
Citation: Mendoza, Q.A.; Pordesimo,

L.; Neilsen, M.; Armstrong, P.;

Campbell, J.; Mendoza, P.T.

Application of Machine Learning for

Insect Monitoring in Grain Facilities.

AI 2023, 4, 348–360. https://

doi.org/10.3390/ai4010017

Academic Editor: Tin-Chih

Toly Chen

Received: 13 February 2023

Revised: 3 March 2023

Accepted: 15 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Application of Machine Learning for Insect Monitoring in
Grain Facilities
Querriel Arvy Mendoza 1 , Lester Pordesimo 2,*, Mitchell Neilsen 1, Paul Armstrong 2 , James Campbell 2

and Princess Tiffany Mendoza 3

1 Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA;
qasmendoza@ksu.edu (Q.A.M.); neilsen@ksu.edu (M.N.)

2 USDA-ARS Center for Grain and Animal Health Research, Stored Product Insect and Engineering Research
Unit (SPIERU), Manhattan, KS 66502, USA; paul.armstrong@usda.gov (P.A.); james.campbell@usda.gov (J.C.)

3 Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
ptiffany@ksu.edu

* Correspondence: lester.pordesimo@usda.gov; Tel.: +1-785-776-2727

Abstract: In this study, a basic insect detection system consisting of a manual-focus camera, a
Jetson Nano—a low-cost, low-power single-board computer, and a trained deep learning model
was developed. The model was validated through a live visual feed. Detecting, classifying, and
monitoring insect pests in a grain storage or food facility in real time is vital to making insect control
decisions. The camera captures the image of the insect and passes it to a Jetson Nano for processing.
The Jetson Nano runs a trained deep-learning model to detect the presence and species of insects.
With three different lighting situations: white LED light, yellow LED light, and no lighting condition,
the detection results are displayed on a monitor. Validating using F1 scores and comparing the
accuracy based on light sources, the system was tested with a variety of stored grain insect pests and
was able to detect and classify adult cigarette beetles and warehouse beetles with acceptable accuracy.
The results demonstrate that the system is an effective and affordable automated solution to insect
detection. Such an automated insect detection system can help reduce pest control costs and save
producers time and energy while safeguarding the quality of stored products.

Keywords: deep learning; convolution neural network; insects; stored grain pests; insect detection;
insect identification; insect monitoring; insect classification; machine learning

1. Introduction

While breeders and farmers strive for high-yielding grain varieties and increased
crop production to meet the demand of the growing world population, up to 80% of total
production is lost during harvesting, storage, and processing [1]. During storage, grain
losses are estimated at 10–40% due to insect damage [2]. Insect infestation causes physical
degradation (weight loss), grain quality and safety issues, and physical damage to storage
structures and facilities, which all lead to health risks and economic loss [1–3].

Integrated Pest Management (IPM) has become the basis for insect management and
control decisions in facilities where food and grain are processed or stored. IPM is based
on insect ecology, and its operational plan has at least two key elements: monitoring-based
decision-making and multiple pest control tactic applications. Given the challenges in
finding and sampling insect populations directly in the temporal and spatial landscapes
found in and around food facilities, monitoring relies on visual observation, or capture in
traps, of dispersing adults. For stored insect pest prevention and control, various techniques
and technologies have been explored and applied to identify, detect, and monitor insects
in storage facilities. Commonly used are manual sampling traps and probes, manual
inspection and sieving, the floatation method, kernel staining, uric acid measurement, the

AI 2023, 4, 348–360. https://doi.org/10.3390/ai4010017 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai4010017
https://doi.org/10.3390/ai4010017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0009-0001-2832-0642
https://orcid.org/0000-0002-4012-0010
https://doi.org/10.3390/ai4010017
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai4010017?type=check_update&version=1


AI 2023, 4 349

Berlese funnel method, acoustic techniques, X-ray imaging, and the solid-phase micro-
extraction method, among others [4]. Most of these methods are destructive, subjective,
slow, labor-intensive, and time-consuming; usually have low accuracy and efficiency; could
be limited to a few insect pests or specific insect growth stages; and may not be applicable
to real-time applications [4]. Insect pests are small and, superficially, look very similar, so it
takes highly trained people to accurately identify the species and age captured in traps and
determine their risk level. Finally, most traps are selective in their captures since different
pheromones and kairomones attract species, sexes, and developmental stages, making it
difficult to measure populations accurately.

There is continued interest in the development of automated insect monitoring systems
for both food production and the storage of raw and processed foods, but currently available
technologies have limited ability to identify critical pests or require a person to do the
actual insect identification. The use of artificial intelligence (AI) for the identification and
counting of insects is a promising method to address the need for speed, timeliness, and
reliability of insect information required for improving IPM methods. Cameras and other
non-invasive sensors can continuously perform observations, and advances in computer
vision technology, coupled with deep learning algorithms, provide methods to make AI
insect identification possible. Images used to train deep-learning models could provide
estimates of insect abundance, biomass, and diversity. Among the recent techniques for
non-destructive, real-time, and rapid insect detection, near-infrared (NIR) spectroscopy and
machine vision are promising. NIR spectroscopy is reliable and accurate but cannot detect
low levels of insect infestation and differentiate between live and dead insects [3]. The
machine vision system has been used for insect detection and monitoring, providing more
benefits than the other methods. Aside from stored insect pest recognition and detection,
it has also been applied in plant disease detection and crop quality grading [5]. Images
and other outputs from these sensors used to train deep learning models could provide
estimates of insect abundance, biomass, and diversity.

Previous work has focused on orchards and outdoor environmental pests, mostly fly-
ing, with some work conducted on crawling insects found in warehouses. Shuman et al. [6],
Flinn et al. [7], and Banga et al. [4] looked at stored grain insects, while Potamitis et al. [8],
Wen et al. [9], and Zhong et al. [10] focused on outdoor flying insects, and Eliopoulos et al. [11]
examined crawling insects. Behavioral studies of insects could have benefited from auto-
mated insect enumeration and identification [12–14]. Shen et al. [15] recommended that
mathematical modeling of insect movement continues to be a critical area of entomology
research in which automated monitoring could play a significant role.

Machine vision has constantly been evolving as a technique for insect detection in
stored grains. One of the first studies published was on detecting insects and body parts
in bulk wheat samples, which used pattern recognition and multivariate analysis and
obtained more than 90% accuracy [16]. Different algorithms and improved systems were
developed to achieve high throughput [17], reduce instrument and computational costs,
allow easy data access and real-time monitoring, and cover different insect pest species [18].
Some benefits of utilizing machine vision include: (a) the ability to analyze images and
videos much faster and with higher accuracy than humans, which makes it suitable for
high-speed quality control, inspection, and sorting tasks; (b) the capability to perform tasks
consistently without errors or fatigue, ensuring consistent results; (c) the ability to analyze
images and videos without physical contact, making it suitable for inspecting hazardous or
fragile materials; (d) the flexibility of programming machine vision systems to analyze a
wide variety of images and videos, enabling them to be used for various applications; and
(e) the potential to reduce labor costs and enhance productivity, making it a cost-effective
option for many applications.

However, the use of machine vision also has some drawbacks, which consist of: (a) the
complexity of designing and implementing the systems, which require expertise in both
hardware and software; (b) the cost of developing and implementing the systems, especially
for specialized applications; (c) the systems’ sensitivity to lighting conditions, which can



AI 2023, 4 350

affect the accuracy and consistency of their results; (d) the limited understanding of context
and inability to make judgments based on experience or intuition of systems using machine
vision; and (e) the limited applicability of the systems, especially for applications that
require complex decision-making skills beyond image analysis.

More recently, machine vision was combined with machine learning for enhanced
stored insect grain detection and classification accuracy [5]. One of the most widely used
machine learning techniques is the convolutional neural network (CNN), which consists
of a complex network structure and has the ability to execute convolution operations [19].
Shen et al. [15] applied a deep neural network to detect and identify six species of stored
grain insects that were blended with grain and dockage materials. Although they achieved
a high mean average precision (mAP) of 88%, they used different models for different
insects and encountered issues such as one species being classified as two. Another insect
detection system built on deep CNN focused on different insect sizes and obtained mAP
up to 95%, but still, they only detected one insect species at a time [20].

Being able to detect, classify, and monitor insect pests present in a grain storage or
food facility in real-time will be vital to decision-making and insect control. In our study,
we aimed to develop a camera-based monitoring system to detect and identify crawling
stored grain insect pests using CNN and validate the model using a live feed.

2. Materials and Methods

The list of hardware components for this project and the software solution to detect and
identify insects in real time are described in the following sections, along with the testing.
This basic system was tested on adult warehouse beetles (Trogoderma variabile) and cigarette
beetles (Lasioderma serricorne (F.)) from a culture maintained at the USDA-ARS Center for
Grain and Animal Health Research in Manhattan, KS, USA. These insect species were
selected as the test cases because they are major insect pests in food processing facilities
(equipment and structures) and food product warehouses, and they are morphologically
different [21]. The adult cigarette beetle is 2 to 4 mm long, 1.25 to 1.5 mm wide, and light
to dark brown. Their antennae are saw-like and have the same thickness from the base
to the tip. The head is withdrawn under the insect when it is at rest or dead, giving the
insect a characteristic humped appearance. Adult warehouse beetles are smaller than
cigarette beetles, at about 2.7 to 3.5 mm in length, oval, and predominantly black, with
dense, dark-brown scales or setae covering the hardened forewings or elytra.

2.1. Hardware Components

Raspberry Pi (RPi) version 4 (the mention of trade names or commercial products in
this publication is solely for the purpose of providing specific information and does not
imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is
an equal opportunity provider and employer) (Raspberry Pi Trading Ltd., Cambridge, UK)
was used in the original design of this study. Following extensive testing, modifications,
and the lack of computing resources, it was replaced with an NVIDIA Jetson Nano 4 GB
developer kit (NVIDIA, Santa Clara, CA, USA) [22], which served as the primary Central
Processing Unit (CPU). The Jetson Nano has a built-in, dedicated Graphical Processing
Unit (GPU), and an external camera was mounted on the Camera Serial Interface (CSI)
port. The Arducam IMX477 B0250 model (ArduCAM, Nanjing, China) [23] was used
for capturing images that also served as a medium for detection and identification. To
reduce the chance of overheating while the GPU and CPU were simultaneously processing,
a constant, on-demand cooling system was mounted on the Jetson Nano. A Universal
Serial Bus (USB) ring light was also used for illumination, and black, non-reflective paper
was used to cover the part where the insects were placed. As for the base, a microscope
stand was used to adjust the height settings to calibrate the focus. Figure 1 shows how the
hardware products were connected.



AI 2023, 4 351AI 2023, 4, FOR PEER REVIEW 4 
 

 
Figure 1. Connected hardware set-up. 

A regular keyboard, mouse, and external monitor were also connected to the Jetson 
Nano for initial configuration. 

2.2. Software Solution 
As part of the software package for the Jetson Nano, the NVIDIA JetPack (SD card 

image) 4.2 was used, and the procedures listed on the website of NVIDIA were followed. 
After the first boot for the initialization phase, software drivers for the Arducam were 
downloaded from their website for primary configuration. The compatibility of the CSI 
camera with the Jetson Nano must require no connectivity problems since it serves as our 
eyes in the field. 

2.3. Preparing the Model 
The gathering of data was the most tedious part of this project. The summary of the 

steps is presented in Figure 2. First, a label file was created, which was a text file containing 
the list of names of our insects (cigarette and warehouse beetles). 

 
Figure 2. Model development process. 

Figure 1. Connected hardware set-up.

A regular keyboard, mouse, and external monitor were also connected to the Jetson
Nano for initial configuration.

2.2. Software Solution

As part of the software package for the Jetson Nano, the NVIDIA JetPack (SD card
image) 4.2 was used, and the procedures listed on the website of NVIDIA were followed.
After the first boot for the initialization phase, software drivers for the Arducam were
downloaded from their website for primary configuration. The compatibility of the CSI
camera with the Jetson Nano must require no connectivity problems since it serves as our
eyes in the field.

2.3. Preparing the Model

The gathering of data was the most tedious part of this project. The summary of the
steps is presented in Figure 2. First, a label file was created, which was a text file containing
the list of names of our insects (cigarette and warehouse beetles).

AI 2023, 4, FOR PEER REVIEW 4 
 

 
Figure 1. Connected hardware set-up. 

A regular keyboard, mouse, and external monitor were also connected to the Jetson 
Nano for initial configuration. 

2.2. Software Solution 
As part of the software package for the Jetson Nano, the NVIDIA JetPack (SD card 

image) 4.2 was used, and the procedures listed on the website of NVIDIA were followed. 
After the first boot for the initialization phase, software drivers for the Arducam were 
downloaded from their website for primary configuration. The compatibility of the CSI 
camera with the Jetson Nano must require no connectivity problems since it serves as our 
eyes in the field. 

2.3. Preparing the Model 
The gathering of data was the most tedious part of this project. The summary of the 

steps is presented in Figure 2. First, a label file was created, which was a text file containing 
the list of names of our insects (cigarette and warehouse beetles). 

 
Figure 2. Model development process. Figure 2. Model development process.



AI 2023, 4 352

The next step was to capture images in JPG format. Two processes were used: first,
images were downloaded from the internet (Figure 3) using basic data search, and second,
using the CSI camera that was mounted on the Jetson Nano (Figure 4). Data augmentation
was applied to each image. Data augmentation is a method of artificially expanding a
dataset by applying various alterations to the existing samples. Data augmentation helps
reduce overfitting in machine learning models and improves their ability to generalize
to new data. In computer vision, popular data augmentation techniques include random
cropping, flipping, rotations, translations, scaling, and color jittering. Training a model on
a larger, augmented dataset can help it learn more robust features and generalize better to
unseen data. It is frequently utilized when a model is trained to recognize objects or image
patterns. The model may be taught to identify objects in various orientations, locations,
and scales by applying random changes to existing photos. As a result, the model may
be trained on a wider and more varied set of instances, which is particularly crucial for
situations where there is little annotated data available.

AI 2023, 4, FOR PEER REVIEW 5 
 

The next step was to capture images in JPG format. Two processes were used: first, 
images were downloaded from the internet (Figure 3) using basic data search, and second, 
using the CSI camera that was mounted on the Jetson Nano (Figure 4). Data augmentation 
was applied to each image. Data augmentation is a method of artificially expanding a 
dataset by applying various alterations to the existing samples. Data augmentation helps 
reduce overfitting in machine learning models and improves their ability to generalize to 
new data. In computer vision, popular data augmentation techniques include random 
cropping, flipping, rotations, translations, scaling, and color jittering. Training a model on 
a larger, augmented dataset can help it learn more robust features and generalize better 
to unseen data. It is frequently utilized when a model is trained to recognize objects or 
image patterns. The model may be taught to identify objects in various orientations, loca-
tions, and scales by applying random changes to existing photos. As a result, the model 
may be trained on a wider and more varied set of instances, which is particularly crucial 
for situations where there is little annotated data available. 

More training data were produced by this process, which resulted in 1000 images 
(500 images for each insect classification), which were then segregated into 80–20 parti-
tions: 80% for training data and 20% for test data (Table 1). However, it is important to 
apply augmentation techniques relevant to the problem domain and to use them judi-
ciously to avoid over-augmentation because this can lead to a loss of information and de-
crease model performance. 

Table 1. Partition of images per insect. 

Insect Name Scientific Name Training Images Test Images Total 
Cigarette beetle Lasioderma serricorne 400 100 500 

Warehouse beetle Trogoderma variabile 400 100 500 

 
Figure 3. Downloaded sample images of insects used in the study. Cigarette beetle (A,B) and ware-
house beetle (C,D). 

 

Figure 4. Two examples of actual images of the cigarette beetle (A), warehouse beetle (B), and black 
canola seeds (C) used in training the model. 

Generating an annotation file was the next step in preparing the model. It is im-
portant in machine learning because it provides labeled data to train the model. The model 

Figure 3. Downloaded sample images of insects used in the study. Cigarette beetle (A,B) and
warehouse beetle (C,D).

AI 2023, 4, FOR PEER REVIEW 5 
 

The next step was to capture images in JPG format. Two processes were used: first, 
images were downloaded from the internet (Figure 3) using basic data search, and second, 
using the CSI camera that was mounted on the Jetson Nano (Figure 4). Data augmentation 
was applied to each image. Data augmentation is a method of artificially expanding a 
dataset by applying various alterations to the existing samples. Data augmentation helps 
reduce overfitting in machine learning models and improves their ability to generalize to 
new data. In computer vision, popular data augmentation techniques include random 
cropping, flipping, rotations, translations, scaling, and color jittering. Training a model on 
a larger, augmented dataset can help it learn more robust features and generalize better 
to unseen data. It is frequently utilized when a model is trained to recognize objects or 
image patterns. The model may be taught to identify objects in various orientations, loca-
tions, and scales by applying random changes to existing photos. As a result, the model 
may be trained on a wider and more varied set of instances, which is particularly crucial 
for situations where there is little annotated data available. 

More training data were produced by this process, which resulted in 1000 images 
(500 images for each insect classification), which were then segregated into 80–20 parti-
tions: 80% for training data and 20% for test data (Table 1). However, it is important to 
apply augmentation techniques relevant to the problem domain and to use them judi-
ciously to avoid over-augmentation because this can lead to a loss of information and de-
crease model performance. 

Table 1. Partition of images per insect. 

Insect Name Scientific Name Training Images Test Images Total 
Cigarette beetle Lasioderma serricorne 400 100 500 

Warehouse beetle Trogoderma variabile 400 100 500 

 
Figure 3. Downloaded sample images of insects used in the study. Cigarette beetle (A,B) and ware-
house beetle (C,D). 

 

Figure 4. Two examples of actual images of the cigarette beetle (A), warehouse beetle (B), and black 
canola seeds (C) used in training the model. 

Generating an annotation file was the next step in preparing the model. It is im-
portant in machine learning because it provides labeled data to train the model. The model 

Figure 4. Two examples of actual images of the cigarette beetle (A), warehouse beetle (B), and black
canola seeds (C) used in training the model.

More training data were produced by this process, which resulted in 1000 images
(500 images for each insect classification), which were then segregated into 80–20 partitions:
80% for training data and 20% for test data (Table 1). However, it is important to apply
augmentation techniques relevant to the problem domain and to use them judiciously
to avoid over-augmentation because this can lead to a loss of information and decrease
model performance.

Generating an annotation file was the next step in preparing the model. It is important
in machine learning because it provides labeled data to train the model. The model uses this
data to learn the relationships between inputs and outputs and to make predictions. The
annotations provide information about features and classes of the data, which are critical
for creating accurate and effective models. Without annotated data, the model would have



AI 2023, 4 353

no way of learning the desired relationships and predictions and would likely perform
poorly. In this part, the LabelImg (https://github.com/tzutalin/labelImg (accessed on 10
August 2022) application was used for annotation. Steps on how to generate annotation
files using LabelImg are listed on the GitHub page mentioned. By doing this, a new dataset
was created that would provide the location of our subjects on the images captured by
drawing a bounding box (with coordinates X-min, X-max, Y-min, and Y-max) (Figure 5).
This annotation process was vital to data preparation since it served as the baseline of our
training and detection phases; 800 annotated images were created based on this procedure.

Table 1. Partition of images per insect.

Insect Name Scientific Name Training Images Test Images Total

Cigarette beetle Lasioderma serricorne 400 100 500
Warehouse beetle Trogoderma variabile 400 100 500

AI 2023, 4, FOR PEER REVIEW 6 
 

uses this data to learn the relationships between inputs and outputs and to make predic-
tions. The annotations provide information about features and classes of the data, which 
are critical for creating accurate and effective models. Without annotated data, the model 
would have no way of learning the desired relationships and predictions and would likely 
perform poorly. In this part, the LabelImg (https://github.com/tzutalin/labelImg (accessed 
on 10 August 2022) application was used for annotation. Steps on how to generate anno-
tation files using LabelImg are listed on the GitHub page mentioned. By doing this, a new 
dataset was created that would provide the location of our subjects on the images cap-
tured by drawing a bounding box (with coordinates X-min, X-max, Y-min, and Y-max) 
(Figure 5). This annotation process was vital to data preparation since it served as the 
baseline of our training and detection phases; 800 annotated images were created based 
on this procedure. 

 

 

Figure 5. Annotation of the captured image. 

2.4. Training the Model 
The backbone used for this study was a single-shot multi-box detector (SSD), an al-

gorithm that uses a multi-box that takes only one shot to detect multiple objects in an 
image. It uses a single deep neural network to accomplish this. It can also detect objects of 
different sizes in an image. SSD is independent of its base network, but some practical 
limitations will occur while deploying and running a complex neural network in real-time 
applications since it will require high computational power. For this reason, SSD was com-
bined with MobileNet, which is one of the architecture models of the Convolution Neural 
Network (CNN) that mainly focuses on image classification for mobile applications. It 
uses depth-wise separable convolution layers instead of the standard convolution net-
works. One of the reasons why MobileNet was chosen is because of its architectural struc-
ture, which lessens the computational cost, and because it has very low computational 
power needed to run or apply transfer learning using a small computer such as the Jetson 
Nano. 

Figure 5. Annotation of the captured image.

2.4. Training the Model

The backbone used for this study was a single-shot multi-box detector (SSD), an algo-
rithm that uses a multi-box that takes only one shot to detect multiple objects in an image.
It uses a single deep neural network to accomplish this. It can also detect objects of different
sizes in an image. SSD is independent of its base network, but some practical limitations
will occur while deploying and running a complex neural network in real-time applications
since it will require high computational power. For this reason, SSD was combined with
MobileNet, which is one of the architecture models of the Convolution Neural Network
(CNN) that mainly focuses on image classification for mobile applications. It uses depth-
wise separable convolution layers instead of the standard convolution networks. One of the
reasons why MobileNet was chosen is because of its architectural structure, which lessens
the computational cost, and because it has very low computational power needed to run or
apply transfer learning using a small computer such as the Jetson Nano.

https://github.com/tzutalin/labelImg


AI 2023, 4 354

When MobileNet V1 was used along with SSD (Figure 6), the computational process
was reduced by omitting the last few layers, such as the FC, Maxpool, and Softmax. There-
fore, the result from the last convolution layer in the MobileNet was used. Convoluting a
stack of feature maps a few more times is needed to obtain a stack of feature maps. The
result would then be used as input for its detection heads.

AI 2023, 4, FOR PEER REVIEW 7 
 

When MobileNet V1 was used along with SSD (Figure 6), the computational process 
was reduced by omitting the last few layers, such as the FC, Maxpool, and Softmax. There-
fore, the result from the last convolution layer in the MobileNet was used. Convoluting a 
stack of feature maps a few more times is needed to obtain a stack of feature maps. The 
result would then be used as input for its detection heads. 

 
Figure 6. MobileNet-SSD architecture [24]. 

A resolution of 608 × 608 × 3 pixels was used to train these images, and they have 
been converted again to 300 × 300 × 3 pixels for validation since the latter was the default 
setting of SSD-MobileNet V1. This method produced better results than training them 
with 300 × 300 × 3 pixel images. The training images’ greater quality improved accuracy 
for small items. 

PyTorch is used to train the model. Pytorch is an open-source machine learning li-
brary for Python, primarily used for natural language processing and computer vision. It 
is based on the Torch library and provides a comfortable and flexible interface for building 
and training deep learning models. PyTorch also offers strong support for GPU accelera-
tion, making it well-suited for training large-scale neural networks. The conversion of data 
from PyTorch format to Open Neural Network Exchange (ONNX) format was imple-
mented. ONNX is an open standard for demonstrating deep learning models that enables 
interoperability between different AI frameworks, such as PyTorch, TensorFlow, Caffe2, 
and others. ONNX provides a common format for exchanging models between these 
frameworks, allowing researchers and developers to move models more easily between 
frameworks for training, inference, and experimentation. It also supports hardware acceler-
ation on various platforms, including GPUs and custom hardware accelerators. By import-
ing the ONNX data file to be used in TensorRT [25]. TensorRT is a Software Development 
Kit (SDK) that includes a deep learning inference optimizer and runtime library developed 
by NVIDIA. It is designed to optimize and accelerate the deployment of deep learning mod-
els on GPUs for real-time, high-performance inference, which the Jetson Nano uses. 

3. Results and Discussion 
Mean Average Precision (mAP) is a commonly used evaluation metric for infor-

mation retrieval and computer vision tasks such as object detection and image classifica-
tion [26]. It is the average precision value obtained at the first-ranked positive instances. 
It summarizes a ranked list of results by computing the average precision value for each 
item, where precision is the number of true positive instances divided by the number of 
positive instances predicted. The main use of mAP is to compare the performance of dif-
ferent algorithms and object detection models such as MobileNet-SSD, You Only Look 
Once (YOLO), and Faster R-CNN for a given task to assess the models in their pipelines. 

Additionally, mAP is used in several benchmark challenges, such as the Common 
Objects in Context dataset (COCO) and Pascal Visual Object Classes. When computing for 

Figure 6. MobileNet-SSD architecture [24].

A resolution of 608 × 608 × 3 pixels was used to train these images, and they have
been converted again to 300 × 300 × 3 pixels for validation since the latter was the default
setting of SSD-MobileNet V1. This method produced better results than training them with
300 × 300 × 3 pixel images. The training images’ greater quality improved accuracy for
small items.

PyTorch is used to train the model. Pytorch is an open-source machine learning library
for Python, primarily used for natural language processing and computer vision. It is based
on the Torch library and provides a comfortable and flexible interface for building and
training deep learning models. PyTorch also offers strong support for GPU acceleration,
making it well-suited for training large-scale neural networks. The conversion of data from
PyTorch format to Open Neural Network Exchange (ONNX) format was implemented.
ONNX is an open standard for demonstrating deep learning models that enables interoper-
ability between different AI frameworks, such as PyTorch, TensorFlow, Caffe2, and others.
ONNX provides a common format for exchanging models between these frameworks,
allowing researchers and developers to move models more easily between frameworks for
training, inference, and experimentation. It also supports hardware acceleration on various
platforms, including GPUs and custom hardware accelerators. By importing the ONNX
data file to be used in TensorRT [25]. TensorRT is a Software Development Kit (SDK) that
includes a deep learning inference optimizer and runtime library developed by NVIDIA. It
is designed to optimize and accelerate the deployment of deep learning models on GPUs
for real-time, high-performance inference, which the Jetson Nano uses.

3. Results and Discussion

Mean Average Precision (mAP) is a commonly used evaluation metric for information
retrieval and computer vision tasks such as object detection and image classification [26]. It
is the average precision value obtained at the first-ranked positive instances. It summarizes
a ranked list of results by computing the average precision value for each item, where
precision is the number of true positive instances divided by the number of positive
instances predicted. The main use of mAP is to compare the performance of different
algorithms and object detection models such as MobileNet-SSD, You Only Look Once
(YOLO), and Faster R-CNN for a given task to assess the models in their pipelines.

Additionally, mAP is used in several benchmark challenges, such as the Common
Objects in Context dataset (COCO) and Pascal Visual Object Classes. When computing for
mAP, identifying a confusion matrix is needed (Table 2) along with Intersection over Union
(IoU), Recall, and Precision. Generating a confusion matrix requires four attributes: True



AI 2023, 4 355

Positive (TP)—the model properly predicted a label and matched the ground truth; True
Negative (TN)—the model neither predicts the label nor comprises the ground truth; False
Positive (FP)—a label was predicted by the model, although it is not part of the ground
truth, and False Negative (FN)—the model did not predict a label, but it is part of the
ground truth [26] as shown in Table 3.

Table 2. Confusion matrix with attributes.

Actual Result Predicted No Predicted Yes

Actual No True Negative False Positive
Actual Yes False Negative True Positive

Table 3. Confusion matrix with values from test images.

Insect Predicted No Predicted Yes

Cigarette Beetle TN = 78 FP = 22
Warehouse Beetle FN = 17 TP = 83

From here, substitute all our values from the test experiment to calculate these at-
tributes. Since we utilized 100 test images for each insect, a total of 200 were used.

Accuracy = (TP + TN)/Total = (83 + 78)/200 = 0.805

Error Rate = 1 − Accuracy = 1 − 0.805 = 0.195

Precision = TP/(TP + FP) = 83/(83 + 22) = 0.79

Recall = TP/(TP + FN) = 83/(83 + 17) = 0.83

Accuracy shows how often the classifier is correct overall, while Misclassification, also
known as Error Rate, tells us how often the classifier is wrong. That is why calculating
the error rate is one minus (−) the accuracy, because when you add them, the overall
probability should be 1 or 100%. Knowing Precision and Recall is important since it will
determine if the model is correctly implemented and to what extent. Precision is a useful
indicator to determine when the costs of FP are high or simply answers the question: when
it predicts “yes”, how often is it correct? While Recall determines the number of actual
Positives that our model successfully captures by classifying them as Positive (True Positive)
or simply answering the question, when it is actually “yes”, how often does it predict yes?

A balance between Precision and Recall requires an F1 score. The F1 score is a metric for
machine learning that can be used in classification models. It is a proposed improvement
to two simpler performance metrics. What is the difference between the F1 score and
accuracy? The accuracy is the ratio of correctly predicted observations to the total number
of observations. It is a simple metric that shows how well a model performs on a given task.

The F1 score is a harmonic mean of Precision and Recall, providing a single metric
that summarizes the performance of the model. The F1 score is best used when you have
an imbalanced class distribution, whereas accuracy works well if the class distribution
is balanced. So, the F1 score considers the balance between Precision and Recall, while
accuracy only considers the number of correct predictions. In other words, accuracy is
sensitive to class imbalance, while the F1 score is not. The F1 score may be a better metric to
use to find a balance between Precision and Recall, and there is an uneven class distribution.

F1 score = 2 [(Precision × Recall)/(Precision + Recall)] = 2 [(0.79 × 0.83)/(0.79 + 0.83)] = 0.81

When validating from our table below with 200 epochs on a 20-epoch increment, our
best F1 score is 81% using white ring light within 120 epochs.

As shown in Table 4 and Figure 7, the validation loss decreases as the number of epochs
increases. However, on a certain level, after the 120th epoch, it is slowly increasing again.



AI 2023, 4 356

This is called overfitting. Overfitting is a typical problem in machine learning, where a
model is trained too successfully on the training data, leading to poor performance on new,
unforeseen data. Overfitting occurs when a model learns the noise or random fluctuations
in the training data rather than the underlying patterns. This leads to a model that fits
the training data too closely but cannot generalize to new data. As a result, an overfit
model will perform well on the training data but poorly on the test data or real-world data
because it has not learned the true relationship between the input features and the output.
To avoid this, an effective machine learning model should balance the ability to generalize
to new data with the ability to fit the training data well to prevent overfitting. This can be
accomplished by applying regularization techniques, simplifying the model, or providing
more training data. Additionally, using a dedicated ring light greatly affects our accuracy.
When comparing the white and yellow lights, there was a slight difference in detection,
and most of the time, the white light gave the highest accuracy percentage. Then, epochs
were increased from the usual 100 to 200. This did not improve the overall performance.

Table 4. Mean average precision table with values using different light sources.

Epoch Validation Loss No Ring Light Yellow Ring Light White Ring Light

20 2.9333 16% 23% 22%
40 2.2033 57% 68% 68%
60 1.9533 65% 68% 71%
80 1.7967 66% 70% 73%

100 1.5300 73% 78% 79%
120 1.5900 72% 76% 81%
140 1.6400 74% 77% 77%
160 1.6933 73% 76% 73%
180 1.7867 69% 73% 75%
200 1.7700 71% 73% 73%

AI 2023, 4, FOR PEER REVIEW 9 
 

As shown in Table 4 and Figure 7, the validation loss decreases as the number of 
epochs increases. However, on a certain level, after the 120th epoch, it is slowly increasing 
again. This is called overfitting. Overfitting is a typical problem in machine learning, 
where a model is trained too successfully on the training data, leading to poor perfor-
mance on new, unforeseen data. Overfitting occurs when a model learns the noise or ran-
dom fluctuations in the training data rather than the underlying patterns. This leads to a 
model that fits the training data too closely but cannot generalize to new data. As a result, an 
overfit model will perform well on the training data but poorly on the test data or real-world 
data because it has not learned the true relationship between the input features and the output. 
To avoid this, an effective machine learning model should balance the ability to generalize to 
new data with the ability to fit the training data well to prevent overfitting. This can be accom-
plished by applying regularization techniques, simplifying the model, or providing more 
training data. Additionally, using a dedicated ring light greatly affects our accuracy. When 
comparing the white and yellow lights, there was a slight difference in detection, and most of 
the time, the white light gave the highest accuracy percentage. Then, epochs were increased 
from the usual 100 to 200. This did not improve the overall performance. 

Table 4. Mean average precision table with values using different light sources. 

Epoch Validation Loss No Ring Light Yellow Ring Light White Ring Light 
20 2.9333 16% 23% 22% 
40 2.2033 57% 68% 68% 
60 1.9533 65% 68% 71% 
80 1.7967 66% 70% 73% 

100 1.5300 73% 78% 79% 
120 1.5900 72% 76% 81% 
140 1.6400 74% 77% 77% 
160 1.6933 73% 76% 73% 
180 1.7867 69% 73% 75% 
200 1.7700 71% 73% 73% 

 
Figure 7. Bar chart comparison of mAP, including validation loss. 

However, when the number of epochs was increased to around 120 epochs, the ac-
curacy increased, and the validation loss decreased. After 125 epochs, the performance 
did not improve. From this result, the code was revised to take the lowest validation loss 

Figure 7. Bar chart comparison of mAP, including validation loss.

However, when the number of epochs was increased to around 120 epochs, the
accuracy increased, and the validation loss decreased. After 125 epochs, the performance
did not improve. From this result, the code was revised to take the lowest validation loss
on a given epoch stream. Below is an example with 200 epochs, but the system uses the
lowest validation loss at the 125th epoch (Figure 8).



AI 2023, 4 357

AI 2023, 4, FOR PEER REVIEW 10 
 

on a given epoch stream. Below is an example with 200 epochs, but the system uses the 
lowest validation loss at the 125th epoch (Figure 8). 

 
Figure 8. Completed 200 epochs with a validation loss of 1.876103 and still using the 125th epoch 
with a smaller validation loss. 

Most published papers regarding insect detection and classification only use one in-
sect per classification, but in this research paper, side-by-side testing was used with 
smaller-scaled insects. By doing this, a decrease in accuracy was noticed. When detecting 
and classifying one insect, accuracy is around 85–90% depending on the angle (our camera 
is in manual focus) and lighting condition. Then, doing it side-by-side, the accuracy is 
around 70–85% (Figure 9). One of the reasons is because the model is overfit. Increasing 
our training data set and re-training the model are needed to improve the results. Adjust-
ing the annotation and providing additional spaces on the edges will also help. 

 
Figure 9. The actual live camera shot detected and identified the beetle side-by-side. 

4. Conclusions and Future Direction 
This study successfully achieved its goal by developing a camera-based monitoring 

system to detect and identify small-scale insects, using a live feed video for the model to 
verify, and achieving a confidence level of at least 70% using a side-by-side comparison. 
There were some difficulties with the lighting and camera set-up since our camera is man-
ual focus, and the total capacity of our designed model was limited. Adjusting the distance 
of the insects from the camera and manually adjusting the focal length of the camera to 
focus on the insects was a difficult and tedious task. This is not a reliable concept when 
applying it to a real-world scenario because, in the real world, insects are crawling and 

Figure 8. Completed 200 epochs with a validation loss of 1.876103 and still using the 125th epoch
with a smaller validation loss.

Most published papers regarding insect detection and classification only use one
insect per classification, but in this research paper, side-by-side testing was used with
smaller-scaled insects. By doing this, a decrease in accuracy was noticed. When detecting
and classifying one insect, accuracy is around 85–90% depending on the angle (our camera
is in manual focus) and lighting condition. Then, doing it side-by-side, the accuracy is
around 70–85% (Figure 9). One of the reasons is because the model is overfit. Increasing our
training data set and re-training the model are needed to improve the results. Adjusting
the annotation and providing additional spaces on the edges will also help.

AI 2023, 4, FOR PEER REVIEW 10 
 

on a given epoch stream. Below is an example with 200 epochs, but the system uses the 
lowest validation loss at the 125th epoch (Figure 8). 

 
Figure 8. Completed 200 epochs with a validation loss of 1.876103 and still using the 125th epoch 
with a smaller validation loss. 

Most published papers regarding insect detection and classification only use one in-
sect per classification, but in this research paper, side-by-side testing was used with 
smaller-scaled insects. By doing this, a decrease in accuracy was noticed. When detecting 
and classifying one insect, accuracy is around 85–90% depending on the angle (our camera 
is in manual focus) and lighting condition. Then, doing it side-by-side, the accuracy is 
around 70–85% (Figure 9). One of the reasons is because the model is overfit. Increasing 
our training data set and re-training the model are needed to improve the results. Adjust-
ing the annotation and providing additional spaces on the edges will also help. 

 
Figure 9. The actual live camera shot detected and identified the beetle side-by-side. 

4. Conclusions and Future Direction 
This study successfully achieved its goal by developing a camera-based monitoring 

system to detect and identify small-scale insects, using a live feed video for the model to 
verify, and achieving a confidence level of at least 70% using a side-by-side comparison. 
There were some difficulties with the lighting and camera set-up since our camera is man-
ual focus, and the total capacity of our designed model was limited. Adjusting the distance 
of the insects from the camera and manually adjusting the focal length of the camera to 
focus on the insects was a difficult and tedious task. This is not a reliable concept when 
applying it to a real-world scenario because, in the real world, insects are crawling and 

Figure 9. The actual live camera shot detected and identified the beetle side-by-side.

4. Conclusions and Future Direction

This study successfully achieved its goal by developing a camera-based monitoring
system to detect and identify small-scale insects, using a live feed video for the model to
verify, and achieving a confidence level of at least 70% using a side-by-side comparison.
There were some difficulties with the lighting and camera set-up since our camera is manual
focus, and the total capacity of our designed model was limited. Adjusting the distance
of the insects from the camera and manually adjusting the focal length of the camera to
focus on the insects was a difficult and tedious task. This is not a reliable concept when
applying it to a real-world scenario because, in the real world, insects are crawling and



AI 2023, 4 358

flying. This means losing valuable data while adjusting the settings on the camera since
it is out of focus. Another challenge is to address the overfitting by providing additional
training data.

Despite these challenges, the results were promising, and we believe the model has
the potential for further improvement with the right modifications and technological
advancements. To overcome the limitations of manual focus, we plan to integrate an
auto-focus camera in the future. This will eliminate the need to manually adjust the camera
settings now and then. Additionally, we will gather more diverse and larger data sets to
increase the accuracy and robustness of the model. With these improvements, our camera-
based monitoring system has the potential to become an effective tool for monitoring and
identifying small-scale insects in various industries, such as agriculture and forestry. In
conclusion, the camera-based monitoring system showed favorable results, and we believe
that with further development, it can become a valuable tool for monitoring and identifying
small-scale insects in a range of industries.

The ability of the system to identify insects accurately could lead to more effective pest
management practices, reducing the reliance on harmful chemicals and improving crop
yields. The system could also be used in environmental monitoring, providing valuable data
on insect populations and their potential impacts on ecosystems. The potential applications
of this technology are vast and exciting, and we are eager to continue its development
and improve its capabilities. The technology could also have applications in areas such
as public health by assisting in the early detection and monitoring of disease-carrying
insects. It could also provide valuable information for scientific research, aiding in the
study of insect behavior and its role in the food chain. Furthermore, the accuracy could
greatly benefit farmers and food producers, leading to more efficient and cost-effective
crop pest control. This technology can revolutionize how we approach insect detection
and management, and its full potential is yet to be explored. It is important to point out
that the test cases in this study involved insects that had stark morphological differences.
Many insects are almost identical in features, so the technology would need much more
refinement, or it could just serve as an initial screening tool for general identification.

Future research on machine vision is expected to investigate other aspects, such as the
implications of using auto-focus cameras on image analysis. Performance comparisons of
different algorithms are currently being carried out and will be written up in a new paper.
Additionally, the impact of clear and blurred images on the analysis accuracy will be another
area of focus. Although serving latency was deemed insignificant for two insects, further
investigation will explore how it could become more relevant as the number of insects
being analyzed rises. These additional factors will contribute to a more comprehensive
understanding of the potential and constraints of machine vision in various applications.

For future work, the plan is to incorporate a cloud-based platform for storing and
retrieving data for future analysis. Developing a stationary and autonomous mobile
platform incorporating processing and communications capabilities to transfer information
to a server for additional processing and user output is also on our list, as is implementation
in a real-world scenario to help our farmers detect and identify these insects and provide
the necessary actions to eliminate the level of infestation on their stored product facilities.

Author Contributions: Q.A.M.: Abstract, Introduction, Methodology, Investigation, Data Curation,
Formal Analysis, Writing—Original draft preparation. L.P., P.A. and J.C.: Conceptualization, Funding
Acquisition, Project Administration, Writing—Reviewing and Editing. L.P. and M.N.: Conceptual-
ization, Research Supervision, Methodology, Resources, Writing—Reviewing and Editing. P.T.M.:
Abstract, Introduction. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by USDA-ARS (CRIS Project No. 3020-43440-008-00D). No
other funding was used to support the research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



AI 2023, 4 359

Data Availability Statement: The data collected in accomplishing the study is available upon request.

Acknowledgments: The research was supported by USDA (CRIS No. 3020-43440-008-00D) and by
the Department of Computer Science of the College of Engineering, Kansas State University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing

Countries. Foods 2017, 6, 8. [CrossRef] [PubMed]
2. Johnson, J.B. An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. J. Stored Prod.

Res. 2020, 2020, 101558. [CrossRef]
3. Srivastava, S.; Mishra, H.N. Detection of insect damaged rice grains using visible and near infrared hyperspectral imaging

technique. Chemom. Intell. Lab. Syst. 2021, 221, 104489. [CrossRef]
4. Banga, K.S.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.K. Techniques for insect detection in stored food grains: An overview. Food

Control 2018, 94, 167–176. [CrossRef]
5. Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning

techniques. Inf. Process. Agric. 2021, 8, 446–457. [CrossRef]
6. Shuman, D.; Weaver, D.K.; Larson, R.G. Performance of an analytical, dual infrared-beam, stored-product insect monitoring

system. J. Econ. Entomol. 2005, 98, 1723–1732. [CrossRef] [PubMed]
7. Flinn, P.W.; Opit, G.P.; Throne, J.E. Predicting Stored Grain Insect Population Densities Using an Electronic Probe Trap. J. Econ.

Entomol. 2009, 102, 1696–1704. [CrossRef] [PubMed]
8. Potamitis, I.; Eliopoulos, P.; Rigakis, I. Automated remote insect surveillance at a global scale and the internet of things. Robotics

2017, 6, 19. [CrossRef]
9. Wen, C.; Guyer, D.E.; Lia, W. Local feature-based identification and classification for orchard insects. Biosyst. Eng. 2009, 104,

299–307. [CrossRef]
10. Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture.

Sensors 2018, 18, 1489. [CrossRef] [PubMed]
11. Eliopoulos, P.; Tatlas, N.-A.; Rigakis, I.; Potamitis, I. A “Smart” Trap Device for Detection of Crawling Insects and Other

Arthropods in Urban Environments. Electronics 2018, 7, 161. [CrossRef]
12. Campbell, J.F.; Ching’oma, G.P.; Toews, M.D.; Ramaswamy, S.B. Spatial distribution and movement patterns of stored-product

insects. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sуo Paulo, Brazil,
15–18 October 2006; Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., dos Santos, J.P., Biagi, J.D., Celaro, J.C., FaroniL,
R.D.A., de Bortolini, L.O.F., et al., Eds.; Brazilian Post-Harvest Association—ABRAPOS: Sao Paulo, Brazil, 2006; pp. 361–370.

13. Dowdy, A.K.; McGaughey, W.H. Seasonal activity of stored-product insects in and around farm-stored wheat. J. Econ. Entomol.
1994, 93, 1842–1847. [CrossRef]

14. Athanassiou, C.G.; Buchelos, C. Grain properties and insect distribution trends in silos of wheat. J. Stored Prod. Res. 2020, 88,
101632. [CrossRef]

15. Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Javas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018,
145, 319–325. [CrossRef]

16. Zayas, I.Y.; Flinn, P.W. Detection of insects in bulk wheat samples with machine vision. Trans. ASAE 1998, 41, 883–888. [CrossRef]
17. Ridgway, C.; Davies, E.R.; Chambers, J.; Mason, D.R.; Bateman, M. AE—Automation and Emerging Technologies: Rapid Machine

VisionMethod for the Detection of Insects and other Particulate Bio-contaminants of Bulk Grain in Transit. Biosyst. Eng. 2002, 83,
21–30. [CrossRef]

18. Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic Detection and Monitoring of
Insect Pests—A Review. Agriculture 2020, 10, 161. [CrossRef]

19. Liu, J.; Wang, X. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [CrossRef]
[PubMed]

20. Li, J.; Zhou, H.; Wang, Z.; Jia, Q. Multi-scale detection of stored-grain insects for intelligent monitoring. Comput. Electron. Agric.
2020, 168, 105114. [CrossRef]

21. Edde, P.A.; Eaton, M.; Kells, S.A.; Philips, T.W. Biology, behavior, and ecology of pests in other durable commodities. In Stored
Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University Agricultural Experiment Station
and Cooperative Extension Service: Manhattan, KS, USA, 2012; pp. 45–62.

22. NVIDIA. NVIDIA® Jetson Nano™ 4GB Developer Kit. 2023. Available online: https://developer.nvidia.com/embedded/jetson-
nano-developer-kit (accessed on 15 July 2022).

23. Arducam. Arducam®. 2020. Available online: https://www.arducam.com/product/arducam-complete-high-quality-camera-
bundle-for-jetson-nano-xavier-nx/ (accessed on 1 August 2022).

24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I 14; Lecture Notes
in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9905. [CrossRef]

http://doi.org/10.3390/foods6010008
http://www.ncbi.nlm.nih.gov/pubmed/28231087
http://doi.org/10.1016/j.jspr.2019.101558
http://doi.org/10.1016/j.chemolab.2021.104489
http://doi.org/10.1016/j.foodcont.2018.07.008
http://doi.org/10.1016/j.inpa.2020.09.006
http://doi.org/10.1093/jee/98.5.1723
http://www.ncbi.nlm.nih.gov/pubmed/16334346
http://doi.org/10.1603/029.102.0438
http://www.ncbi.nlm.nih.gov/pubmed/19736786
http://doi.org/10.3390/robotics6030019
http://doi.org/10.1016/j.biosystemseng.2009.07.002
http://doi.org/10.3390/s18051489
http://www.ncbi.nlm.nih.gov/pubmed/29747429
http://doi.org/10.3390/electronics7090161
http://doi.org/10.1093/jee/87.5.1351
http://doi.org/10.1016/j.jspr.2020.101632
http://doi.org/10.1016/j.compag.2017.11.039
http://doi.org/10.13031/2013.17206
http://doi.org/10.1006/bioe.2002.0096
http://doi.org/10.3390/agriculture10050161
http://doi.org/10.1186/s13007-021-00722-9
http://www.ncbi.nlm.nih.gov/pubmed/33627131
http://doi.org/10.1016/j.compag.2019.105114
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.arducam.com/product/arducam-complete-high-quality-camera-bundle-for-jetson-nano-xavier-nx/
https://www.arducam.com/product/arducam-complete-high-quality-camera-bundle-for-jetson-nano-xavier-nx/
http://doi.org/10.1007/978-3-319-46448-0_2


AI 2023, 4 360

25. Bareeva, J. How to Convert a Model from PyTorch to TensorRT and Speed up Inference. 2020. Available online: https://
learnopencv.com/how-to-convert-a-model-from-pytorch-to-tensorrt-and-speed-up-inference/ (accessed on 21 November 2022).

26. Shah, D. Mean Average Precision (mAP) Explained: Everything You Need to Know. 19 January 2023. Available online:
https://www.v7labs.com/blog/mean-average-precision (accessed on 18 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://learnopencv.com/how-to-convert-a-model-from-pytorch-to-tensorrt-and-speed-up-inference/
https://learnopencv.com/how-to-convert-a-model-from-pytorch-to-tensorrt-and-speed-up-inference/
https://www.v7labs.com/blog/mean-average-precision

	Introduction 
	Materials and Methods 
	Hardware Components 
	Software Solution 
	Preparing the Model 
	Training the Model 

	Results and Discussion 
	Conclusions and Future Direction 
	References

