokens are
graphemes, phonemes, word fragments, or other speech units; only one model converts
the input’s raw audio signal into the output’s sequence of tokens. However, the main and
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sole focus of our review is the text-related TB models for textual-based NLP tasks, covering
only sequences in text format.

Among related works for Transformers survey papers, Tay et al. [37] proposed a study
about the efficiency of Transformers both in terms of memory and computation. The taxon-
omy of efficient Transformer models, which is defined by technical innovation and major
use cases, is their key contribution. By confronting the quadratic complexity issue of the self-
attention mechanism, they modeled the developments and architectural innovations that
improve the efficiency of Transformers and set lists of general improvements and various
efficiency improvements in later parts. Lin et al. [38] provided a review of the Transformer
and its variants by organizing the TB models according to their proposed taxonomy, which
is mainly based on the methods used for improving the vanilla Transformer: architecture
modification, pre-training, and applications. Kalyan at al. [39] proposed AMMUS, a survey
for TB pre-trained models in NLP. The authors gave a brief overview of self-supervised
learning and explained key concepts such as pre-training methods, pre-training tasks, em-
beddings, and downstream adaptation methods. They proposed taxonomy and provided a
summary of various used benchmarks in the field. Gillioz et al. [40] proposed a summary
of the most latest models along with auto-encoder architectures such as BERT. They also
addressed auto-regressive models such as GPTs [41–43] and XLNet [44] as well as a number
of post-BERT models such as ERNIEs [45,46].

In this survey, we highlight the most recent advances, summarize them, and place
them in the appropriate category of TB models. We categorize and analyze the literature
using our proposed taxonomy and provide a summary of various used benchmarks in the
field. We focused only on recent papers with a reasonable number of citations because there
are so many papers related to NLP. This review is distinguished by a broad and precise
selection of contemporary TB with the goal of understanding its structures and providing
an organized and comprehensive assessment of existing work from a variety of fields. We
investigate TB models with specific applications in NLP with the goal of bridging research
at various levels. We also go over the architectures of these models in depth and show
how they relate to one another. This review is carried out as follows: Initially, we discuss
the history of Transformer design and why it is more efficient than other models. Second,
we explain the proposed taxonomy in detail by describing the TB architectures, including
detailed explanations of each suggested model and its contributions. Third, we examine
the TB applications in NLP in terms of task, domain, and language, each in its own area.
Then, we go over the most important points, constraints, evaluations, and highlights from
our review. Finally, we discuss several areas that could be further explored in the future.

2. Background

The evolution of different NLP models can be divided into three categories based on
their primary architecture: RNNs, CNNs, and attention-based. RNNs can be regarded
as traditional due to the recent replacement of recurrent-based models by parallelized
architectures such as attention-based and CNN-based models. Transformers are an example
of an attention-based model. TB language models have advanced and outperformed
traditional language models at this point [47,48]. Surafel et al. [49] reported that the
Transformer method generates the best performing multilingual models, outperforming
corresponding bilingual models and RNNs. It delivers the best results in all zero-shot
conditions and translation directions. Generally, NLP deals with sequence-to-sequence
(S2S) tasks [50]. And an encoder-decoder model is used to carry out these tasks. The
most frequently employed encoder and decoder architectures were RNNs. However, there
are some drawbacks to these architectures. The limitations are described in this section,
followed by a definition of the pre-training and fine-tuning framework, and an explanation
of how the Transformer design has been used to address the limitations in the reviewed
models. Next, we discuss the suggested taxonomy for this survey.
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2.1. Recurrent Neural Network (RNN)

RNNs are a class of neural networks for processing sequential data that allow previous
outputs to be used as inputs while maintaining hidden states, which is also known as
sequence modeling. RNNs can handle input of any length, and the model size does not
change as the input size does. Additionally, historical data and weights that have remained
constant over time are taken into account during model computation. Text generation,
machine translation, and time-series classification are a few examples of the tasks that
RNNs excelled at.

RNNs, however, have a flaw in their architecture. RNNs, like many other ML algo-
rithms, are enhanced using back-propagation, and the error diminishes significantly as it
passes back through the recurrent layers because of their sequential design. To assist RNNs
in overcoming their issues, numerous strategies have been proposed. One suggestion
was to substitute the ReLU (Rectified Linear Unit) [15] for the sigmoid function. Another
suggestion is to employ LSTMs, which are composed of a number of units, each with
a different number of gates including the input, output, and forget gates, in the design.
Additionally, every component produces a state that can be applied to the subsequent input
in the chain.

In order to enhance the network’s knowledge in both forward and backward direc-
tions, bidirectional LSTMs were created. Despite being able to handle lengthy sequence
dependencies, this design has the obvious disadvantage of being incredibly slow because
of the numerous parameters that must be trained. Gated recurrent networks (GRUs) [51]
were created as a faster version of LSTMs. GRUs require only two gates, which accounts
for their speed. Additionally, the GRU architecture performs better than LSTMs in some
tasks, such as automatically detecting grammatical features of input texts.

Generally, RNNs’ architectures including LSTMs and GRUs have the mentioned
number of drawbacks: slow computation, the inability to take future inputs into account
when determining the current state, and the additional challenge of accessing information
from the past. Most importantly, RNN-based architectures are challenging to parallelize
because the forward propagation graph is inherently sequential at each time step and can
only be computed after the previous one. As a result, the runtime and memory cost are
fixed and cannot be decreased because the states computed in the forward pass must be
sorted before they are re-used during the backward pass.

2.2. The Encoder–Decoder Framework

The S2S model typically uses an encoder–decoder architecture. This architecture is
made up of an encoder, which analyzes the input sequence and compresses the data into a
context vector of a fixed length, and a decoder, which converts the encoded state of a fixed
shape to a variable-length sequence. The main drawback of this fixed-length context vector
design is that it is impossible to remember long sentences, whereas the decoder requires
different information at different time steps. Figure 1 shows the main architecture of the
encoder–decoder model with the attention mechanism.

There are two well-known problems with the traditional encoder–decoder structure.
The encoder must first compress all of the input data into a single fixed-length vector before
sending it to the decoder because sending lengthy and intricate input sequences with a
single fixed-length vector runs the risk of losing information. Second, it is unable to depict
the input–output sequence alignment that is necessary for tasks requiring a structured
output, such as translation and summarization. Each output token in S2S tasks should be
more influenced by particular segments of the input sequence. Although each output token
is created by the decoder, it is unable to selectively concentrate on significant input tokens.
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Figure 1. S2S encoder–decoder with attention architecture.

2.3. The Transformer

The Transformer was an idea put forth by Vaswani et al. [21] to address the short-
comings of both RNNs and encoder–decoder architectures. By substituting attention
mechanisms for the RNNs in the S2S encoder–decoder, they improved the architecture. A
very long-term memory is made possible by attention. The Transformer concentrates on
every token that has ever been created in the past. Overall, this architecture consists of
feed-forward layers (position-wise feed-forward), residual connections, and normalization
layers, which are all stacked on top of one another as multiple multi-head attention layers.

2.3.1. Attentions Mechanism

The model uses the attention mechanism to concentrate on pertinent information
based on what it is currently processing. The decoder state (Q: query) and the encoder
hidden states (K: keys) were used to calculate the attention weights, which historically
represented the relevance of the encoder hidden states (V: values) in processing the decoder
state. As a result, a generalized attention model called Attention(Q, K, V) uses a set of
key-value pairs (K, V) and a query called Q, as Equation (1) shows.

Attention(Q, K, V) = Fdistribution(Falignment(Ki, Q)) ∗Vi (1)

where the distribution function and the alignment function are denoted by Fdistribution and
Falignment, respectively. In order to create the attention weights, the distribution function
maps the alignment scores from the alignment function. The logistic, sigmoid, and SoftMax
methods are the distribution functions that are most frequently used in TB models. To learn
the attention weights, an additional feed-forward neural network is incorporated into the
architecture of the Transformer. This feed-forward network learns a particular attention
weight as a function of the inputs of two states. The importance of the encoder hidden
state for the decoder hidden state is measured by the alignment function. Additionally, it
produces energy scores, which are later used to generate attention weights by the distribu-
tion function. There are many different kinds of alignment functions. Table 1 shows the
formulations of various alignment functions.

In the original Transformer’s [21] encoder–decoder framework, the dot product align-
ment is an example of a multiplicative alignment type used in the model. In cases where
the key and query share the same vector space for representation, computing the cosine
similarity or dot product between the key and query representations can be applied. To
account for various representation lengths, a scaled dot product can be used, which nor-
malizes the dot product by the representation vector length. General alignment extends
the dot product to keys and queries with multiple representations by offering a learnable
transformation matrix W that maps queries to the vector space of keys. Biased general
alignment calculates the global significance of specific keys regardless of the query. The
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general alignment is activated by adding a nonlinear activation layer, such as a hyperbolic
tangent, rectifier linear unit, or scaled exponential linear unit. It is possible to match the
key and query using a general kernel function rather than the dot product. Concatenate
alignment is another option, in which keys and queries are combined to create a single
shared representation. The computational time required for additive alignment is lowered
by separating the contributions of the query and the key. This enables all key contributions
to be computed in advance rather than having to do so for each query. Location-based
alignment ignores keys and only uses queries Q. As a result, the key’s position rather than
its content is used to determine the alignment score for each key. The input to the function
for feature alignment is derived from features such as mean and standard deviation when
working with collections of items such as one-dimensional temporal sequences.

Table 1. List of common attention types used in reviewed TB models with corresponding alignment
functions where sim is the measure of similarity between Ki and Q vectors and ||Ki|| and ||Q|| are
the Euclidean norm of these vectors.

Type Alignment Score Function

Multiplicative Attention

Dot Product Falignment(Ki, Q) = QTKi

Scaled Dot Product Falignment(Ki, Q) = QTKi√
dK

Cosine Similarity Falignment(Ki, Q) = sim(Ki, Q) = KiQ
||Ki ||||Q||

Addictive Attention
Concating Falignment(Ki, Q) = wT

impFactivation(W[Q; Ki] + b)

Additive Falignment(Ki, Q) = wT
impFactivation(W1Q + W2Ki + b)

Scoring Attention

General Falignment(Ki, Q) = QTWKi

Biased General Falignment(Ki, Q) = ki(WQ + b)

Activated General Falignment(Ki, Q) = A(QTWKi + b)

Specific Attention
Location Based Falignment(Ki, Q) = Falignment(Q)

Feature Based Falignment(Ki, Q) = wT
impFactivation(W1φ1(K) + W2φ2(K) + b)

The original Transformer model used scaled dot product attention as an alignment
function and SoftMax as a distribution function, so the attention is calculated as shown in
Equation (2). Meanwhile, self-attention, also referred to as inner attention, is a mechanism
for focusing attention that links various positions in a single sequence in order to create
a representation of the sequence. Figure 2 shows the architecture of the self-attention
mechanism, where d refers to the dimension of the keys K.

Attention(Q, K, V) = so f tmax(
QTK√

dK
) ∗V (2)

Figure 2. Self-attention architecture.
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The multi-head attention layer [21] is composed of multiple attention heads. Each
attention head computes attention over its inputs of V, K, and Q, while subjecting them
to a linear transformation. As a result, the model can jointly pay attention to data from
various representational sub-spaces. Instead of performing a single attention pass over the
values, the multi-head attention block computes multiple attention-weighted sums. The
multi-head attention applies various linear transformations to the V, K, and Q for each
head of attention in order to learn diverse representations. An attention layer with multiple
heads has N parallel attention layers, each of which is referred to as a head. The queries,
keys, and values are projected onto three dense layers for each head with hidden sizes
of q, k, and v before being fed into the attention layer, respectively. Another dense layer
projects the results of these N heads after they have been concatenated. Figure 3 shows the
architecture of the multi-head attention mechanism.

Figure 3. Multi-head attention architecture.

The masked multi-head attention network [21] performs a similar function to the
decoder hidden state in machine translation architectures by attending over the previous
decoder states. The inputs from future time-steps to the decoder are hidden, which is why
this is known as the masked multi-head attention block. In both the encoder and decoder
frameworks, the TB models make use of stacked multi-head self-attention blocks. For the
multi-layer Transformer, the input vectors {xi}

|x|
i=1 are first packed into H0 = [x1, . . . , x|x|],

and then translated into context-specific representations at various levels of abstraction
Hl = [hl

1, . . . , hl
|x|] using an L-layer Transformer Hl = Trans f ormerl(Hl−1), l ∈ [1, L]. Each

Transformer block aggregates the output vectors of the preceding layer using a number of
self-attention heads. The output of a self-attention head Al is calculated using the following
Equations (3)–(5) for the lth Transformer layer:

Q = Hl−1, K = Hl−1 ∗WK
l , V = Hl−1 ∗WV

l (3)

Mi,j =

{
−∞, if prevent from attending
0, if allow to attend

(4)

Al = so f tmax(
Q ∗ KT
√

dk
+ M) ∗Vl (5)

2.3.2. Positional Encoding (PE)

Each sequence in language modeling has a fixed order of tokens in it. RNNs automat-
ically encode their positions when they operate. Nevertheless, the attention mechanism
ignores any details regarding the placement of each word. In contrast, attention-based
models allow for the treatment of encoded words out of order, which could produce
a randomization effect. Unlike recurrent networks, the multi-head attention network
cannot naturally take advantage of the order of the words in the input sequence. One
straightforward technique is to encode each word according to where it is in the current
sequence. Following the embedding of each word using an embedding matrix, PE extracts
the positions of each word using the following equations:
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PE(posword, 2 ∗ posemb) = sin(
posword

10,0002∗posemb
dmodel

) (6)

PE(posword, 2 ∗ posemb + 1) = cos(
posword

10,0002∗posemb
dmodel

) (7)

where dmodel is the embedding dimension and posword is the position within the sequence
which takes the values [0, . . . , n − 1] and posemb is the position within the embedding
dimension which takes values from 0 to dmodel − 1. PE handles the value position, as
implied by its name, so the Transformer adds embeddings to the word embeddings that
show the input position. PE vectorizes the input locations, which are then incorporated into
the input embeddings. For instance, the Transformer-XL [52] model made use of relative
positional encoding. Relative position encodings are a type of position embedding for TB
models that seeks to exploit pairwise, relative positional information. On two levels, the
model obtains relative positioning information: values and keys. In addition to the keys, the
model is given relative location information. SoftMax’s Vanilla self-attention functionality
is unaffected. The values matrix is then subdivided into further relative positioning data.
In other words, rather than just combining semantic and absolute positional embeddings,
relative positional information is added to keys and values during attention calculation.

2.3.3. Position-Wise Feed-Forward Networks

The term position-wise refers to a feed-forward layer type that uses the same dense
layers for each position in the sequence. Position-wise feed-forward layers are composed
of two dense layers that apply to the last dimension. It accept input in the form of a
three-dimensional shape (batch size, sequence length, and feature size). It consists of two
dense layers that are applied to the final dimension; thus, position-wise, the same dense
layers are applied to each position in the sequence. As shown in Figure 4, the position-wise
feed-forward networks (FFN) block has two completely connected layers. The activation
function at the hidden layer is usually set to ReLU activation. Sometimes, the GELU
(Gaussian Error Linear Unit) [53] activation can be used instead of ReLU. The FFN function
is defined in Equation (8) where W1, W2, b1, b2 are learnable parameters.

FFN(x, W1, W2, b1, b2) = max(0, x ∗W1 + b1) ∗W2 + b2 (8)

2.3.4. Full Transformer Encoder–Decoder

There are two blocks in the encoder. The multi-head attention layer over the aforemen-
tioned inputs is one block. A straightforward feed-forward network is the other. There is a
residual connection between each layer, which is followed by layer normalization. In DL,
a normalization technique akin to batch normalization is called layer normalization [54].
In the Add and Layer Norm component of Figure 4, layer normalization comes after a
residual connection. Because layer normalization normalizes across the feature dimension,
it benefits from scale independence and batch size independence, just like batch normal-
ization does. Layer normalization is efficient because inputs for tasks involving natural
language processing frequently consist of variable-length sequences.

There are three blocks in the decoder. A stack of numerous identical layers bound
together by residual connections and normalized along layer boundaries makes up the
transformer decoder as well. Between the two blocks the encoder has, the decoder adds a
third block known as the encoder–decoder attention layer. Even though the decoder only
has one multi-head attention layer known as the masked multi-head attention network, it
is very similar to the encoder in other ways. The decoder can review the entire sentence
and pick out the details it needs to decode with the help of the attention mechanism. The
encoder’s hidden states are all accessible to the decoder through attention. However, since
only one prediction for the following word needs to be made by the decoder, a complete
sequence cannot be passed. However, in order to predict the subsequent word, it uses a
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weighted sum of hidden states. Figure 4 shows the full architecture of the Transformer
encoder–decoder blocks.

Figure 4. A diagram showing the detailed transformer architecture, which has 2 blocks for the encoder
and 3 blocks for the decoder. Attention mechanisms, normalization, and feed-forward layers were
the three main concepts on which we focused our attention. In the Feed-forward layer, the number of
dimensions in the hidden layer d f f is generally set to around four times that of the token embedding
dmodel . The model size dmodel = (l, dtoken, d f f , h) where l is the number of encoder/decoder layers,
dtoken is the dimensionality of token embeddings, d f f is the intermediate dimensionality used by the
feed-forward sublayer, and h is the number of attention heads in the attention sublayers. The initial
Transformer model had a base configuration of l = 6, dtoken = 512, d f f = 2048, and h = 8.

2.4. The Pre-Train and Fine-Tune Framework

We describe the pre-training and fine-tuning framework used in the majority of TB
models in this section. A number of advances in language representation learning had
been made through the use of pre-training procedures. These pre-trained models have
been extremely helpful for a variety of challenging NLP tasks, including those with little
training data. Pre-training large models and reducing them to smaller ones for practical
applications has become a standard procedure. Pre-training and fine-tuning phases are
typically distinguished when using TB models. The model is trained on a sizable generic
corpus during the pre-training phase. Then, the model is modified during the fine-tuning
phase to fit a specific task or dataset. Modern TB models differ significantly from one
another in terms of their pre-training model architectures and objectives. Typically, the
following steps are taken to develop a new TB model: gathering a sizable dataset and
then pre-training, which entails training the tokenizer and the model. After that, the
trained model’s fine-tuning phase for a downstream task will begin. When used to be



AI 2023, 4 63

updated for a new, smaller dataset or task, this trained model is referred to as pre-trained.
Consequently, we use the pre-trained model and modify its weights to fit a smaller dataset
during the fine-tuning stage. The model’s weights are updated in both pre-training and
fine-tuning. Pre-training generally enables the development of a general representation
that can later be useful in the specialization of a downstream task, especially when the data
for the downstream task are extremely sparse and would not be sufficient to train a model.
Algorithm 1 sums up the steps for the pre-training and fine-tuning framework.

Algorithm 1: Pre-training and fine-tuning steps for a TB model.
Data: You have a large dataset A and a small dataset B
Result: How to pre-train then fine-tune a TB language model m
while Pre-training phase do

You select a TB model m and the pre-training objectives;
You have a dataset A;
Initialize some of m parameters;
Train m on A;

end
while Fine-tuning phase do

Let trained m on A as mtrained;
You have a dataset B;
Train mtrained on B;

end

2.4.1. Pre-Training Procedure

The pre-training procedure includes training a tokenizer and then training a TB lan-
guage model. Rather than training a model to look up fixed dictionaries, language models
should be able to recognize text and learn from it. They accomplish this through the use of a
system known as tokenization, in which text sequences are broken down into smaller parts,
or tokens, and then fed as input into TB NLP models such as BERT [3]. Tokenization or
word representations help downstream tasks such as document classification by allowing
for cross-word generalization. The use of distributed representations as features is a type
of semi-supervised learning in which supervised learning performance is supplemented by
learning distributed representations from unlabeled data.

Traditional word embeddings, such as Word2vec [55] or GloVe [56], differ from the
new contextualized embeddings used in TB models. For example, BERT [3] employs
WordPiece tokens. The vocabularies of BERT-based models differ. The uncased base model,
for example, has 994 tokens set aside for possible fine-tuning. The cased model has only
101 unused tokens because it requires more tokens to cover both uppercase and lowercase
letters. Pre-trained BERT comes with a predefined vocabulary of size 30,522, which is also
enforced on the pre-trained BERT tokenizer that was applied. The multilingual model
mBERT [3] has only 100 unused tokens, but its total vocabulary is four times larger than
that of uncased. More special characters are stored in the multilingual model to cover
the words of 104 languages. The GPT2 [42] and RoBERTa [57] implementations share a
vocabulary of 50,000 words. They use Byte Pair Encoding (BPE) word pieces with the
special signaling character \u0120. In contrast to the preceding vocabularies, the XLM [58]
employs a suffix signaling tag at the end of the word piece to indicate that this is the end of
a word. XLM employs a BPE-based vocabulary that is shared by multiple languages and
models. These pre-trained tokenizers can be used in a linear prediction model as features.
The performance of the downstream systems that consume word representations can be
used to evaluate them. Unfortunately, extrinsic and intrinsic evaluations do not always
agree, and the best word representations for one downstream task may perform poorly
on another.
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The most commonly used tokenization types are: Byte Pair Encoding (BPE) [59], Byte
Level BPE (bBPE) [42], SentencePiece [60] and WordPiece [61]. While it is true that a bBPE
tokenizer trained on a huge monolingual corpus can tokenize any word of any language,
it requires on average almost 70% of additional tokens when it is applied to a text in a
language different from that used for its training. This information is key when it comes
to choosing a tokenizer to train a natural language model such as a Transformer model.
Tokenization in the context of Transformer models is divided into two steps. When creating
a Transformer tokenizer, two files are typically generated: merges.txt and vocab.json. These
are the two steps in the tokenization process. The first step is to read the dataset’s input
text in string format. The first file, merges.txt, is used to convert words or word fragments
to tokens. After the tokens are generated, in the second step, the tokens are processed
through the second file vocab.json, which is simply a mapping file from token-to-token
ID. These token IDs are read by an embedding layer in the Transformer model during
pre-training, which maps the token ID to a dense vector representation of that token. In
order to currently and accurately detail the pre-training objectives for the TB models, we
highlight accordingly the notations used to describe specific concepts in Table 2 including
text corruption, sentence pair, sample efficient task and code-switched.

Definition 1. Text corruption: We have four levels when processing a textual-based data: token,
phrase, sentence and document. Text corruption refers to the changes made to the text during
processing. It can occur at the token level through token deletion and token masking, at the phrase
level through phrase infilling, at the sentence level through sentence permutation, or at the document
level through document rotation. A corrupted token x is referred to as xcorr, and when the corruption
is masking, we noted the masked x as xMasked.

Definition 2. Sentence pair: Here, the input is a pair of sentences (x, y) where x and y are
parallel sentences, i.e., x is a translation of y.

Definition 3. Sample efficient task: The sample efficient task avoids discrepancy between pre-
training and fine-tuning stages by using 100% of tokens in each training sample for learning. We
note a non-sample efficient task as a task that uses a smaller corruption rate: for example, the tasks
that corrupt only 50% or 15% of the input tokens.

Definition 4. Code-switched: For a given parallel sentence pair (x, y), a code-switched sentence
is generated by randomly substituting some phrases of x with their translations from y.

While completing one or more predefined tasks, TB models learn various universal
language representations. Self-supervised, pseudo-labeled data are used in pre-training
tasks. The pseudo-labels are determined by the data attributes and the pre-training task
definition. To give the model more training signals, a pre-training task should be difficult
enough. Furthermore, a pre-training task ought to resemble a downstream task. The pre-
training tasks employ various corruption techniques with a fixed corruption rate, such as
masking, replacement, or swapping of tokens. Additionally, they can differ based on how
the sequence should be handled. For example, on one hand, GPT1 [43] uses a left-to-right
Transformer, while BERT [3] uses a bidirectional Transformer, where two special tasks have
been developed for BERT pre-training: the Masked LM (MLM) task, in which the model
predicts random masked words in a sentence, and the Next Sentence Prediction (NSP) task,
in which the model predicts whether two sentences appear next to each other. Meanwhile,
the pre-training tasks provide the model with general language understanding, which has
been shown to improve ranking significantly. Table 2 shows the list of pre-training tasks
along with its loss functions.

• Masked Language Modeling (MLM): Through the use of unique mask tokens, MLM
masks the sentence. The SoftMax layer receives the masked token vectors from MLM
and computes the probability distribution over the vocabulary before applying the
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cross-entropy loss. MLM makes use of tokens from both settings. The original tokens
are predicted by MLM using masked token vectors. MLM is approached as a task for
classifying tokens at the token level over the masked tokens. It has two drawbacks.
Since only 15% of the tokens in each training sample are masked token vectors, masked
token prediction only uses a small portion of the training signal. Additionally, there is
a pause between the pre-training and fine-tuning stages because the model only sees
the unique mask token during pre-training.

• Causal Language Modeling (CLM): Alternatively known as unidirectional LM, CLM
predicts the next word based on the context. Both a left-to-right and a right-to-left
sequence can be handled by CLM. All of the words on the left are included in the
context of a CLM that reads from left to right, whereas all of the words on the right
are included in a CLM that reads from right to left. Each training sample used in CLM
contains 100% tokens for learning. Because it cannot be used in both contexts, CLM has
this major drawback. A bidirectional context cannot be used to train standard CLM
because doing so would allow a token to see itself, which would make prediction easy.

• Translation Language Modeling (TLM): Alternatively known as XMLM and also
referred to as cross-lingual MLM, in TLM, random masking is applied to tokens from
both sentences. TLM aids the model’s cross-linguistic mapping learning because the
prediction of masked tokens requires context from both sentences. Only 15% of the
tokens in each training sample is used by TLM.

• Replaced Token Detection (RTD): It indicates which tokens were replaced. Using the
tokens produced by the generator model trained using MLM objectives, RTD corrupts
the sentence. RTD is a token-level binary classification task that asks the model to
decide whether or not each token has been replaced. For learning purposes, RTD uses
100% of the tokens in each training sample. The only problem with RTD is that it needs
a separate generator to tamper with the input sequence, which is computationally
expensive to train. Despite this, RTD is sample efficient.

• Shuffled Token Detection (STD): Identification of the shuffled tokens is a task that re-
quires token-level discrimination. The words are randomly shuffled in STD with
a 0.15 probability. For learning purposes, STD uses 100% of the tokens in each
training sample.

• Random Token Substitution (RTS): It involves identifying the randomly substituted
tokens. Here, 15% of the tokens in RTS are at random replaced with different tokens
from the vocabulary. Since RTS is sample-efficient, it can corrupt the input sequence
without the need for a separate generator model. In each training sample used in RTS
for learning, tokens are used 100% of the time.

• Swapped Language Modeling (SLM): With a 0.15 probability, it tampers with the
sequence by adding tokens that are randomly selected from the vocabulary. Since only
15% of the input tokens are used, SLM is not sample efficient.

• lternate Language Modeling (ALM): The task of cross-linguistic language model
training is a pre-training task. Predicting the masked tokens in the code-switched
sentences produced from parallel sentences is the goal of ALM. The settings for mask-
ing the tokens in ALM are the same as those in MLM. The model learns relationships
between languages much more effectively by receiving pre-training on sentences that
have been code-switched.

• Sentence Boundary Objective (SBO): Predicting the masked tokens using the span
boundary tokens and position embeddings is part of the pre-training task. When per-
forming tasks that require span-based extraction, such as entity extraction, coreference
resolution, and question answering, SBO improves the model’s performance. SBO
only conceals token spans that are consecutive. Tokens representing span boundaries
and position embeddings are used in the prediction of masked tokens.

• Next Sentence Prediction (NSP): It is a pre-training task at the sentence level that aids
the model in understanding relationships between sentences. Finding consecutive
sentences is a part of a binary sentence pair classification task. For training purposes,
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the sentence pairs are produced so that 50% of the instances are consecutive and the
other 50% are not. The topic and coherence predictions involved in NSP enable the
model to learn sentence-level semantics. In order to promote learning, NSP only uses
50% of the tokens in each training sample.

• Sentence Order Prediction (SOP): It is a pre-training task at the sentence level that
only considers sentence coherence. The training instances are generated using NSP in
such a way that 50% of them are switched out while the other 50% are not. SOP only
uses 50% of the tokens in each training sample to facilitate learning.

• Sequence-to-Sequence LM (SSLM): Both the left-side words in the predicted target
sequence and every word in the input masked sequence are included in the context.
The encoder inputs the masked sequence, and the decoder predicts the masked words
sequentially from left to right. SSLM is sample inefficient because it only reconstructs
the masked tokens. Only 15% of tokens are used by SSLM to facilitate learning in each
training sample.

• Denoising Auto Encoder (DAE): It is an auto-encoder model that learns to forecast
the original, uncorrupted data point as its output, after being fed a corrupted data
point as input. By reassembling the original text from corrupted text, it aids the
model’s learning process. Models based on encoder–decoders can be trained using
DAE. By offering more training signals for model learning, DAE is more sample
effective. Due to the fact that DAE involves reconstructing the entire original text, it
offers a stronger training signal. Each training sample used by DAE contains 100%
tokens for learning.

• Segment Level Recurrence (SLR): When the model processes the following new
segment, the representations calculated for the prior segment are fixed and cached for
later use as an extended context. By allowing contextual information to cross segment
boundaries, this additional connection increases the largest possible dependency
length by N times, where N is the depth of the network. The context fragmentation
problem is also solved by this recurrence mechanism, giving tokens at the beginning
of a new segment the context they require.

• Gap Sentences Generation (GSG): Abstractive summarization is accomplished using
this pre-training objective. S2S models extract gap sentences and use them for pre-
training by creating sentences that are disconnected from the rest of the text and
concealing entire sentences. Selecting specific sentences with apparent significance
performs better than randomly selecting sentences for the generation.

Table 2. List of pre-training objectives tasks and their corresponding loss functions definition, along
with the list of example TB models that used this pre-training objective.

Abbreviations Objective Task Loss Function Design Highlights Example

CLM
Casual

Language
Modeling

Lossx
CLM = − 1

|x| ∑
|x|
i=1 log(P( xi

x<i
))

x<i = x1, x2, x3, . . . xi−1
x = x1, x2, x3, . . . , xN

where N represents the number
of tokens in the sequence.

Token-Level,
Predict Next Token,

Unidirectional,
Sample Efficient

GPT1 [43],
UniLM [62]

MLM
Masked

Language
Modeling

Lossx
MLM = − 1

|Mx | ∑i∈Mx log(P( xi
xMasked ))

where Mx represents the masked token positions in x

Token-Level,
Token Masking,

Bidirectional,
Not Sample Efficient

BERT [3],
RoBERTa [57]

RTD
Replaced

Token
Detection

Lossx
RTD = − 1

|xcorr | ∑
|xcorr |
i=1 log(P( d

xcorr
i

))

where d ∈ {1, 0} represents whether
the token is replaced or not.

Token-Level,
Bidirectional,

Token Replacement,
Sample Efficient

ELECTRA [63]
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Table 2. Cont.

Abbreviations Objective Task Loss Function Design Highlights Example

STD
Shuffled

Token
Detection

Lossx
STD = Entropy(Lossx

A + Lossx
B)

Lossx
A = ∑n

i=1−1(xshu f f led
i = xi) log(D(xshu f f led, i))

Lossx
B = −1(xshu f f led

i 6= xi) log(1− D(xshu f f led, i))
where xshu f f led = [x1, . . . , xn]

and h(x) = [h1, . . . , hn] and h
′
i = GELU(WT

Ahi)]

and D(xshu f f led, i) = α(WT
B h
′
i)

Also, {WA} and {WB} are linear layers parameters
and GELU is the activation function [53]

Token-Level,
Token Shuffling,

Bidirectional,
Sample Efficient

Panda et al. [64]

RTS
Random

Token
Substitution

Lossx
RTS = − 1

|xcorr | ∑
|xcorr |
i=1 log(P( d

xcorr
i

))

where d ∈ {0, 1} represents whether
the token is randomly substituted or not.

Token-Level,
Random Token Substituted,

Sample Efficient
Di et al. [65]

SLM
Swapped
Language
Modeling

Lossx
SLM = − 1

|Rx | ∑i∈Rx log(P( xi
xcorr ))

where Rx represents the positions of swapped tokens.

Token-Level,
Token Swapping,

Not Sample Efficient
Di et al. [65]

TLM
Translation
Language
Modeling

Lossx,y
TLMA

= − 1
|Mx | ∑i∈Mx log(P( xi

xMasked , yMasked))

Lossx,y
TLMB

= − 1
|My | ∑i∈My log(P( xi

yMasked , xMasked))

Lossx,y
TLM = Lossx,y

TLMA
+ Lossx,y

TLMB
where Mx and My represents masked positions

and xMasked and yMasked represent
the masked version of x and y.

Random Token Masking,
Bidirectional,

Not Sample Efficient

XLM [58],
XNLG [66]

ALM
Alternate
Language
Modeling

Loss(z(x,y))
ALM = − 1

|M| ∑i∈M log(P( zi
ZMasked ))

where z is the code-switched sentence generated from x and y,
zMasked represents the masked version of z

and M represents the set of masked token positions in zMasked.

Sentence-Level,
Sentence Code-Switched,

Bidirectional,
Not Sample Efficient

Yang et al. [67]

SBO
Sentence

Boundary
Objective

Loss(x,y)
SBO = − 1

|S| ∑i∈S log(P( xi
yi
))

yi = f (xs−1, xe+1, ps−e+1)
where f is a two-layered feed-forward neural network,

S represents the positions of tokens,
|S| represents the length of span,

s and e represent the start and end positions of span,
and p represents the position embedding.

Span-Level,
Span Masking,

Not Sample Efficient
SpanBERT [68]

NSP
Next

Sentence
Prediction

Loss(x,y)
NSP = − log(P( d

x,y ))

Where d ∈ {1, 0} represents whether
the sentences are consecutive or not.

Sentence-Level,
Consecutive Sentence Swapping,

Not Sample Efficient
BERT [3]

SOP
Sentence

Order
Prediction

Loss(x,y)
SOP = − log(P( d

x,y ))

where d ∈ {1, 0} represents whether
the sentences are swapped or not.

Sentence-Level,
Sentence Swapping,
Not Sample Efficient

ALBERT [69]

SSLM

Sequence
To

Sequence
LM

Lossx
SSLM = − 1

|ls | ∑s=i log(P( xs
xMasked ,xi:s−1

))

where xMasked is the masked version of x with masked
n-gram span and ls represents the length of the masked n-gram span.

Token-Level,
Unidirectional,
Token Masking,

Not Sample Efficient

T5 [70],
mT5 [71],

MASS [72]

DAE
Denoising

Auto
Encoder

Lossx
DAE = − 1

|x| ∑i=1 log(P( xi
xcorr ,x<i

))

where xcorr is the corrupted version of x.

Sentence-Level,
Sentence Reconstructing,

Noise Reduction,
Sample Efficient

BART [73]

2.4.2. Fine-Tuning Procedure

Definition 5. Downstream task: A specific task to complete as part of self-supervised learning is
a downstream task. Most frequently, this definition is related to transfer learning or self-directed
learning. A model is pre-trained with a general dataset that does not represent the downstream task
but enables the model to learn some general features in transfer learning in particular.

The pre-trained model is then modified using the dataset that faithfully represents the
issue that needs to be solved. A downstream task is what is referred to as in the context of
self-supervised learning for the latter task. Word representations are updated from labeled
data in the downstream task, which is when fine-tuning takes place. While fine-tuning in-
volves adapting the model to a particular task or dataset, pre-training involves training the
model on a sizable generic corpus. Both pre-training and fine-tuning scenarios technically
involve changing the model weights. For example, the pre-trained model can be adjusted
for a particular objective such as categorization or question answering. Pre-training, on the
other hand, refers to the process of training a pre-training task representation method, such
as an unsupervised learning task, especially when a large corpus is used and the target
dataset is from a specific domain and contains a few unlabeled data points that may help the
model adapt to the domain. The process of fine-tuning involves utilizing the target corpus
with the intended task. The pre-training and fine-tuning framework used by the majority
of TB models is described in this Algorithm 1. The three stages of the framework can be
categorized as training on entirely new data, pre-training on representational techniques,
and fine-tuning for a particular task. Training instability is frequently discovered when
fine-tuning TB models. Even when using the same learning rate and batch size values as
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hyperparameters, different random seeds can result in noticeably different results. The
issue becomes even more obvious when using the large Transformers variants on small
datasets. The instability of the TB fine-tuning process has been addressed in a number of
ways since the introduction of BERT.

3. TB Models Applications and Architectures

We reviewed TB models from 2017 to 2022. Figure 5 shows the distribution of the
reviewed papers per year, while Figure 6 shows the proposed taxonomy for this survey.

Figure 5. Reviewed papers distribution per year.

Based on the variations in the Transformer block’s usage mode, different categories of
Transformers can be created. There are three different kinds: encoder-only (also called auto-
encoding, or AE), decoder-only (also called auto-regression, or AR), and encoder–decoder
framework, also called S2S. By providing a list of examples and improvements for each
architecture, this review analyzes the Transformers architectures for each TB model. We
divided the taxonomy into applications and architectures as shown in Figure 6. Then, as
previously described, the architectures are divided into AET, ART, and S2S.

The taxonomy for application-based models that we suggest in this survey is based on
language, domain, and task applications. We detail the list of TB models used in each along
with the methods used to evaluate them. We divided the applications into three categories:
language (language), application domain (domain), and NLP downstream task (task). The
main language-based factor is the existence of monolingual and multilingual models. Due
to the fact that the majority of TB models are pre-trained, some specific fine-tuning is
required for a number of downstream tasks, including question answering (QA), sentiment
analysis (SA), document summarization (DS), machine translation (MT), topic modeling
(TM), text classification (TC), text generation (TG), and text summarizing (TS). For the
domain-based models’ applications, textual-based NLP TB models can be used in a variety
of fields, such as finance, health, and clinic applications, social media post classification or
moderation, cyber-security, etc.
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Figure 6. Reviewed TB models’ proposed taxonomy. It separates them into models based on
architectures and models based on applications. We defined three aspects of the applications:
domain-based models’ applications (DBM), downstream-based models’ applications (TBM), and
language-based models’ applications (LBM).

3.1. Architecture-Based Models (ABM)

The field of NLP has seen great success with unsupervised representation learning. In
most cases, these techniques pre-train neural networks on sizable unlabeled text corpora
before fine-tuning the models or representations on subsequent tasks. Numerous unsu-
pervised pre-training objectives have been researched in the literature under this common
high-level concept. ABM include S2S Transformers (S2S), Auto-Encoding Transformers
(AET), and Auto-Regressive Transformers (ART). In Figure 7, we show examples of TB
models based on each ABM type with the most used downstream task.

Figure 7. Diagram of the reviewed state-of-the-art TB models and examples of the mostly used
downstream tasks.

3.1.1. Auto-Encoding Transformers (AET)

Definition 6. AET models: These are TB models that use the encoder block of the Transformer
architecture shown in Figure 8. AET models are comparable to the encoder in the original Trans-
former model in that they have unrestricted access to all inputs. The concept of input elimination
serves as the foundation for this specific class of TB models: for instance, masking some of the
words in a sentence and attempting to reconstruct the original text. BERT [3], RoBERTa [57], and
ALBERT [69] are a few examples of this type that come to mind. These models’ infrastructures
frequently resemble the encoder portion of a Transformer because they aim to create bidirectional
encoding representations of the entire sentences, which do not require any masking mechanisms and
allow access to all input at any location. They can then be adjusted in subsequent tasks and produce
excellent outcomes. Sentence classification, sequence labeling, and other tasks that lean more toward
NLU are the most frequent downstream tasks for this TB type.
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Figure 8. Encoder Block.

Typically, these models create a bidirectional representation of the entire sentence.
Their most natural application is sentence classification or token classification, although
they can be tuned and produce excellent results on many tasks such as text generation. First,
we mention BERT, a bidirectional encoder representation model using the Transformer for
Language Understanding (LU), introduced by [3]. This model has made improvements
to the Transformer’s architecture. As a result of its contribution, the unidirectionality
constraint was lifted, and an MLM was substituted. After randomly masking some input
tokens, the objective is to deduce the masked word’s original vocabulary ID solely from
its context. The representation can combine the left and right contexts with the help of the
MLM to pre-train a deep bidirectional Transformer. BERT pre-trains text-pair representa-
tions through the use of the MLM and the next sentence prediction task (NSP). Numerous
other models have been created based on the BERT model [5,57,68,74–82]. Lan et al. [69]
proposed ALBERT, which stands for a light BERT. They developed a model that can match
BERT’s performance by altering a few scientific parameters in its architecture but only
with a small fraction of the parameters and correspondingly lower computational cost.
Lample et al. proposed XLM [58], which was a pre-trained TB architecture using multiple
languages. The authors demonstrated the value of cross-lingual pre-training and suggested
two approaches for learning cross-lingual language models: an unsupervised approach that
only uses monolingual data and another supervised approach that uses parallel data with a
new cross-lingual language model objective. CLM, MLM, and TLM are the three language
modeling goals that have been put to the test in this method. The authors discovered that
strong cross-lingual features are offered by both the CLM and MLM approach, which can
be applied to pre-training models. ELECTRA a TB model proposed by Clark et al. [63].
It has a new pre-training method that trains the discriminator and the generator with
two Transformers that replace tokens in the sequence. The ELECTRA contribution makes
an effort to determine which tokens in the sequence the generator replaces. In addition,
masking the input is replaced by the pre-training task known as replaced token detection
(RTD). RoBERTa [57] is a BERT advancement that changes the pre-training procedure of
BERT. The next sentence prediction objective was removed, longer sequences were used for
training, and the masking pattern applied to the training data was dynamically changed.
The model was also trained over a longer period of time with more data in larger batches.
The authors also collect a sizable new dataset called CC-News [83] that is comparable in
size to existing privately used datasets in order to more adequately account for training
set size effects. UNILM [62] is a BERT-style bidirectional Transformer encoder. The model
can be modified for tasks requiring the generation and comprehension of natural language.
The model was pre-trained using three different language modeling tasks: unidirectional,
bidirectional, and S2S prediction. Unified modeling is accomplished by utilizing a common
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Transformer network and suitable self-attention masks to control what context the predic-
tion is conditional on. In comparison to BERT, UNILM performs well on the GLUE [84]
benchmark, SQUAD 2.0 [85], and the CoQA [86] question-answering tasks.

Definition 7. Distillation is a method for shrinking a model by teaching a small model to closely
resemble a larger teacher model. Therefore, when porting a model to less powerful hardware, such as
a smartphone or a mini-laptop, distillation is necessary. In addition to being quicker and smaller, a
distilled model achieves similar results.

Sanh et al. [79] proposed DistilBERT, a TB model that is built on the BERT archi-
tecture. The model is less complex, quicker, and less costly to train than BERT. In order
to shrink a BERT model by 40% during the pre-training stage, knowledge distillation
is used. They implemented a triple loss that combines language modeling, distillation,
and cosine-distance losses in order to make use of the inductive biases that larger mod-
els learned during pre-training. Yang et al. [87] proposed SMITH (Siamese Multi-depth
Transformer-based Hierarchical Encoder), which is a TB paradigm for learning and match-
ing document representations. It makes a number of design choices to adapt self-attention
models for extended text inputs. A masked sentence block language modeling task is
utilized for the model pre-training to capture sentence block relations inside a document,
in addition to the basic MLM task at the word level used in BERT. From a series of sentence
block representations, the document level Transformers learn the contextual representation
for each sentence block and the final document representation. There are an interesting
number of BERT-Based variations including mBART [88], DeBERTa [89], MobileBERT [90],
Bort [91], DeeBERT [92], CuBERT [93], DynaBERT [94], TernaryBERT [95], I-BERT [96], Con-
vBERT [97], SqueezeBERT [98], MacBERT [99], BinaryBERT [100] and AutoTinyBERT [101].
Sun et al. [45] introduced ERNIE, a knowledge integration language representation model
that outperforms Google’s BERT in a variety of Chinese language tasks, and it is receiving
high recognition from the NLP community. Following the original ERNIE, Baidu released
the improved ERNIE 2.0 [46], which outperforms not just the original ERNIE but also
BERT and another pre-training model called XLNet [44]. ERNIE 2.0 [46] is a continuous
pre-training system that integrates lexical, syntactic, and semantic information from big
data in order to expand its already extensive knowledge base.

3.1.2. Auto-Regressive Transformers (ART)

Definition 8. ART models: The GPT model family is by far the most well-known application of
ART. Similar to how LMs are traditionally used, the main goal of ART models is to predict the next
word based on the text that has already been read. Figure 9 illustrates how the infrastructure of ART
is made up of the Transformer’s decoder part, which is in contrast to the AET models previously
mentioned. In order to prevent the attention calculations from seeing the content after a word,
ART models rely on a masking mechanism in the training phase. Similar to other pre-trained TB
models, ART can be tweaked to perform superbly on a variety of downstream tasks; natural language
generation (NLG) tasks are where it shines the most. The decoder of the original Transformer model
is analogous to ART, which covers the entire sentence with a mask. Text generation is the most
obvious use case for those models, even though they can be altered and are excellent at many tasks.

A typical example of such models is Extra Long Transformer or Transformer-XL [52].
It introduced the concept of segment-based recurrence to the deep self-attention network,
in which Transformer-XL makes use of the hidden states acquired in earlier segments rather
than computing the hidden states from scratch for each new segment. The previously
used hidden states act as a memory for the current segment, creating a recurring link
between them. As a result, because information can spread through recurrent connections,
modeling extremely long-term dependency is made possible. The concept of relative
positional encoding, which generalizes to attention lengths longer than those observed
during training, is one of the Transformer-XL’s most important new innovations. As
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opposed to using a single embedding to represent each absolute position, the model
computes an embedding that represents the separation between any two tokens.

Figure 9. Decoder Block.

Yang et al. developed XLNet [44], an auto-regressive Transformer that attempts to
balance the advantages of auto-encoding and auto-regressive language modeling while
avoiding their drawbacks. As opposed to traditional auto-regressive models, which use
a fixed forward or backward factorization order, XLNet maximizes the expected log-
likelihood of a sequence of all feasible factorization order permutations. The context for
each position can include tokens from both the left and the right thanks to the permutation
operation. It is anticipated that each position will develop the ability to use contextual data
from all positions, capturing bidirectional context. Additionally, XLNet incorporates the
segment recurrence mechanism and relative encoding scheme of Transformer-XL into pre-
training, which empirically improves performance, particularly for tasks involving a longer
text sequence, and it is motivated by the most recent developments in auto-regressive
language modeling. Another type of auto-regressive Transformer is the generative pre-
trained Transformer developed by OpenAI. Radford et al proposed the GPT1 [43] based
on a TB architecture. This model’s training process is divided into two steps. In order
to learn the initial parameters of a neural network model, a language modeling objective
is first applied to the unlabeled data. Second, a target task’s parameters are adjusted
using the corresponding supervised objective. GPT2 [42] is a sizable TB-language model
with 1.5 billion parameters that was developed using an 8 M web page training set. The
straightforward goal of GPT2’s training is to predict the following word from the text’s
previous words. This straightforward goal includes genuine examples of numerous tasks
from various domains due to the diversity of the dataset. With more than 10 times the
parameters and trained on more than 10 times the data as GPT1, GPT2 is a direct scale-
up of GPT1. Brown et al. developed GPT3 [41], the third generation of GPT, which has
175 billion parameter options. With the exception of the fact that GPT3 alternates between
dense and locally banded sparse attention patterns in the layers of the Transformer, it uses
the same architecture as GPT2, including the modified initialization, pre-normalization,
and reversible tokenization. CTRL [102] is a 1.6 billion-parameter conditional Transformer
language model that has been trained using control codes that define a domain, a sub-
domain, entities, relationships between entities, dates, and task-specific behavior. Another
model is MegatronLM proposed by Shoeybi et al. [103]. It is a bigger TB model created by
the NVIDIA team working on applied DL research. A simple efficient intra-layer model
with a parallel approach was used to train this TB model with up to 8.3 billion parameters
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using 512 GPUs. They provided evidence that their techniques for training very large
Transformer models are effective. The training of TB models with countless parameters
is possible using these techniques. They demonstrated how massive language models
can advance the state-of-the-art by training language models with 8.3 billion parameters
(similar to GPT2) and 3.9 billion parameters (similar to BERT). They showed that in BERT-
like models, the location of layer normalization needs to be carefully taken into account in
order to achieve better performance as the model size grows.

3.1.3. S2S Transformers (S2S)

Definition 9. S2S models: S2S makes use of the original Transformer’s encoder and decoder for
greater model flexibility as shown in Figure 10, either for translation tasks or by converting other
tasks into S2S problems. An S2S model also unifies the NLU and NLG tasks, allowing for their
solution within the same framework. It is adaptable to a range of NLG tasks, including translation
and summarization, as well as NLU tasks. Currently, the most representative example of these
models is the T5 [70].

Figure 10. The Transformer architecture.

S2S can be fine-tuned to many tasks but their most natural applications are translation,
summarization, and question answering. A typical example is T5, or Text-to-Text Transfer
Transformer, developed by Raffel et al. [70]. It is a text-to-text architecture that is based on
Transformers. For every task that comes after, including classification, question-answering,
and translation, text input is fed to the model, and it has been taught to generate the desired
text output. The same model’s loss function and hyper-parameters can therefore be used
for all of these different tasks. In addition to the bidirectional architecture of a causal
decoder, T5 differs from BERT by substituting a number of different pre-training tasks for
the fill-in-the-blank close task. Lewis et al. proposed BART [73], which is a S2S model
that has been pre-trained using the typical TB neural machine translation architecture.
It employs a typical S2S architecture with a left-to-right decoder such as GPT1 and a
bidirectional encoder such as BERT. BART [73] uses a left-to-right decoder to reconstruct
the original text after encoding a corrupted input sequence in both directions. The authors
experimented with various corruption techniques before using sentence permutation and
text infilling to train the model on the corrupted sentences. PLBART [104] is an S2S
paradigm that can address a variety of issues related to the development and interpretation
of programming languages in numerous experiments involving code generation, code
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summarization, and code translation in seven programming languages that make use of
the English language. PLBART uses the same architecture as the BART base; however, the
original Transformer architecture was modified by including an additional normalizing
layer on top of both the encoder and decoder in order to maintain training with FP16
precision [105]. PEGAUSUS [106] is a Transformer encoder–decoder model pre-trained
using large document corpora and supervised GSG objective. Pre-training for S2S models
for abstractive summarization is completed with extracted gap sentences. The authors
found that creating gap sentences from a document and omitting entire sentences from it
serves as an effective pre-training objective for subsequent summary tasks. In addition,
leading or randomly choosing sentences leads to worse performance than sentences that
are ostensibly significant. PALM [107] used the supervised GSG objective to pre-train a
Transformer encoder–decoder on sizable document corpora. For abstractive summarization
S2S models, the pre-training is carried out using extracted gap sentences. MASS [72] is a
masked S2S generation model that reconstructs a sentence fragment from its remaining
components. Each sentence is broken down into words; then, the sentence is reconstructed
from randomly selected words.

3.2. Applications-Based Models (AppBM)

As detailed in the taxonomy, we divided the AppBM into three categories: namely,
the language used (language), the application domain studied (domain), and the NLP
downstream task investigated (task).

3.2.1. Language-Based Models (LBM)

In this section, we discuss language-specific TB models. The vast majority of the
models in this library are monolingual. There are fewer and variously designed multilingual
models available.

Multilingual

Multilingual TB models have the advantage of supporting cross-linguistic transfer
learning. They can be trained on a particular task in one language and perform reasonably
well on the same task in another, despite having only been pre-trained on monolingual tasks.
There is disagreement regarding whether TB models can learn universal patterns across
languages, which is one of the limitations [108]. The same architecture of BERT was pre-
trained for the same task on 104 monolingual corpora of distinct languages in mBERT [3],
which is a multilingual version of BERT. Good cross-lingual transfer skills were shown
by mBERT. For instance, when mBERT is optimized for a classification task in English,
it yields competitive results when evaluated in French [3]. Although to a lesser extent
than between similar languages, this has also been shown to work between typologically
different languages. The mT5 model presented by Xue et al. [71] is a multilingual variant of
T5 pre-trained on the mC4 [71] dataset covering 101 languages. mT6 [109] is a multilingual
pre-trained Text-to-Text Transformer with translation pairs that investigated three cross-
lingual pre-training tasks: machine translation, translation pair span corruption, and
translation span corruption. Both the pre-training tasks and the training objective are
different in mT6 compared to mT5. On eight benchmarks, mT6 performs noticeably better
than mT5. mBART [88] is an S2S denoising auto-encoder that was trained using the BART
objective on sizable monolingual corpora in numerous languages. In contrast to earlier
methods, which concentrated only on the encoder, decoder, or reconstructing portions
of the text, mBART is one of the first techniques for pre-training an entire S2S model by
denoising full texts in multiple languages. A number of other models have been created
as extensions of the S2S cross-lingual TB model known as XLM. XLM-RoBERTa [110] was
developed using the 100 language CommonCrawl dataset [111]. In terms of downstream
tasks such as classification, sequence labeling, and question answering, it offers significant
improvements over previously released multilingual models such as mBERT or XLM.
XLM-R [110] is an XLM-based model architecture. XLM-R shows the possibility of training
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one model for many languages while not sacrificing per-language performance. XLM-
E [112] uses ELECTRA-style tasks to train the cross-lingual language model. Multilingual
token detection and translation token detection are two pre-training tasks used by the
model. Cross-lingual transferability is accomplished by XLM-E with a comparatively
small transfer gap. The cross-lingual language model XLM-K [113] focuses on existing
multilingual pre-training with two knowledge tasks, namely the masked entity prediction
task and object entailment task. XLM-T [114,115] is a Twitter-based multilingual model.
The multilingual baseline includes an XLM-R model that has been trained on millions
of tweets in over thirty languages along with a starter code to fine-tune on a target task
and a set of unified sentiment analysis Twitter datasets that each have an XLM-T [115]
model tuned on them. Goyal et al. proposed XLM-RXL and XLM-RXXL [116], two larger
multilingual masked language models, with 3.5B and 10.7B parameters. The two models
outperformed XLM-R on the GLUE benchmark. MuRIL [117] is a BERT model that has been
pre-trained on 17 Indian languages and their transliterated counterparts. Unicoder [118]
is a multi-language encoder insensitive to different languages pre-trained on multiple
cross-lingual tasks. IndicBERT [117] was trained using a large corpus of multilingual
texts. The model is structured using an ALBERT model. IndicBERT has significantly fewer
parameters than other publicly accessible models such as mBERT and XLM-R while still
outperforming them on a variety of tasks.

Monolingual

A typical approach to modifying the models for the downstream tasks is to use
downstream datasets for each new language to pre-train TB language models. There are
several TB models that are monolingual. The main strategy is to adjust an all-encompassing
TB language model for a particular language, as in the case of the BERT architecture. BERT
is only trained on English datasets, unlike the multilingual BERT model mBERT, which
uses the original BERT architecture and training objectives but is trained on corpora of up
to 104 languages. There are several other models trained using BERT architecture including
IndonesianBERT, IndonesianBERTLite [2] and IndoBERT [119] for the Indonesian language.
The same approach is used for other languages such as RomanianBERT [4], FlauBERT [120],
HerBERT [121], KLUE-BERT [122], AraBERT [123], PhoBERT [124], CamemBERT [125],
SweedishBERT [126], PolishBERT [127], BERTje [128], FinnishBERT [129], ALBERTO [130],
PortugueseBERT [131], RuBERT [132], BanglaBERT [133], ARBERT [134], MARBERT [134],
ParsBERT [135], BERT-SentiX [12], CT-BERT [13]. In addition, for a GPT-based pre-trained
model, we found AraGPT2 [136], a Transformer architecture-based model for Arabic
language generation. The largest publicly accessible collection of filtered Arabic corpora
served as the model’s training data with a total size of 77 GB with 8.8 billion words [136].
The perplexity measure, which gauges how well a probability model predicts a sample,
was used to assess the model’s performance. Taking into account the inherent biases of
the dataset, ARAGPT2, similar to many ML models, has ethical ramifications and can be
abused (e.g., by automatically creating false news). A detector model that is responsible for
detecting output produced by ARAGPT2 is also released to aid in the detection of model
abuse. For the Indian language, Aniruddha et al. [137] proposed Meta-ED, which is a
pre-trained model based on GPT2 architecture. The RoBERTa-based pre-trained models
include KLUE-RoBERTa [122], WangchanBERTa [138], RoBERTa-Twitter [14] and RoBERTa-
Reviews [10]. Several NLP tasks have been successfully completed using trained language
models. Recent studies have shown that models pre-trained on monolingual corpora
outperform models pre-trained on multilingual corpora on tasks in the same language.
When pre-trained on a Portuguese corpus, BERT models have already demonstrated
improved performance for Portuguese tasks. One of the reasons to carry out a comparable
pre-training with the T5 model is that it can produce text. As a result, it can carry out
tasks such as summarization, answering abstract questions, and translation that a BERT
model cannot. PTT5 [139] improved the original T5 model on Portuguese language tasks by
pre-training it on BrWac [140], which is a large corpus of web pages in Brazilian Portuguese.
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The model is tested using pre-training on tasks involving named entity recognition and
sentence entailment prediction in Portuguese. Results demonstrate that monolingual pre-
training significantly boosts the model’s performance. Using an ELECTRA pre-trained
model, we found SweedishELECTRA [126] for Sweedish and AraELECTRA [141] for Arabic
language. Using an XLM pre-trained model, we found XLM-R-Twitter [114]. Using a BART
pre-trained model, we found IndoBART [142]. Using an ALBERT pre-trained model, we
found KoreALBERT [143] and SweedishALBERT [126]. In addition, RobeCzech [144] and
BETO [145] are monolingual TB models based on other state-of-the-art architectures.

3.2.2. Domain-Based Models (DBM)

This section examines the TB models according to the application domain. The
taxonomy demonstrates that there are currently eight large domains: programming, health,
social media, science, law, finance, and cybersecurity.

Social Media

Because of the increased connectivity between individuals, the popularity of social
media and microblogging platforms is still having unrecognized effects on our lives. The
numerous instances of abusive language phenomena overshadow any potential advantages.
HateBERT [11] is a language model that has already been trained to recognize English
language abuse. The main goal of this contribution is to identify ways to solve that
issue. HateBERT consistently outperforms generic BERT when it comes to detecting
offensive language on state-of-the-art hate speech datasets such as OffensEval 2019 [146],
AbusEval [147], and HatEval [148]. According to the cross-dataset experiments, HateBERT
successfully captures each abusive language phenomenon against which it has been tuned.
Bertweet [149] and BertweetCovid19 [149] are two widely used language models that
have already been trained on English tweets. BERTweet is trained based on the RoBERTa
pre-training procedure. The corpus used to pre-train BERTweet contains 850 M English
tweets, including 5 M tweets about the COVID-19 pandemic and 845 M tweets streamed
from 01/2012 to 08/2019. In addition, BERT-SentiX [12] and CT-BERT [13] used BERT as a
pre-trained model for social media-related fine-tuning. Despite the fact that the fine-tuning
steps can be more varied for the RoBERTa-base model, however, the fundamental strategy
of using a more focused dataset for social media has not changed. Rahali et al. [150] studied
misogyny detection on social media in different languages and platforms using TB models
including BERT, mBERT, XLNet, and RoBERTa in comparison to BiLSTM for the same
task. RoBERTa-Twitter [14] is a RoBERTa-base model trained on 58 M tweets, which were
described and evaluated on the TweetEval benchmark [14]. RoBERTa-Reviews [10] and
RoBERTa-News [10] used the same approach. The majority of downstream tasks using
TB models in relation to social media and entertainment can be classified to toxic content
prevention tasks [151–155], recommendation tasks [156–158] and fake news detection
tasks [159–162].

Programming

Therefore, the state-of-the-art in NLP already demonstrates reliability in carrying out
tasks based on the semantic content of natural language. The first methods for applying
concepts from the NLP field to the understanding of the program code field start to emerge.
However, current methods treat software code as plain text, ignoring the syntactical features
that programming languages provide. Additionally, the majority of current methods are
designed for a particular downstream task, which limits the range of situations in which
they can be used. Text data can be processed using NLP for a number of different tasks.
We discovered that these models can also exhibit comparable advantages. There are
several works for software code processing such as CodeGPT [163], GraphCodeBERT [164],
CodeGPT-adapted [163], CoText [165], PLBART [104] and CodeBERT [166].
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Health

The rapid adoption of electronic health records (EHR) encourages the application
of data-driven modeling to enhance patient care management and delivery. Particularly,
cutting-edge DL techniques such as RNNs [167], CNNs [168] and Transformer [21] are being
used in novel applications to predict future medical events. These DL models can gradually
extract pertinent features from large patient samples and demonstrate promising model
performance for various predictive tasks. For example, BioBERT [5], which was trained on
a dataset with more than 200,000 patient records, shows promising results for predicting
the diagnosis and medication of subsequent medical visits. In addition, ClinicalBERT [6],
BlueBERT [7] and PubMedBERT [8] are other proposed architectures for health-related
TB applications. The majority of DL models need to be trained on large amounts of high-
quality data. Even though the large-scale EHR database contains millions of patient records,
these records are frequently not fully applicable for a variety of reasons, such as a lack
of cases for rare diseases and conditions, restricted access to the entire database due to
privacy concerns, and difficulties in data cleaning and merging. These limitations slow
down the data collection process, decreasing the likelihood that data-hungry DL models
will appear and obstruct the advancement of healthcare computing and care delivery.
Kalyan et al. [169] proposed AMMU, a survey of TB biomedical pretrained LM. There are
several other approaches including healthcare monitoring [170,171], LM for health records
analysis [172–180], health documents classification [181–184], TB medical management
approaches [185], named entity recognition (NER) for medial records [186–188], question
answering [189], document summarization [190,191], system recommendation [192] and
relation extraction [193–195].

Scientific

In comparison to earlier works, pre-trained Transformers such as SciBERT [75] or
BioBERT [5] have excelled in scientific NER. Despite this success, they typically classify
the first subtoken representation of each word to label sequences, which can result in less-than-
ideal fine-tuning for NER. This issue has been addressed in some work by designing NER as
a span-based classification rather than a sequence labeling. For example, MathBERT [196],
SciBERT [75] and OAG-BERT [197] showed good performance on downstream tasks using
this technique. For geology, using geological reports, some TB models were pre-trained to
solve NLP-related tasks such as NER. Among these studies, we found the study proposed
by Liu et al. [198]. They trained a BERT-based model for NER tasks. Additionally, there
are other approaches for chemical-related papers [199], scientific papers analysis [200,201],
biomedical related papers [202,203], scientific experiment prediction [204], scientific articles
classification [205], scientific NER and information retrieval [206–209]. and scientific docu-
ments summarization [77,210].

Legal

ALeaseBERT [211] and LegalBERT [212] are a family of BERT models for the legal field
that aims to support applications in computational law, legal technology, and legal NLP
research. They gathered 12 GB of diverse English legal text from a variety of fields (such
as legislation, court cases, and contracts), scraped from publicly accessible resources, to
pre-train the various iterations of Legal-BERT. When performing tasks that are domain-
specific, sub-domain variants that use general Legal-BERT outperform those that use
BERT out of the box. LegalBERT is a lightweight model that performs competitively
that was pre-trained on legal data and is 33% the size of the BERT base. There are other
legal-related studies for different NLP downstream tasks including pre-trained language
models for different languages [213–218], legal documents summarization [219–222], legal
documents classification [223–229], key information extraction and NER [230–232], legal
sentiment analysis [233,234], legal question answering [235–237], and legal judgment
prediction [238–243].
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Finance

Traditional financial product recommendation algorithms ignore the effects of time in
series data and are based on the static characteristics of consumers and financial products,
which results in low-quality recommendations. By utilizing the benefits of Transformer
in processing time series, Lian et al. [244] suggested an R-Transformer (Recommendation
system based on Transformer) to address this issue. Users’ and financial products’ states
are mined using two R-Transformer networks based on time series, and the inner product
of users’ and financial products’ states is used as the final score. FinBERT [9] is a sentiment
analysis model. FinBERT has already been trained to evaluate the tone of the financial text. It
is created by further honing the BERT language model for financial sentiment classification by
training it on a large financial corpus in the finance domain. Goel et al. [245] suggested a TB
BERT architecture that gathers contextual data from a collection of raw texts created specifically
for the FinNLP workshop in the finance domain and performs a classification operation to
group domain terms into a predetermined number of class labels. The suggested model’s
feature extractor is a TF-IDF vectorizer that provides the model with a word-level relevance
in addition to taking contextual BERT embeddings into account. Other studies focused
on financial forecasting [246–253], financial terms classification [245,254–256], generation of
finance reports [257], financial reports summarization [247,258–261], sentiment analysis for
financial documents [262–271], financial terms extraction [262,272–274], NER for financial
terms [254,275–278] , topic modeling for financial documents [279,280] and financial language
models [9,281,282].

Cybersecurity

Cybersecurity is a crucial issue, and recent developments in NLP have accelerated
the adoption of cybersecurity solutions. In particular, Malware categorization, a crucial
and difficult issue in information security, is one of many tasks where TB models are used
for this subject. TB models that may be trained on data such as opcode sequences, API
calls, and byte n-grams, among many others, are used in modern malware classification
techniques [283–288]. Other approaches focused on cybersecurity data analysis [289,290],
anomaly detection [291–294], fake cyber threat generation [295] and NER [296,297].

3.2.3. Task-Based Models (TBM)

The majority of downstream textual-based NLP tasks, including text classification (TC),
text generation (TG), automatic summarization (DS), machine translation (MT), named
entity recognition (NER), relationship extraction (RE), sentiment analysis (SA), and topic
segmentation (TM), have shown TB models to be effective. Downstream tasks are very
dependent on the selected datasets and benchmarks used to test the TB models. We review
first the NLP standard benchmarks; second, we review the evaluation metrics and finally
we review the TB models used in each downstream task.

Benchmarks

The field of NLP encompasses a wide range of research activities, including sentiment
analysis, text summarization, question answering, and machine translation. To accomplish
these tasks, researchers work to create various ML and DL models. The SOTA dataset
variants are presented in Table 3.
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Table 3. NLP benchmarks list and sizes.

Benchmark Task Variants Size Split Ref

RACE
Reading

Comprehension 24.26 MiB
test 1045

train 18,728
validation 1021

[298]

GLUE

Sentiment
Analysis

SST-2 7.09 MiB
test 1821

train 67,349
validation 872

[299]

CoLA 368.14 KiB
test 1063

train 8551
validation 1043

[300]

MRPC 1.43 MiB
test 1725

train 3668
validation 408

[301]

QQP 57.73 MiB
test 390,965

train 363,849
validation 40,430

[302]

Natural
Language
Inference

MNLI 298.29 MiB
test 9796

train 392,702
validation 9815

[303]

QNLI 10.14 MiB
test 5463

train 104,743
validation 5463

[304]

WNLI 28.32 KiB
test 146

train 635
validation 71

[305]

Semantic
Textual

Similarity

RTE 680.81 KiB
test 3000

train 2490
validation 277

[306]

STS-B 784.05 KiB
test 1379

train 5749
validation 1500

[307]

SQuAD
Question

Answering
SQuAD2.0
SQuAD1.1 94.04 MiB

train 87,599
validation 10,570 [85]

• RACE [298] is a large-scale reading comprehension dataset with more than 28,000 pas-
sages and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. The dataset
can be used for training and test sets for machine comprehension.

• The GLUE [84] (General Language Understanding Evaluation) benchmark is a collec-
tion of nine natural language understanding tasks, including single-sentence tasks
CoLA and SST-2, similarity and paraphrasing tasks MRPC, STS-B and QQP, and
natural language inference tasks MNLI, QNLI, RTE, and WNLI 2.1.

• SQuAD [85] (Stanford Question Answering Dataset) is a reading comprehension
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia ar-
ticles, where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.

The models use the pre-training and then fine-tuning procedure, as described in the
background section. The NLP benchmarks are commonly used to evaluate models, with
each dataset serving as a reference for a specific downstream task. The model’s pre-training
can be single or multitask specific. To investigate the differences in the performance
of the TB models on these benchmarks further, we present in Table 4 a comparison of
corresponding experimental results on these datasets for important and widely used TB
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models. Table 4 displays the outcomes of the GLUE, SQuAD, and RACE benchmarks used
to evaluate the most recent TB models. Similar to the GLUE paper selected metrics, we
present the matthews correlation (mc) coefficient for CoLA and we report F1 for MRPC,
QQP and SQuAD. We also present Pearson correlation results for STS-B. For every other
task, we provide the accuracy (Acc) results. It will be much easier to compare TB models if
all cutting-edge architectures have the same number of layers and hyperparameters and are
trained on the same dataset. However, this condition is not available because, as stated in
previous sections, each model is trained on a different dataset and has a unique architecture.
However, some models, such as TinyBERT [74], share the same architectures as the BERT
base. TinyBERT learns from the BERT base through complex distillation procedures.

For explicit reasoning tasks with a longer context, such as SQuQD [85] and RACE [298],
the performance gain of XLNet is typically greater. The Transformer-XL backbone in
XLNet may be responsible for this advantage in handling more complex situations. The
effectiveness of the suggested word structural objective (WSO) was demonstrated by
the StructBERT model with structural pre-training, which consistently outperformed the
original BERT model. The loss and accuracy of the masked token prediction were largely
unaffected by the augmented shuffled token prediction in StructBERT’s structural objective.
Even though RoBERTa and BERT largely share the same architecture, RoBERTa consistently
outperforms BERT in several tasks. RoBERTa outperforms XLNET by 0.6 points on the
SQuAD datasets [85] in terms of F1 scores. The comparison Table 4 demonstrates how
well the T5 model performed on the GLUE and SQuAD datasets. Moreover, it achieved a
stellar F1 score of 88.9 on the SuperGLUE language benchmark [308], which is a dataset
based on GLUE with a new set of more difficult language comprehension tasks. T5
outperformed the previous state-of-the-art, ALBERT, by more than one point on the F1
score for SQuAD [85]. According to the GLUE tasks’ average score, we can see that
ELECTRA largely outperformed GPT1 and BERT. The ELECTRA model is made from the
ground up. The comparison table’s findings demonstrated that ELECTRA was only slightly
more effective at CoLA than the other TB models. Similar to ELECTRA’s pre-training task
of identifying fake marijuana, CoLA’s objective is to distinguish between sentences that are
and are not grammatically correct. This could contribute to the explanation of ELECTRA’s
performance. Performance on sentence pair tasks such as MNLI, QQP, SNLI, and SQuAD
was significantly improved by including the sentence structure objective. The WSO was
particularly crucial for tasks such as CoLA and SST-2 that only called for a single sentence.
It illustrates how understanding the relationship between sentences for subsequent tasks is
influenced by pre-training inter-sentence structures. The correlation between grammatical
error and improvement in the CoLA task for ELECTRA was greater than 5%. Pre-training
assessments of the acceptability of a single sentence were more precise due to the model’s
capacity to reconstruct word order.
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Table 4. List of evaluation results for examples of TB state-of-the-art models on NLP benchmarks, where N referes to the number of parameters of the TB model.

N TB Models

GLUE SQuAD

RACEMNLI-m
(Acc)

MNLI-mm
(Acc)

QQP
(F1)

QNLI
(Acc)

SST-2
(Acc)

CoLA
(MC)

STS-B
(Spearman

Correlation)

MRPC
(F1)

RTE
(Acc)

WNLI
(Acc)

SQuAD 1.1
(F1)

SQuAD 2.0
(F1)

14.5 M BERTtiny 75.4 74.9 66.5 84.8 87.6 19.5 77.1 83.2 62.6 - - - -

29.2 M BERTsmall 77.6 77.0 68.1 86.4 89.7 27.8 77.0 83.4 61.8 - - - -

110 M BERTbase 84.6 83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 - 88.5 - -

335 M BERTlarge 86.7 85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 - 90.9 81.9 -

235 M ALBERTensembles 91.3 91.0 74.2 - 97.1 69.1 92.5 93.4 89.2 91.8 94.1 88.1 82.3

335 M SpanBERT 88.1 −87.7 71.9 94.3 94.8 64.3 89.9 90.9 79.0 65.1 94.6 88.7 -

15.1 M MobileBERTtiny 81.5 81.6 68.9 89.5 91.7 46.7 80.1 87.9 65.1 65.1 - - -

356 M RoBERTalarge 90.2 90.2 92.2 94.7 96.4 68.0 92.4 90.9 86.6 89.0 94.6 89.4 83.2

14.5 M TinyBERT 82.5 81.8 71.3 87.7 92.6 44.1 80.4 86.4 66.6 - - -

340 M StructBERTlarge 88.0 - 74.1 95.7 95.2 65.3 90.3 92.0 83.1 65.1 - - -

110 M StructBERTbase 85.5 - 72.0 92.6 94.7 57.2 88.5 89.9 76.9 65.1 90.6 - -

52.2 M DistilBERT 78.9 78.0 68.5 85.2 91.4 32.8 76.1 82.4 54.1 65.1 - - -

335 M ELECTRAlarge 91.3 90.8 90.8 95.8 97.1 71.7 92.5 90.7 89.8 92.5 94.9 91.4 -

550 M XLM 89.1 88.5 73.2 94.0 95.6 62.9 88.8 90.7 76.0 71.9 - - -

260 B ERNIE2.0 92.3 91.7 75.2 97.3 97.8 75.5 93.0 93.9 92.6 95.9 - - -

340 M UNILM 87.0 85.9 - 92.7 94.5 61.1 - - 70.9 - - 83.4

11 B T5xxlarge 92.2 91.9 75.1 96.9 97.5 71.6 93.1 92.8 92.8 94.5 96.2 - -

140 M BART 89.9 90.1 92.5 94.9 96.6 62.8 91.2 90.4 87.0 - 94.6 89.2 -

117 M GPT1 82.1 81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 - - - -

1.5 B GPT2 82.1 81.4 70.3 88.1 91.3 45.4 82.0 82.3 56.0 - - - 59.0

117 M XLNetbase 85.8 85.4 - - 92.6 - - - - - - 81.3 66.0

360 M XLNetlarge 89.8 91.0 91.8 93.9 95.6 63.6 91.8 89.2 83.8 92.5 94.5 88.8 81.8

530 M MegatronLM 91.4 91.4 92.7 - - - - - - - 95.5 91.2 89.5
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Evaluation Metrics

The most difficult component of NLP is determining the performance of these models
for various jobs. Because the cost function or evaluation criteria are well defined in some ML
jobs, measuring model performance is easy. For example, in regression, the mean absolute
error (MAE) or mean square error (MSE) can be determined using established libraries,
while in classification, the most commonly used metrics are classification accuracy and
F1-score. However, this is not the case for all NLP models, because in the case of TB tasks,
the ground truth or result can change. As a result, we concentrated on automatic evaluation
metrics for several types of TB models. First, we looked at AET models and analyzed metrics
relating to its most commonly utilized downstream task TC. Second, we looked at the ART
model evaluation and we detailed the metrics used for TG downstream task evaluations.
Third, we examined the MT metrics for S2S model evaluation. The metrics are typically
applied to similar downstream tasks for each TB type, such as NER, DS, and so on.

A. Metrics for TC Evaluation
Here are various measures for evaluating the TB models on TC tasks. Certain measures,

such as precision–recall, are helpful for a variety of activities. Using alternative measures
for performance evaluation, instead of properly evaluating the TB model and relying solely
on the accuracy, might cause issues when the model is applied to unobserved data and
result in inaccurate predictions. Table 5 shows the formulations for the listed evaluation
metrics for TC.

• Accuracy [309]: Simply put, accuracy reflects how frequently the classifier predicts
correctly. Accuracy is determined by dividing the total number of forecasts by the
proportion of true predictions.

• Precision [310]: Precision reveals how many of the labels that were predicted with
accuracy ended up being positive. When false positives are more problematic than
false negatives, precision is helpful.

• Recall (Sensitivity) [310]: Recall describes how many of the actual positive cases our
model was able to properly anticipate. When false negative is more important than
false positive, it is a valuable metric. In medical situations, it is crucial because even if
a false alarm is raised, the real positive cases should not go unnoticed. The proportion
of true positives to all other positive results is known as a recall for a label.

• F1 Score [310]: It provides a synthesis of the precision and recall measurements. it
reaches its optimum when precision and recall are equal. The harmonic mean of recall
and precision is the F1 Score.

• AUC-ROC [311]: A probability curve called the Receiver Operator Characteristic
(ROC) separates the “signal” from the “noise” by plotting the TPR (True Positive Rate)
versus the FPR (False Positive Rate) at different threshold values. A classifier’s capacity
to distinguish between classes is measured by the area under the curve (AUC).

• Confusion Matrix: A performance indicator for ML classification issues when the out-
put can be two or more classes is the confusion matrix. It is a table with combinations
of values that were expected and actual.

Table 5. List of TC evaluation metrics formulations, where true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) represent the number of predicted samples.

Metric Formula

Accuracy [309] Accuracy = TP+TN
TP+TN+FP+FN

Precision [310] Precision = TP
TP+FP

Recall [310] Recall = TP
TP+FN

F1-Score [310] F1-Score = 2 ∗ Precision∗Recall
Precision+Recall



AI 2023, 4 83

B. Metrics for TG Evaluation
It is crucial to assess the generated text’s quality from a broad standpoint for any

TG model. Among these are the text’s factuality, which provides a sense of how accu-
rately the generated text reflects the facts mentioned in the context, the text’s fluency,
which conveys how fluid the language in the output text is, and the text’s diversity. These
evaluation-related factors can be measured by either a machine or a person. Since humans
are the best judges of the natural language texts produced by NLG systems, human-based
evaluation metrics are reliable. Manual evaluation of the generated text is completed by
assigning a score to each component. The automatic evaluation metric is the alternative
type of evaluation. The similarity of the NLG model-generated texts to the correspond-
ing reference texts in benchmarking datasets is typically used as the basis for automatic
evaluation metrics for TG. Lexical, syntactic, and semantic criteria can all be used in the
metrics calculation.

• BLEU [312]: In NLP tasks, the metric known as BLEU is frequently used to assess how
generated texts from an NLG model differ from reference texts. Its value was in the
neighborhood of 0.0 and 1.0. The value of BLEU is 1.0 if two sentences perfectly match
one another. The BLEU value is 0.0 when there is absolutely no overlap between them.
In particular, BLEU counts the number of n-gram matches between the reference text
and the generated text.

• ROUGE [313]: Recall-oriented understanding for sting evaluation is known by its
acronym, ROUGE. It is an automated summary evaluation method that uses a set
of indicators to gauge the effectiveness of the texts that are generated automatically.
In order to determine how closely the automatically generated texts resemble a set
of reference texts, the system compares the generated texts with the reference texts,
counts the overlapping basic units (n-grams), and calculates the corresponding score.
The denominator is the only distinction between BLEUn and ROUGEn as shown
in Table 6. The total number of n-grams in the texts generated is the denominator
of BLEU-n, which focuses on precision. The total number of n-grams found in the
reference texts serves as the denominator because ROUGE-n is recall-oriented. Better
recall-oriented quality is indicated by a higher ROUGEn value.

• Perplexity (PPL) [314]: The advantages and disadvantages of a linguistic probability
model can be evaluated using a word-level technique PPL. A Language Probability
Model (LPM) is a probability distribution on a given text, i.e., the likelihood of the
n + 1th word given the n preceding words in the text. When a language probability
model is trained on the training set of reference texts for the TG task, it is applied
to predict the generated text. The generated text is more fluid when the PPL value
is lower.

• Distinct-n [315]: An n-gram-based statistic called distinct-n is used in various scenes
that aim to increase the diversity of generated texts. The diversity rises as the value
increases, where the total number of n-grams in the generated texts serves as the
denominator and the numerator is the number of n-grams that appear just once in the
generated texts. The value of Distinct-n is 1 when the total number of n-grams and the
count of unique n-grams are equal.

Table 6. List of mathematical formulations for the automatic metrics calculation for the task of
TG evaluation.

Metric Formula

BLUE [312]

BLUEn =
∑x∈G ∑n−gram∈x Countmatch(n−gram)

sumn−gram∈x ∑x∈G Count(n−gram)

where x is the generated text sequence to be compared.
match indicates that the n-gram appears

in both the generated and reference texts.
n is the number of n-grams in the sequence.

G is an abbreviation to generated text.
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Table 6. Cont.

Metric Formula

ROUGE [313]
ROUGEn =

∑x∈G ∑n−gram∈x Countmatch(n−gram)

sumn−gram∈x ∑x∈R Count(n−gram)

where R is an abbreviation to referenced text.

PPL [314]

Perplexity is defined as the exponentiated average
negative log-likelihood of a sequence. If we have
a tokenized sequence W = (w0, w1, w2, . . . , wn),

then the perplexity of W is:
PPL(W) = exp

{
− 1

t ∑t
i log p(wi|w<i)

}
where n is the number of words in the generated text.

i the ith word in the generated text.
p(wi) is the probability of the ith word
in an LM trained with reference texts.

DISTINCT [315]

DISTINCTn =
Countunique(n−gram)

Count(n−gram)

where n is the number of n-grams that appear once
in the generated texts and the denominator

is the total number of n-grams in the generated text.

There are also other word token level and sentence level evaluation metrics for TG
such as Word Mover’s Distance (WMD) [316], MEANT 2.0 [317], editing distance [318],
and TESLA [319]. Semantic-based metrics are designed to evaluate texts with various
lexical structures but the same semantic content. Semantic similarity is more difficult to
measure and requires more consideration than lexical-based or syntactic similarity. Among
the semantic metrics, we list semantic textual similarity (STS) [320] and deep semantic
similarity model (DSSM) [321].

C. Metrics for MT Evaluation
The development of TB and MT models depends heavily on MT evaluation. Along

with BLUE, there exist other evaluation metrics for MT tasks. We briefly describe the
evaluation measures taken into account for TB MT models. We list the most widely
used metrics.

• TER [322]: It counts how many edits, including insertions, deletions, shifts, and
substitutions, were necessary to convert the MT output into the reference.

• CHRF [323]: Instead of using the word n-grams, it compares the MT output with the
reference using the character n-grams. This facilitates matching word morphological
variants.

• YISI-1 [324]: Using contextual word embeddings such as BERT determines the seman-
tic similarity of phrases in the MT output with the reference.

• YISI-2 [325]: It is identical to YISI-1, with the exception that it calculates the degree to
which the MT output and the source are comparable using cross-lingual embeddings.

• Enhanced Sequential Inference Model (ESIM) [326]: It is a trained neural model that
first determines sentence representations from BERT embeddings and then determines
how similar the two strings are to one another.

• Word Error Rate (WER MWER) [327]: This is the accepted measurement for auto-
matic speech recognition evaluation. WER is calculated by dividing the length of
the reference translation by the Levenshtein distance [328] between the words of the
system output and the words of the reference translation. In order to determine the
best alignment between the MT output and the reference translation, the Levenshtein
distance is calculated using dynamic programming, with each word in the MT output
aligning to either 1 or 0 words in the reference translation and vice versa.

• NIST [329]: As a better alternative to BLEU, the NIST precision measure was devel-
oped. Ngram occurrences should be given more weight based on their significance,
and unwanted consequences of the shortness penalty of BLEU should be minimized.
The frequency of the n-gram in the references is used to calculate significance. Regard-
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ing BLEU, numerous reference translations are pooled, although NIST believes that
infrequent n-grams are more significant than those that occur frequently. The brevity
penalty is intended to counteract BLEU’s small favoritism of brief candidates.

• Metric for Evaluation of Translation with Explicit ORdering (METEOR) [330]: It
is a test that was created expressly to address a number of BLEU’s recognized
flaws. BLEU is typically a precision-oriented measure, whereas METEOR is recall-
oriented. Unlike BLEU, which only computes precision, METEOR computes both
recall and precision before combining the two to compute the harmonic mean, heavily
favoring recall.

• Position-Independent Error Rate (PER) [331]: It is an effort to overcome the WER’s
word-ordering restriction by treating the reference and hypothesis as bags of words.
This allows words from the hypothesis to be aligned to terms in the reference regardless
of position. As a result, it is guaranteed that the PER of an MT output will be lower
than or equal to the WER of the MT output. The drawback of this type is that it cannot
tell a correct translation from one where the words have been jumbled.

Mathur et al. [332] suggested a review of the metrics for MT’s automatic evaluation.
They highlighted their key recommendations, which include switching from employing
BLEU or TER to CHRF, YISI-1, or ESIM for MT evaluation. Furthermore, it was advised to
ensure that significant empirical conclusions were validated by manual evaluation rather
than relying just on minor variations in evaluation metrics.

NLP Downstream Tasks

It has been widely accepted that learning representations of TB models in NLP are
beneficial for a variety of NLP tasks. For example, machine translation is used to create
fluent text from one natural language into another while maintaining meaning. Rule-based,
statistical, and neural machine translation techniques, among others, are employed. Other
downstream tasks, as proposed in our taxonomy, are listed in this section, along with
detailed examples of TB approaches used in different domains.

A. Text Classification (TC)
Text classification is significant because it serves as the foundation for other concepts.

In recent years, techniques for text classification that use TB models have seen a lot of
success. TB techniques are now the method of choice for classifying texts due to their
success. For this task, there exist several studies including different languages [333,334],
long documents classification [335–337], and financial documents classification [254]. For
scientific documents classification, we found SCIBERT [75], which is a pre-trained language
model based on BERT that was developed to address the lack of high-quality, large-scale
labeled scientific data. To enhance performance on subsequent scientific NLP tasks, SCIB-
ERT makes use of unsupervised pre-training on a sizable multi-domain corpus of scientific
publications. With datasets from various scientific fields, they assess a range of tasks, such
as sentence classification, dependency parsing, and sequence tagging. ClinicalBert [76] is
a BERT-based model that creates and assesses clinical note representations using bidirec-
tional Transformers. It outperforms baselines on 30-day hospital readmission prediction
using both discharge summaries and the first few days of intensive care unit notes, and it
unearths high-quality relationships between medical concepts as judged by humans. In
addition, BioBERT [5] is a language representation model for a specific domain that has
been pre-trained on extensive biomedical corpora. When pre-trained on biomedical cor-
pora, it outperforms BERT and previous state-of-the-art models in a variety of biomedical
text mining tasks with nearly the same architecture across tasks. BERT-based models were
used wildly in different domains, among the interesting approaches are the applications of
TB models in malware classification. For example, MalBERT [286,338] used the pre-trained
BERT model to classify malware based on extracted text features from the source codes of
the applications. Murat et al. [339] proposed a bidirectional Transformer (BiTransformer),
built from two Transformer encoder blocks, that makes use of bidirectional position encod-
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ing to account for the forward and backward position information of text data. The model
is employed to assess the downstream task of text classification’s attention mechanisms.

B. Question Answering (QA)
Numerous studies using the Transformer architecture have been used for question-

answering systems. TOD-BERT [82], a pre-trained task-oriented dialogue BERT, combines
nine datasets for task-oriented multi-turn human–human dialogue. In order to simulate
the response selection task, they propose a contrastive objective function and incorporate
user and system tokens into the masked language modeling. In addition, DIALOGPT [340]
is a dialogue-generative pre-trained Transformer. The model is a neural conversational
response generation model trained on 147 million conversations. It increases the Trans-
former’s capacity to deliver a performance that is comparable to a human’s in single-turn
dialogue settings both in terms of automatic and human evaluation. SOLOIST [341] is a
technique that creates task-oriented dialog systems at scale using transfer learning. They
parameterized a dialog system by combining various dialog modules into a single neural
model using a TB auto-regressive language model. Shao et al. [27] designed a TB neural
network to select the best answer. The Transformer uses a bidirectional long short-term
memory (BiLSTM) to collect both global information and sequential features from the
question or answer sentence. This TB network differs from the original Transformer in that
it prioritizes sentence embedding over the S2S task. Using a variety of NLP techniques,
several automated question-answering systems were developed to search through unstruc-
tured documents such as social media posts to find the relevant data, analyze it, and choose
the best part to respond to the question [27,82,340,341].

C. Document Summarization (DS)
The automatic text summarization transfer learning using pre-trained word embed-

ding models has shown promising results. HIBERT was proposed by [77]; it is a shorthand
for Hierarchical Bidirectional Encoder Representations from Transformers. HIBERT is
primarily used for document encoding and as a pre-training method with unlabeled data.
On a version of the New York Times dataset and the CNN Daily Mail dataset, it performs
better than its randomly initialized counterpart by 1.25 ROUGE and 2.0 ROUGE, respec-
tively. Lamsiyah et al. [342] fine-tuned a BERT model on supervised intermediate tasks
from GLUE benchmark datasets using single-task and multi-task fine-tuning methods.
Khandelwal et al. [343] showed that using a single pre-trained Transformer for S2S tasks
simplifies the model, reduces the number of parameters, and removes the non-pre-trained
encoder–decoder attention weights. Liu et al. [344] applied pre-trained BERT for text
summarization. It is a document-level encoder and proposed a general framework for
both abstractive and extractive summarization. Zhang et al. [345] proposed a two-stage
model based on the S2S paradigm. The model incorporates reinforcer objectives into the
learning process and uses BERT on both the encoder and decoder sides. A text can be
summarized to produce a condensed version that highlights its main ideas and points. Both
abstractive and extractive summarization techniques are used in most cases [77,342,344].
For the Arabic language, Ameen et al. [346] proposed a TB hybrid approach to the Arabic
text summarization task.

D. Text Generation (TG)
In AI, where its techniques are frequently used to avoid over-fitting and enhance

the generalization of deep neural network models, TG has been extensively studied. The
Transformers have been the subject of recent studies to accomplish this task. Among the
interesting works, Kumar et al. [26] studied different types of pre-trained TB models, such
as GPT2 and BERT, and BART, for conditional TG and show that pre-pending the class labels
to text sequences provides a simple yet effective way to condition the pre-trained models for
TG. They investigated the differences in data diversity between various pre-trained model-
based TG techniques and the degree to which label information is preserved. In addition,
Shao et al. [27] suggested the use of conditional BERT contextual generation, which is a
method for enhancing data for labeled sentences. By introducing a new conditional MLM,
they convert BERT into a conditional BERT. Contextual TG can be improved by using the
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trained conditional BERT. ART models such as GPT and S2S models such as T5 are widely
used for TG tasks. Several other approaches using TB models were proposed [347–352].

E. Name Entities Recognition (NER)
NER is the task of identifying entities from a text. It identifies names in text and

classifies them into predefined groups. It is possible to extract entities such as the names
of businesses, locations, dates, numbers, people, and other textual components [353]. Li
et al. [354] proposed FLAT, a TB model for Chinese NER, that transforms the lattice structure
into a flat structure made up of spans. Each span represents the pair of a character or latent
word and the location of that character or word in the original lattice. A method for identify-
ing entities based on their names is called NER. Zhang et al. [275] proposed FinBERT-MRC,
which is a BERT-based model for financial NER using BERT under the machine reading
comprehension paradigm. Long et al. [355] suggested a flexible method for entity dictio-
nary integration called dictionary-fused BERT. In order to obtain contextualized word and
entity representations, the system uses a logit matrix to create a robust loss function and
adds an auxiliary task that involves an on-top binary classification to determine whether
the token is a mentioned word or not. Jarrar et al. [356] suggested Wojood, an entity corpus
with Arabic names using BERT recognition. With the help of the pre-trained ARaBERT,
they used the corpus to train a nested NER model based on multi-task learning. There are
several studies for NER in different languages including Chinese [357–360], Arabic [361],
Spanish [362,363], etc. Liu et al. [198] suggested a two-stage method for fine-tuning BERT
for the geological domain knowledge for the NER task. They used in the first fine-tuning
stage a pre-trained BERT model, and in the second stage, a small number of samples
to complete the NER task for geological reports, based on GeoBERT. Based on ALBERT
architecture, Kezhou et al. [364] proposed a model that combines ALBERT with BiLSTM
and Conditional Random Field (CRF) to form the ALBERT-BiLSTM-CRF model.

F. Topic Modeling (TM)
Information retrieval, document classification, document summarization, and ex-

ploratory text analysis using large text corpora have all been successfully accomplished
using topic modeling [365]. Topic modeling refers to a group of NLP algorithms that
help us identify semantic topics or patterns in a set of documents. The hidden topics that
are present in the corpus are identified using different approaches. Rukhma et al. [366]
proposed ZeroBERTo, which is a model that uses an unsupervised clustering step to obtain
a compressed data representation before the classification task. Aaron et al. [367] suggested
a BERT-based model for the TM of a consumer Twitter discussion relating to telehealth for
mental health or substance abuse during pre-pandemic versus pandemic time periods.

G. Machine Translation (MT)
Elaffendi et al. [368] suggested a PIA (polynomial inherent attention) model, based on

the Transformer architecture and assessed its effects on the MT task. Dongxing et al. [369]
seek to enhance the TB MT strategies. In order to avoid a low-rank bottleneck, they sug-
gested the interacting-head attention mechanism, which selects the right number of heads
and induces deeper and wider interactions among the attention heads by low-dimension
computations in various sub-spaces of all the tokens. Cheikh et al. [370] suggested two MT
systems based on S2S models with attention and TB architectures, French to Wolof and
Wolof to French models. They concentrated on French datasets to solve the low-resource
MT solution job [371]. For TB models for MT in the programming domain, there are
few studies [372], while for the task of Chinese language translation, several works were
proposed [373–375].

H. Sentiment Analysis (SA)
Dimple et al. [376] suggested KEAHT, which is a knowledge-enriched attention-based

hybrid TB model for social SA, by enhancing the explicit knowledge of lexicalized domain
ontology and latent dirichlet allocation (LDA) topic modeling. They used BERT to train the
corpus. This method can precisely resolve complex text problems and offers the facility
of an attention mechanism. Rolandos et al. [377] used the TB model to address the issue
of locating the aforementioned ironic and sarcastic posts. A neural network approach has
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been developed on top of the model for SA. Several other studies were conducted as part
of the social media sentiment analysis [378–382].

4. Discussion

Transformers had a significant impact on how ML is used in various tasks involving
NLP. S2S models, ART models, and AET models are the overall types of these Transformers.
In this paper, we reviewed these models in detail. We started by studying the idea of
encoder–decoder architectures. These techniques perform superbly across a variety of
domains. However, there are still a few challenges to be resolved, as Transformer’s potential
for textual-based NLP tasks has not been fully investigated. As we detailed in this review,
each new TB model builds on the models that came before it and suggests modifications
and improvements at the level of applications and architecture to solve specific issues. We
can generally address some Transformer architecture drawbacks; among these challenges,
we can list:

• Attention is limited to handling fixed-length text sequences. Before being entered
as input into the system, the text must be divided into a predetermined number of
segments or chunks. This may lead to the loss of context as a result of text chunking.

• The inability of TB models to process extended sequences is mainly caused by the
computational and memory cost of the self-attention module.

In this section, we go over these difficulties in detail and offer a summary of the
proposed approaches to solve them. The two levels of discussion are TB model architecture
evaluation and TB model application evaluation.

4.1. Architecture Level

Many different architectures have been developed, changing the fundamental charac-
teristics of TB models. The fact that these extensions use a wide range of terms to describe
every component of the model is what unites them. Related studies categorize some
models as auto-regressive, while others are classified as auto-encoding or S2S. These three
encoder–decoder architectures’ similarities and differences are discussed in Section 3. In
order to provide the necessary context, we went over the fundamentals of encoder–decoder
architectures. A brief discussion of traditional Transformer architecture is also included.
After that, we discussed auto-encoding, auto-regressive, and S2S models.

4.1.1. TB Model Configurations Evaluation

• RQ1: Does the model size have an impact on the model’s performance?
• RQ2: Does the number of blocks and attention layers have an effect on the model’s

performance?

The Transformer’s parameters, such as the quantity of decoder and encoder layers,
etc., are very flexible, and the outcomes would probably be enhanced with better training
and tuning of these parameters. Regularization, load balancing, and fine-tuning hyper-
parameters are all necessary to comprehend the dynamics of expert models’ fine-tuning.
After reviewing all TB models, it is clear that there is a consistent link, demonstrating that
for all TB models, stronger pre-training resulted in better downstream outcomes. We also
discovered that TB models perform similarly in the small to medium model size regime
for fixed upstream perplexity. The larger models, such as the Switch-Transformer [383]
regime, may not always well convey their confusion from the upstream to the downstream
fine-tuning on the SuperGLUE task. The best compute-efficient training strategy is the exact
opposite of the widespread practice of reducing model size. On the other hand, training TB
models on a tight budget should not drastically decrease model size. However, instead,
training with the original size and stopping the training very early is more efficient. To put
it another way, it is possible to increase the model size while sacrificing convergence, which
forces the reevaluation of the implicit assumption that models must be trained until con-
vergence. Ontanon et al. [384] provided an empirical evaluation of the Transformer model
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design space. The results show that when compared to a baseline transformer, changing
the configuration can result in significant improvements in compositional generalization.
They provided the configurations required to achieve this goal.

Large models are very helpful even on datasets with 4000 labeled examples. Going
from the 110 M model to the 340 M parameters model is beneficial as in the case of the
GPT models family. In DL, using more computing by expanding the size of the model,
increasing the size of the dataset, or the number of training steps frequently results in
greater accuracy. This is particularly true in light of the recent popularity of unsupervised
pre-training techniques such as BERT-based models, which enable training on very sizable
models and datasets. Large-scale training is unfortunately very computationally expensive,
especially without the hardware capabilities of significant industry research labs. Therefore,
obtaining high accuracy while staying within one’s hardware budget and training time
is typically the goal of advanced research to improve the TB models. Large models seem
to be unworkable for the majority of training budgets. Instead, using models with small
hidden sizes or few layers is the go-to tactic for maximizing training efficiency because
these models run faster and consume less memory. Growing the size of a TB model can
enhance the effectiveness of training and inference, demonstrating that the rule to train
on a large dataset then compresses—Train Large, Then Compress [385]—is an efficient
recommendation. This discovery raises a number of intriguing new queries, such as why
larger models converge more quickly and compress more effectively? These details about the
TB models and pre-trained LM, in general, are still under investigation by the research
community.

4.1.2. Tokenization Evaluation

• RQ1: What is the effect of preprocessing techniques on TB models?
• RQ2: What differentiates the tokenization of the TB models from the traditional

methods?

TB models use different tokenization methods described in Section 2. For example:
The GPT family [41–43] of models process text using tokens, which are common sequences of
characters found in text. The models are excellent at producing the following token in a series of
tokens because they are aware of the statistical relationships between these tokens. The context
representation of the sequences in TB models limits how well the TB models perform on
many NLP tasks. We can differentiate the TB tokenization methods from the traditional
ones in three aspects:

• First, TB models’ success is due to a pre-training task that was self-supervised and
promoted general language comprehension without considering the particular re-
quirements of ranking tasks. There is a continuum between the initial self-supervised
training task and the final interaction ranker. Isolating ranking-aware pre-training
tasks may result in gains in both effectiveness and efficiency, especially when there is
a dearth of data on the target task. By ranking tasks, we mean the downstream tasks
that require the model to iterate during fine-tuning and learn by ranking patterns in
each iteration until achieving the best results. In other terms, the ranking task is the
reduction of the loss function used in each pre-training objective.

• Second, TB models combine a lengthy sequence with numerous layers, but it is not
clear what value this rich semantics adds in terms of ranking. For example: the deep
layers of BERT resulted in some, albeit modest, performance improvements, but it is still
unclear how exactly the model learns to accurately understand the patterns. Some refer to the
MLM pre-training step. The masking method is what differentiate BERT from the original
Transformer encoder block, but even the masking mechanism is not well explained in term of
what patterns are masked and how the model learns these patterns.

• Third, TB models create distinct sequence representations by employing a different
form of tokenization than feature extraction techniques such as stemming and lem-
matizing. For example, BERT tokenizer’s constrained vocabulary affects a large number of
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long-tail tokens, resulting in significant efficiency gains at the expense of a negligible drop
in effectiveness.

4.1.3. Improving the Transformer Architecture

• RQ1: How to improve the TB model’s time, training speed, memory, complexity,
and efficiency?

• RQ2: What techniques were proposed to improve the Transformer architecture?

The inefficiency of TB models in processing extended sequences, which is primar-
ily caused by the self-attention module’s computational and memory cost, is one of the
most challenging aspects of using them. It is also challenging to train the Transformer
on small-scale data due to its flexible architecture, which enables it to make few assump-
tions about the structural bias of the input data. A number of Transformer variants, or
X-formers, have been suggested recently to address these problems. These X-formers im-
prove the first Transformer architecture in a number of different ways. When it comes to
improving model efficiency, lightweight attention strategies such as sparse attention varia-
tions and divide-and-conquer techniques such as recurrent and hierarchical mechanisms
are employed. Additionally, several models improved model generalization by adding
structural bias, regularization, or pre-training on vast amounts of unlabeled data. Addi-
tionally, techniques for model adaptation were suggested to customize the Transformer
for particular downstream tasks and applications. There may be one or more problems
that existing X-formers can address. In order to avoid overfitting on small datasets, sparse
attention versions, for instance, introduce a structural prior to the input data while reducing
computing complexity.

Among the TB models that made modifications to the standard architecture to en-
hance the model’s time, training speed, memory, complexity, or efficiency, we present first,
the Sparse Transformer [386], which is a TB architecture that uses the attention matrix’s
sparse factorization to save time and memory. A reorganized residual block and weight
initialization, a collection of sparse attention kernels that effectively compute portions of
the attention matrix, and updates to attention weights made during the backward pass
to save memory are additional changes made to the Transformer architecture. Zihao et
al. proposed the BP-Transformer (BPT) [387] to achieve better harmony between self-
attention capability and computational complexity. By using binary partitioning (BP), the
architecture divides the input sequence into various multi-scale spans. As the relative
distance grows, it incorporates an inductive bias that shifts attention from fine-grained to
coarse-grained context information. A graph neural network with multi-scale spans can be
compared to BPT by saying that it has nodes. Kitaev et al. proposed the reformer [388],
which is a TB architecture that aims to increase productivity. Its complexity is changed
from dot-product attention to one that employs locality-sensitive hashing. Reformers
also substitute reversible residual layers for conventional residuals. Meanwhile, Perform-
ers [389] is a variant of the linear attention-based Transformer that uses the FAVOR+ (Fast
Attention Via Positive Orthogonal Random Features) mechanism to greatly increase the
space and time complexity of Transformers [390]. This mechanism opens up new directions
in the study of Transformers and the function of non-sparsifying attention mechanisms by
effectively and impartially estimating the original SoftMax-based Transformer with linear
space and time complexity. Rotary Transformer [391] or RoFormer is built using a rotary
position embedding (RoPE) for the Transformer structure. The only absolute position
coding that can currently be used for linear attention is ROPE, which has strong theoretical
foundations. Although Transformer models have been successful in a number of tasks,
their high memory and computing resource requirements prevent their implementation
on devices with limited resources, such as mobile phones. In this section, we examine
the research conducted on Transformer model compression and acceleration for effective
implementation. This includes knowledge distillation, network quantization, network
pruning, low-rank decomposition, and compact architecture design. Transformer-XL is a
new architecture that permits natural language comprehension outside of a context with a
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fixed length while maintaining temporal coherence. Its two main innovations are a posi-
tional encoding system and a segment-level recurrence mechanism. Its main advantages
over the Transformer model include its ability to capture longer-term dependency and
resolve the context fragmentation issue. The results of the experiments demonstrate that
compared to RNNs or the original Transformer, Transformer-XL takes much longer to
learn dependency.

4.2. Application Level

The power of the TB models is explained by the fact that different combinations
and layer implementations can be used, which means that the application range was
not constrained. TB models were initially applied to NLP-related tasks before being
expanded to include other tasks. Transformers are strong sequence models, and they
have a wide range of business applications in a number of different industries. Finance,
biology, cybersecurity, healthcare, and tasks involving languages are included among these
industries, as detailed in Sections 4 and 5.

4.2.1. Benchmarks Evaluation

• RQ1: Are the currently used benchmarks to evaluate the TB models efficient?
• RQ2: Pre-raining vs. fine-tuning datasets for TB models?

Not only the selection of the optimal automatic metrics for evaluation for each model
and downstream task is important but also the datasets used to train the models; their size,
relevance, and annotations are important to determine how effective the TB model is for
the specific task. The identification of benchmark units is crucial in the practice of research
management and evaluation. Generally, in order to comprehend and track a research body’s
growth and performance, researchers frequently use benchmark units as points of comparison.
A set of test programs using various measurement techniques was implemented for the
benchmark evaluation. For the purpose of this review, we listed the most common NLP
benchmarks used to evaluate the downstream tasks of the TB models. These benchmarks are
well annotated and widely used by both academia and industry research groups. Usually, ML
and TB models use very large datasets for the pre-training phase, given the nature of this task
as a supervised one. While for the fine-tuning, smaller, task-specific datasets are used to train
and evaluate the TB models, as explained in Section 2.

4.2.2. Downstream Tasks Evaluation

• RQ1: What is the difference between fine-tuning pre-trained TB models and using
feature-based approaches?

• RQ2: What techniques can be used to improve the fine-tuning phase?

Fine-tuning and feature-based approaches are two ways to apply previously trained
language representations to downstream NLP tasks. On the one hand, the fine-tuning
method trains on the downstream tasks by simply fine-tuning all the pre-trained parameters,
and on the other hand, it introduces minimal task-specific parameters. The feature-based
approach, on the other hand, employs task-specific architectures that use the trained
representations as input features to learn the task. However, sometimes removing some
of these weights and re-initializing them during the fine-tuning process aids in obtaining
better fine-tuning results. It is difficult to pinpoint the main reason for the unstable and
subpar performance of the TB model. Typically, these issues are more common in settings
with large models and small datasets. Associated data characteristics and downstream
tasks’ characteristics can also be important. Along with hyperparameter tuning, applying
some of the sophisticated fine-tuning methods can improve outcomes. Table 7 shows some
fine-tuning techniques used mostly in AET models such as BERT, RoBERTa, etc., to improve
the traditional TB fine-tuning process.
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Table 7. List of methods to improve the fine-tuning phase for the TB models.

Method Highlights Examples

Debiasing Omission (DO) [392]

The most popular optimizer for fine-tuning BERT is BERTADAM, which is a modified version
of the ADAM first-order stochastic optimization technique. The difference between it
and the original ADAM algorithm is the absence of a bias correction step. One of the

main causes of BERT fine-tuning instability is the bias correction omission, which
affects the learning rate, particularly early in the process.

BertADAM [392]

Re-Initializing Transformer Layers (RTL) [393]
It is the re-initialization of the top N layers of the transformer. Selecting the ideal number
of top layers is crucial because increasing the number of re-initializations past the ideal

point may lead to subpar results.

[394]
[395]

Utilizing Intermediate Layers (UIL) [396]

The semantic information in the intermediate layers is ignored in existing BERT-based works,
which only use the final output layer of BERT. This approach recommends investigating

the possibility of using BERT intermediate layers to improve the effectiveness of
fine-tuning BERT.

[396]
[397]
[398]

Layer-wise Learning Rate Decay (LLRD) [399]

With the learning rate distribution method known as LLRD, the top layers learn at higher
rates than the bottom layers, which learn at lower rates. In order to achieve this,

the learning rate is first set for the top layer and then decreased layer by layer from top
to bottom using a multiplicative decay rate.

XLNet [44]
ELECTRA [63]

Mixout Regularization (MR) [400]

Dropout [401] and DropConnect [402] inspired
Mixout, which is a stochastic regularization technique. At every training iteration, the pre-trained

value for each model parameter is substituted. It is shown that this constrains the
fine-tuned model from deviating too much from the pre-trained initialization in order

to achieve the goal of preventing catastrophic forgetting.

[400]
[403]

Pre-trained Weight Decay (PWD) [404]

The regularization technique known as weight decay (WD) is common. By deducting a fixed
amount from the model’s pre-trained parameters, this technique is modified for fine-tuning

pre-trained models. Pre-trained weight decay in Transformer fine-tuning performs better than
conventional weight decay and stabilizes fine-tuning.

[405],
BioBERT [5],

DeFormer [406]

Stochastic Weight Averaging (SWA) [407]
A method of deep neural network training that uses a modified learning rate schedule and

averages the weights of the networks iteratively traversed. Weights are averaged to produce
larger optima and better generalization.

ALBERT [408]

Learning Rate Warm-up Steps (LRWS) [409]

A linear schedule has two phases when warming-up steps are included. The optimizer’s initial
learning rates are set during the warm-up phase, which comes first. The learning rates

therefore begin to increase linearly from 0 to the initialized learning rates. Next comes the
normal phase, when the steps start to linearly decrease until they reach 0.

EfficientBERT [410]
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4.2.3. Multilinguality Evaluation

• RQ1: How efficient are the cross-lingual TB models?
• RQ2: Is using a monolingual model better than relying on a multilingual one?

English-language studies have dominated the field of LBM for TB models. It has been
suggested that using multilingual text for pre-training can effectively target multiple lan-
guages using cross-lingual shared representations. The power of pre-training may now be
applied to many other languages thanks to multilingual LMs such as mBERT, XLM, XLM-R,
mT5, etc., given their success with zero-shot transfer learning. Cross-lingual encoders are
often evaluated using either zero-shot cross-lingual transfer in supervised downstream
tasks or unsupervised cross-lingual textual similarity. Based on the experiment results by
Conneau et al. [110], it is preferable to use high-capacity multilingual TB models trained on
much larger pre-training data instead of multilingual ones with lower capacities. While
for monolingual tasks, it is preferable to use monolingual models. They compared the
performance of the state-of-the-art monolingual models, BERT and RoBERTa, with the
state-of-the-art multilingual models mBERT, XLM-R base, and XLM-R on state-of-the-
art NLP benchmarks. They show that XLM-R performs superior to XLM-R base, which
performs superior to mBERT. The number of parameters of mBERT, XLM-R base, and
XLM-R are, respectively, 172 M, 270 M, and 559 M. On most tasks, none of the multilingual
TB models outperformed the monolingual ones. However, the number of parameters
in BERT and RoBERTa is equally 335 M. For the size of the pre-training datasets for TB
models, Liu et al. [411] demonstrated that pre-training mBERT on larger corpora, as op-
posed to smaller corpora, improves cross-lingual transfer learning. Additionally, Lauscher
et al. [412] demonstrated that for some tasks, the amount of data collected in the target
language for pre-training the multilingual TB models has a meaningful impact on zero-shot
transfer performance.

5. Conclusions

The aim of this survey is to give the NLP research community an up-to-date review of
TB models, helping to boost and highlight the most important aspects of these models at
both the application and architectural levels. In this article, we reviewed the literature on TB
models, paying particular attention to their variety and to the description of their various
architectures. We explained each model compared to the Transformer’s typical architecture.
We divided the existing models into three categories: auto-encoding Transformers, auto-
regressive Transformers, and S2S Transformers, as explained in our taxonomy. We examined
the applications, downstream tasks, as well as languages of the TB models. We detailed the
model’s limitations on different levels and showed the intended methods for improving TB
approaches based on differences in usage modes and architectural changes. We provided
thorough explanations of many examples of these effective TB models. Finally, we provided
examples of the Transformers being used in the NLP field. We concluded that as in NLP,
the TB applications in the listed domains and others may enhance innovative discoveries
and AI-powered products.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Auto-Encoding
AET Auto-Encoding Transformers
AI Artificial Intelligence
ALM Alternate Language Modeling
AR Auto-Regression
ART Auto-Regression Transformers
bBPE Byte Level Byte Pair Encoding
BERT Bidirectional Encoder Representations from Transformers
BPE Byte Pair Encoding
CLM Causal Language Modeling
CNN Convolutional Neural Networks
DAE Denoising Auto Encoder
DBM Domain-Based Models
DL Deep Learning
DNN Deep Neural Networks
DS Document Summarization
GELU Gaussian Error Linear Unit
GRU Gated Recurrent Networks
GSG Gap Sentences Generation
K Key
LBM Language-Based Models
LM Language Model
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLM Masked Language Model
MSE Mean Square Error
MT Machine Translation
NER Named Entity Recognition
NLP Natural Language Processing
NSP Next Sentence Prediction
PE Positional Encoding
Q Query
QA Question Answering
ReLU Rectified Linear Unit
RNN Recurrent Neural Networks
RTD Replaced Token Detection
RTS Random Token Substitution
SA Sentiment Analysis
SBO Sentence Boundary Objective
SLM Swapped Language Modeling
SLR Segment Level Recurrence
SOP Sentence Order Prediction
SSLM Sequence-to-Sequence LM
STD Shuffled Token Detection
TB Transformer-Based
TBM Task Based Models
TC Text Classification
TG Text Generation
TLM Translation Language Modeling
V Value
WSO Word Structural Objective
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