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Abstract: In many manufacturing systems, anomaly detection is critical to identifying process
errors and ensuring product quality. This paper proposes three semi-supervised solutions to detect
anomalies in Direct Current (DC) Nut Runner engine assembly processes. The nut runner process
is a challenging anomaly detection problem due to the manual nature of the process inducing high
variability and ambiguity of the anomalous class. These characteristics lead to a scenario where
anomalies are not outliers, and the normal operating conditions are difficult to define. To address
these challenges, a Gaussian Mixture Model (GMM) was trained using a semi-supervised approach.
Three dimensionality reduction methods were compared in pre-processing: PCA, t-SNE, and UMAP.
These approaches are demonstrated to outperform the current approaches used by a major automotive
company on two real-world datasets. Furthermore, a novel approach to labelling real-world data is
proposed, including the concept of an ‘Anomaly No Concern’ class, in addition to the traditional labels
of ‘Anomaly’ and ‘Normal’. Introducing this new term helped address knowledge gaps between
data scientists and domain experts, as well as providing new insights during model development
and testing. This represents a major advancement in identifying anomalies in manual production
processes that use handheld tools.
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1. Introduction

Developing a system capable of detecting anomalies in production settings is chal-
lenging for several reasons. Access to labelled anomaly data is often difficult in production
settings where there are often many potential failure modes, each of which is usually
rare and difficult to interpret in time-series data [1]. Furthermore, there is a lack of pub-
licly available datasets upon which to develop and test anomaly detection methods in
industrial settings.

Manufacturers must therefore develop their own training and testing datasets and
solve complex processing and feature engineering challenges that require technical exper-
tise in both data science and the target domain. Not only is this research and development
time-consuming, but any given solution may not be transferable to other processes, even if
the processes seem similar. These challenges often make it difficult to estimate a Return-On-
Investment (ROI) of such data analytics projects. As a result, the value of machine learning
solutions is yet to be fully realised in the automotive industry, which typically focuses on
short-term ROI projects.

Throughout the engine assembly line, there are various in-process and end-of-line tests
to ensure the quality of the final product. At the engine assembly plant where this research
was conducted, many of these tests use static process limits to identify potential fault
modes. These limits are set by experienced testing engineers with considerable knowledge
of the process and are reviewed and updated regularly manually based on recent test data.
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In many processes, this visual inspection of process time-series data through a series of
dashboards is also an important step in identifying potential process errors. Interviews
with engineers on site find that this method has been proven effective in many tests for
which the data are clean, well-structured, and highly regular, and the failure modes are well
understood. However, process owners recognise that there are opportunities to improve the
current anomaly detection processes, for which there are multiple inefficiencies. Firstly, this
approach is not well suited to identifying new, previously unseen anomalies where faults
may occur within the specified limits. In these cases, current anomaly detection processes
are largely reliant on visual inspection, highlighting opportunities to deliver time savings
by automating this process. Secondly, current methods require regular tuning whenever
the operating parameters of the test or machinery are changed. Automating these processes
would reduce the burden on test engineers to evaluate and maintain the current anomaly
detection methods. During the interviews, engineers and data scientists also argue that by
automating this process using statistical approaches based on historical data, there is an
opportunity to significantly increase anomaly detection rates in more complex processes
that exhibit high variability.

At Ford Motor Company, a trial is underway to address these opportunities by de-
veloping machine learning algorithms to automate or semi-automate anomaly detection
across multiple tests in engine assembly. Currently, a single unsupervised algorithm is used
to detect anomalies for all processes. This approach uses Principle Component Analysis
(PCA) to reduce the dimensionality of the time series data and perform a cluster analysis
using Density Based Spacial Clustering (DBSCAN) under the assumption that any noise
points are anomalies. This is successful on a range of end-of-line tests, outperforming
the current static limit approach. However, the PCA+DBSCAN method is ineffective at
identifying anomalies in ’DC Nut Runner’ processes.

Nut runner is an assembly process in which anomaly detection is particularly chal-
lenging. The process involves a series of nuts being fastened onto the product, either
by a manual operator or a machine. An inbuilt torque transducer in the nut runner tool
measures torque against time data which can be analysed to detect process anomalies.
The process occurs at multiple stations throughout the automotive engine assembly line
involving various types of nuts, threads, required torque, process duration, and other
process variables. Figure 1 shows an image of a line worker performing a manual nut
runner process.

Figure 1. An example of a line worker using a DC nut runner tool in engine assembly.
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The automated and manual processes produce highly variable data due to the manu-
facturing variation of the incoming parts and the staged nature of the rundown process.
Because the nut runner process involves multiple stages, a human operator may pause
for some short duration between stages, resulting in characteristic torque measurements
being shifted in time due to these intermittent pauses. Similarly, an automated process
may pause between processes for tool changes or geometrical differences between product
variants. This staging can be observed in the torque time plots in Figure 2 where torque
is applied at different stages of the process, separated by periods of 0 torque, which vary
in length. Not only does this staging introduce further variability to the data, but it also
removes the cyclicity and seasonality that many methods rely on to identify outliers. This
high variability in both the normal data and the anomaly data makes traditional unsu-
pervised clustering approaches such as one-class Support Vector Machines (SVM) and
PCA ineffective, as anomalies are not always outliers. Reconstruction methods such as
encoder-decoders are also infeasible due to the data being shifted in time at multiple stages,
making it difficult to draw a probability distribution from initial data.

Figure 2. Datasets 1 and 2 with a random example of a single observation highlighted in red. Dataset
1 is a manual nut runner process with high variability. Dataset 2 is an automated process where the
staging problem can be clearly observed.

This paper presents three semi-supervised clustering approaches to identifying outliers
in nut runner data. Each approach uses a Gaussian Mixture Model in combination with
different dimensionality reduction methods: PCA, t-SNE, and UMAP. PCA and t-SNE are
well-established dimensionality reduction approaches, however, UMAP is a relatively new
technique that is emerging as a promising tool but has yet to be explored for application in
manufacturing anomaly detection using real-world data. After applying dimensionality
reduction, a Gaussian Mixture Model is trained using a semi-supervised approach. The
GMM model is a common approach to clustering data that assumes the generative processes
to produce the dataset can be described by a mixture of isotropic Gaussian probability
density functions. By training the GMM on normal data, threshold regions can be defined,
assuming any process that generates anomalies will fall outside of these regions and be
identified as an anomaly.

The paper is structured as follows: In Section 2, previous research into time series
anomaly detection is reviewed, focusing specifically on semi-supervised approaches and
previous applications of GMM and dimensionality reduction approaches. The methodology
is presented in Section 3, which includes details on the GMM compared in this study as well
as the experimental setup and details on the metrics used to evaluate their performance.
The methodology also discusses the challenges of collecting labelled data in real-world
manufacturing settings, and how these challenges were overcome by introducing the
Anomaly No Concern (ANC) category. The results of the experiments are presented in
Section 4 and the discussion is included in Section 5. Finally, the research conclusions are
summarised in Section 6.
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2. Related Research

Anomaly detection is the process of finding, removing, describing, or extracting ob-
servations in a dataset that are generated by a different generative process than that of the
majority of normal data [2]. Anomaly detection in time-series has been studied by data
science researchers for over 50 years in various domains, including fraud detection [3–5],
cyber security [6–8], stock market prediction [9], cardiology [2,10–12], engine monitor-
ing [10,11,13], fault detection and condition monitoring [14–17], and manufacturing [18–24].
Approaches to anomaly detection vary greatly on the context of the task, however following
several advancements in neural network architectures and computational statistics in the
late 1980s and early 1990s, combined with the increased access to the required computa-
tional power to apply these methods, the majority of researchers have since focused on
some form of machine learning to solve anomaly detection [25–27]. There are three typical
approaches for anomaly detection:

• Supervised: Training data are labelled and include both the nominal and anoma-
lous data;

• Clean Semi-Supervised: Training data only include nominal data, while test data also
include anomalies;

• Unsupervised: Training data are unlabelled and include both the nominal and anoma-
lous data.

Supervised methods frame the anomaly detection task as a binary classification prob-
lem (Normal vs. Anomaly) and use labelled data to train classifiers that distinguish between
nominal and anomalous data. This can be effective when the percentage of anomalies α are
high (α > 1%). However, in most cases anomalies are very rare (α < 1%), making super-
vised approaches infeasible as it is both difficult and time-consuming to obtain sufficient
labelled anomalous data. Furthermore, the supervised approach makes the assumption
that the distribution of anomalous data can be well-defined, and that this distribution can
be used to train a statistical model [2]. This assumption is known as the Well-Defined
Anomaly Distribution (WDAD) assumption [2]. In manufacturing, this assumption can be
utilised to detect repeated machine failures for which the problem space is well understood
and sufficient data are available to define the distribution. This is the theoretical basis for Six
Sigma practices for which time-invariant data are modelled to fit a well-defined Gaussian
distribution and if some measurement exceeds ±6σ from the mean, those instances are
flagged as anomalous. Prior research finds that the WDAD assumption is rarely applicable
in the real world, as few approaches assume that the anomaly and nominal distribution
can be accurately modelled by the analyst [2]. This is especially true in manufacturing
environments due to the increasing complexity and variance of data produced by modern
manufacturing systems.

In cases where WDAD assumption does not hold, and the fraction of training points
that are anomalies are very small (α < 1%), unsupervised or clean semi-supervised methods
can be used to detect outliers, although these methods may also fail if anomalies are not
outliers or if the distribution of the nominal data has long tails [28].

2.1. Types of Anomalies

Anomaly detection of manufacturing systems deals with time-series data and requires
different statistical approaches to those used on time-invariant data that assume constant
variance and independence of variables. Time series data are a sequence of observations
taken by continuous measurement over time, with observations usually collected at equidis-
tant time intervals [29]. Time series data can have properties such as trend, seasonality,
cycles and level which can be used to predict future trends and identify anomalies that
deviate from the norm.

Much of the existing literature focuses on three types of anomalies in time-series data:
point anomalies, collective anomalies, and contextual anomalies [29–31]. Point anomalies
are instances where a single point in time deviates significantly from the majority of
the time series. An example of a point anomaly in historic weather patterns could be a
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single day of heavy snowfall in British springtime. Point anomalies have been studied
extensively, with most approaches making the assumption that anomalies are scarce and
occur independently of each other [2]. Neural Networks [32], tree-based approaches [33],
SVM [8,34], and LSTM [35] have been successfully used to identify point anomalies.

Collective anomalies are where multiple data points in the time series may be consid-
ered normal when analysed individually, but when viewed as a collective they demonstrate
a pattern of unusual characteristics. Continuing with the weather example, a collective
anomaly would be if the snowfall continues for multiple days. Contextual anomalies are
cases where data may deviate from the majority of the ANCs but are dismissed as normal
due to the context. Contextual anomalies are defined by two attributes [2,3]:

1. a spacial attribute that describes the local context of a data-point relative to it neigh-
bours;

2. a behavioural attribute that describes the normality of the data point.

Point et al. provide a detailed mathematical description of contextual anomalies,
and how clustering algorithms can be used to identify contextual anomalies in a range of
real-world and synthetic data [2]. A common example of contextual anomalies is described
using credit card data [3–5]. For example, if an individual’s credit card expenditure is
significantly high over the course of a week in April it might be considered a collective
anomaly and flagged as fraudulent activity. The same transaction behaviour the week
before Christmas, however may be considered normal behaviour given the context.

In the example of credit card transactions, we can see that there can often be an overlap
between the different types of anomalies. Therefore, it is sometimes necessary to develop
a solution that identifies all three types of anomalies. Hundman et al. demonstrate how
LSTMs can be used to identify all three types of anomalies in a multivariate time-series
dataset to identify spacecraft anomalies in telemetry data [31].

2.2. Dimensionality Reduction and Semi-Supervised Clustering

The first step in any anomaly detection task is to use domain knowledge to extract
meaningful features from the raw data using feature engineering techniques. These features
can then be analysed using a wide range of statistical tools to highlight outliers, which
are potential anomalies. The number of meaningful features a dataset has determined
whether it has high dimensionality or low dimensionality. As the dimensionality of data
increases, it becomes more difficult to draw relationships between these features. This not
only requires more training data and more processing power to train models to learn these
representations but also makes the trained models more susceptible to overfitting due to
noise being present across all dimensions [36].

Dimensionality reduction methods aim to represent high-dimensional data in a lower-
dimensional space to visualise data in two or three dimensions and apply cluster anal-
ysis approaches that are more suited to lower-dimensional datasets. The most common
cluster analysis approaches that have been applied to anomaly detection in time series
include: k-means clustering [37–41], Fuzzy C-Means clustering [40,42], Gaussian mixture
models [34,37,43], and hierarchical clustering [37,39,41,44].

K-means and Fuzzy C-means clustering involve making initial guesses on the centroid
position of a given number of clusters before applying stochastic approaches to iteratively
optimise the centroid locations by minimising the distances to points that lie within each
centroid’s respective clusters. K-means clustering is a hard clustering approach in which
each point is assigned to a specific cluster. C-means is a soft clustering approach that assigns
individual probabilities to each data point so that data can be assigned to multiple clusters.
Diez-Olivan et al. show how k-means clustering can be used for diesel engine condition-
based monitoring by detecting anomalies in sensor data [40]. For CBM applications such
as this, the normal operating conditions and the anomaly distributions can be well-defined,
making cluster analysis a highly effective solution.

A Gaussian mixture model (GMM) is a similar clustering approach that assumes
that the process can be described by several sub-processes, each of which may generate a
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Gaussian component in the lower dimensional representation [37]. GMM is a probabilis-
tic approach for which maximum likelihood estimation algorithms such as Expectation
Maximisation are used for model fitting [37,43].

Unsupervised anomaly detection is a commonly used anomaly detection method. It is
often beneficial as it can avoid the need to build high-quality labelled datasets to develop
and implement the solution. However, in real-world applications, testing datasets will
need to be developed to test and compare models during development to prove their
effectiveness before implementation. In cases where the fraction of training points that
are anomalies is very small (α < 1%), any testing datasets will be highly imbalanced, with
significantly more normal data than anomalies. In these cases, it is practical to utilise this
surplus normal data as part of a semi-supervised approach. Previous research has shown
that GMMs perform well at semi-supervised anomaly detection in time-series data where
the anomaly distribution is not known [45].

Amruthnath et al. compared unsupervised machine learning models to identify
anomalies in machine vibration data for predictive maintenance. Of the various clustering
methods compared in the study, a combination of PCA and GMM was found to give the best
result [37]. However, for this application, the normal operating parameters are well-defined,
and only one fault instance was considered. GMM is often applied to analyse biometric
time series as it is well suited to handle data with large sample distributions [45,46]. Reddy
et al. demonstrate how GMM can be used in unsupervised settings to identify outliers in
network traffic data [47]. Reddy et al. applied a semi-supervised approach and discuss the
importance of high-quality training data, as the model is sensitive to outliers.

In hierarchical clustering, the initial number of clusters K equals the number of data
points. At each iteration, each point is merged with neighbouring clusters until a single
cluster is formed. This bottom-up approach is called agglomerative hierarchical clustering
and can also be performed in a top-down approach called divisive hierarchical cluster-
ing [44]. This process is then used to construct a dendrogram where branches are joined or
split at a depth equal to the number of iterations at which those clusters were merged or
split. The resulting dendrogram explains the relationship between all the data points in
the system and can be horizontally sliced at any point to return the required number of
clusters, where small clusters may indicate anomalous system behaviour [37,44].

Dimension reduction techniques can be split into two main categories: Matrix Fac-
torisation and Neighbour Graph approaches. Matrix Factorisation includes algorithms
such as Linear Autoencoders, Generalised Low-Rank Models, and Principle Component
Analysis (PCA). PCA is one of the oldest and most commonly used methods for dimen-
sionality reduction across a range of scientific disciplines, dating back to work by Pearson
in the early 1900s [48]. PCA uses the eigenvectors and eigenvalues of the dataset’s covari-
ance matrix to construct linear representations of the data in latent space. These linear
representations are called principle components, and those with the highest variance cap-
ture the most information of the original data and can be retained for further analysis or
plotting while components with low variance can be discarded. PCA has been widely
applied in a range of time series anomaly detection tasks by researchers over the past few
decades [37,38,40,49,50]. One limitation of PCA is that if the correlations between features
are non-linear or unrelated, the resultant transformation may result in false positives or fail
to draw any useful relationships [36]. Various tools and add-ins are included in common
industrial toolsets, such as Microsoft Excel, that make PCA accessible to engineers.

In recent years, there have been multiple advancements in the development of learning-
based neighbour graph algorithms such as t-distributed Stochastic Neighbuor Embedding
(t-SNE) [51], and Uniform Manifold Approximation and Projection (UMAP) [52].

t-SNE is a variation of Stochastic Neighbour Embedding first proposed by Hinton and
Roweis in 2002 [53]. While PCA retains global structure through eigenvectors with high
variance, t-SNE reduces dimensionality by modelling high dimensional data neighbour
points as a probability distribution in low dimensional space, thus retaining a more detailed
local structure with the loss of some global information. This makes t-SNE favourable
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in producing visualisations where understanding this local structure is important and
has been used in anomaly detection to visualise bearing faults [54], and superconductor
manufacturing errors [55]. Furthermore, t-SNE can reveal non-linear relationships of the
data that may be missed using PCA.

UMAP is a recent advancement in dimensionality reduction that has drawn much
attention since its publication in 2020, in which Mcinnes et al. propose a topological
mapping approach for dimensionality reduction [49,52,56]. UMAP has been shown to
improve on t-SNE in preserving both local and global structure of data while also achieving
superior run time performance [49,52,56]. UMAP outperformed PCA in clustering time-
series data based on cyclical and seasonal characteristics [14,56] and has been used in
combination with density-based clustering approaches to highlight periods of anomalous
behaviour in time-series data [14,56]. Given the complexity and novelty of UMAP, further
research is required to understand the performance of UMAP in industrial settings, with
researchers suggesting opportunities for future works in comparing its 2D reduction
performance with other distance methods [56].

3. Methodology

In this section, the methodology to develop a solution for nut runner anomaly detection
is presented. The two datasets were used to develop and test various machine-learning
models. The methods used to collect and label these datasets in collaboration with domain
experts are discussed, as well as the challenges of these real-world datasets.

Three semi-supervised approaches are presented to detect anomalies in nut runner
data. Each method uses a GMM trained on normal data to generate outlier thresholds
in a reduced feature space. Three dimensionality reduction approaches were used in
combination with the GMM to compare performance. The literature review also finds
that LSTMs may be applicable for this case study. However, architectural constraints
at the sponsor company presented a barrier to setting up the required Tensorflow GPU
environments to explore this solution. This section describes each of these methods, as well
as the experimental setup to test and train each of the proposed solutions.

3.1. Labeled Data

Nut runner anomalies are rare, and historical process data are not always stored
long-term. This makes it challenging to obtain sufficient data on historical machine faults to
develop training and testing datasets. If historical fault data do exist, these will still need to
be reviewed by a domain specialist to ensure sufficiently high-quality datasets. The task of
labelling data is therefore the first major hurdle. Even fully unsupervised methods require
high-quality datasets to validate model accuracy. In fault detection applications, training
datasets will likely be highly imbalanced as fault instances and anomalies are usually rare.
Therefore, large amounts of data may need to be reviewed by domain specialists to gather
sufficient data to validate such models.

For this research, a dashboard was developed to speed up the labelling process. The
dashboard presented a domain specialist with 12 on-screen examples of time-series nut
rundown data to label. Given that anomaly occurrences were presumed to be very rare,
the user was informed that all data they were being shown were examples of ’normal’
operating conditions. If the user saw any instances that could be considered anomalous,
they were asked to label this by using a series of push buttons to categorise the observation
into one of three categories:

• True Anomaly: True anomalies are instances where either a known process anomaly
has occurred that has compromised part quality, or an unknown anomaly has occurred
that requires further inspection before the part is released;

• Anomaly No Concern (ANC): An ANC is defined as an anomalous observation for
which no action is needed. This may be because the anomaly can be explained by a
known process error that is unlikely to have compromised the quality of the outgoing
part;



AI 2023, 4 241

• Re-hit: A Re-hit is an instance where no data were recorded and the amplitude of the
time series remains constant at 0.

If none of the 12 examples on-screen fall within one of these categories, a refresh
button is used to label all observations as ‘normal’, and the display is refreshed with a new
batch of 12 images. Figure 3 shows an example of the data labelling dashboard.

Figure 3. The data labelling dashboard allows users to label batches of 12 normal waveforms at a
time. For each displayed waveform, users can select True Anomaly (TA), Anomaly No Concern
(ANC), or Re-hit. If all waveforms are normal, the All Normal button labels all 12 observations as
normal.

This labelling approach proved to be very fast, as less than 1% of processes included
True Anomalies and, therefore, most on-screen batches were all normal and labelled 12 at a
time. Using this system, domain specialists were able to consistently label data at a rate of
approximately 1000 observations per half-hour of labelling. This approach was designed
to be used on personal computers to label historical data and was not integrated into any
production process or data collection systems.

The ANC class was introduced to overcome some confusion around what constitutes
an anomaly. Production line test engineers consider anomalies to be any observation that
would result in a part being rejected for inspection/repair. In contrast, the data analysts
viewed anomalies as having features or characteristics not found in the majority of the
data. To address this contrasting definition of terms, the Anomaly No Concern (ANC)
category was included in the labelling process. The judgement between a True Anomaly
and an Anomaly No Concern is based on experience, and therefore there is some level of
uncertainty and subjectivity in this class. For this reason, the task of labelling is given only
to engineers who have a high level of understanding of the process and the test. While
this does introduce some uncertainty into our testing datasets, it is notable that engineers
will typically err on the side of caution, as product quality is prioritised over all other
production metrics. For this reason, it is desirable for any proposed anomaly detection
system to flag all instances of both a ‘True Anomaly’ and an ‘Anomaly No Concern’. This
being said, a network’s ability to detect ‘Anomaly No Concern’ should never be improved
at the expense of reducing the ‘True Anomaly’ detection rate.

By using this labelling dashboard we were able to overcome two of the major hurdles
of developing and implementing machine learning approaches for fault detection: the time
taken to label good quality data, and the knowledge gap between domain experts and data
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analytic experts. This labelling approach was used to build two testing datasets, one for
each process. Three domain experts were given 5000 data to label. When selecting True
Anomaly or ANC classes, all data were included where at least one person labelled an
observation as an anomaly. When selecting normal data, data were only included when all
three agreed on the normal class. Details of each dataset are shown below in Table 1.

Table 1. Composition of training and testing datasets to evaluate the performance of the models.

Dataset True Anomalies ANC Normal Total

Test Dataset 1 26 37 1000 1063
Test Dataset 2 67 100 1000 1167

3.2. Machine Learning Model Descriptions

Based on the related research, it was decided to explore the GMM solution for anomaly
detection in nut runner data. Three dimension reduction approaches were compared prior
to training a GMM: PCA, t-SNE, and UMAP. During the model development phase, the
visualisations produced by these approaches proved useful in communicating the results
and findings of the nut runner analysis to other team members. This was particularly
useful when discussing the importance of high-quality data, and revealed early on that
test engineers would often disagree on data labels. Visualising the results through the
early development phase made it easier to identify and communicate potential labelling
mistakes and to obtain feedback from test engineers. For these reasons, it was decided only
to explore 2D representations for all dimensionality reduction approaches.

3.2.1. PCA

Principal Component Analysis (PCA) is a dimensionality reduction technique that
aims to preserve the global structure of the data by preserving pairwise distance among
all data samples. This is achieved by applying linear mapping using matrix factorization.
The mathematical foundations of PCA are widely discussed in previous research and are
therefore not discussed in this paper. For further information on the mathematics of PCA,
the reader is referred to Syms, 2008 [57].

The current anomaly detection method at Ford Motor Company identifies anomalies
using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to identify
noise points in the first two principal components. Figure 4 shows a labelled plot of the
first two principal components for datasets 1 and 2. These plots show that, when applying
the PCA transform on nut runner data, not all noise points are anomalies, anomalies can
form tight clusters, and not all are outliers. In Dataset 1, many anomalies lie within the
nominal distribution of the data, sometimes forming small clusters of anomalies within the
nominal distribution. In Dataset 2, most anomalies form tight clusters, and the ANC class
overlaps significantly with the nominal data.

Because PCA is sensitive to the variance, the data were first normalised. Typically,
when applying PCA, the first two or three components are selected, as these compo-
nents retain the most information on the original structure of the data [58]. However,
initial experiments with nut runner data found that using different combinations of prin-
cipal components resulted in more distinct clusters of anomalies. For this reason, the
principle components were also varied when optimising the hyperparameters for the
semi-supervised approach.

3.2.2. t-SNE and UMAP

Following the state-of-the-art dimensionality reduction, t-SNE and UMAP were also
compared with PCA at clustering the data in 2D before applying the semi-supervised GMM.
t-SNE and UMAP are neighbour graph approaches that determine the similarity between
the data points before projecting the data onto the lower dimensional space.
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Figure 4. A PCA plot of datasets 1 and 2.

Consider some training dataset comprised of T training vectors and n dimensions,
given by X = xi, . . . , xT , that we wish to map onto a low-dimensional space given by
Y = yi, . . . , yT . t-SNE is a variation of the SNE algorithm that uses a heavily tailed Student-t
distribution in the low-dimensional map, rather than a Gaussian distribution to determine
the similarities. For the t-SNE algorithm, conditional probability qi j is given by:

qi|j =
(1 + ||yi − yj||2)−1

∑k 6=l(1 + ||yk − yl ||2)−1 . (1)

By applying a probability distribution with heavy tails, (1 + ||yi − yj||2)−1 approaches
an inverse square law for large pairwise distances in the low-dimensional representation of
the data. This helps retain global structure by separating clusters that are far apart, while
retaining local structure within the respective clusters [51]. These new values for qi|j give a
gradient of the Kullback–Leibler divergence as:

δC
δyi

= 4 ∑
j
(pi|j − qi|j)(1 + ||yi − yj||2)−1. (2)

The gradient descent is initialised by randomly sampling from an isotropic Gaussian
centred on the origin with a small variance. The initial data points Y are then shifted in
this low-dimensional space such that the conditional probabilities Q converge on P. For
further details on how the gradient decent process is optimised to avoid poor local minima,
see [51].

Similar to t-SNE, UMAP is also a neighbour graph approach that uses stochastic
processes to map X onto Y. UMAP is by far the most complex approach discussed in
this section, with the theoretical foundations based on manifold theory and topology [52].
At a high level, UMAP applies manifold approximation together with local set repre-
sentations to map the data onto lower dimensional space. These high-dimensional set
representations, known as simplicial sets, describe the high-dimensional feature space by
combining multiple simplicies defined by the data points X. Figure 5 shows a visualisation
of these simplicies and how they can be combined into a simplicial complex to describe a
multi-dimensional feature space. The reader is referred to Mcinnes et al. (2020) for further
description of the mathematical description of simplicial complex and how it is used to
describe the high-dimensional manifolds [52].

Because t-SNE is a probabilistic approach and both t-SNE and UMAP use stochastic
processes, we must combine the training and testing data and perform dimensionality
reduction on both datasets to ensure they are mapped onto the same lower dimensional
feature space. The 2D outputs of the dimensionality reduction are then split back into the
training and testing sets before applying GMM for semi-supervised clustering. Figure 6
shows t-SNE applied to the training and testing nut runner data.
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Figure 5. UMAP uses combinations of simplicies to provide a simplified representation of the
continuous topological space defined by the high dimensional dataset X while retaining the global
and local structures that define the space.

Figure 6. The same GMM approach applied using t-SNE and UMAP to reduce and cluster the data.
Labelled data include Nominal points (blue), ANC (green), and True Anomalies (red).
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For data with very high dimensions, t-SNE has challenges associated with high com-
putational requirements when compared to PCA. The initial construction of the k-NN
graph to determine the similarity scores in t-SNE and UMAP is a computational bottleneck
for very high dimensional data, and the performance of the k-NN step deteriorates as the
dimensionality is increased [59]. Furthermore, the t-SNE method becomes increasingly
sensitive to parameter selection as the dimensionality is increased. This also requires users
to exhaustively search for optimal parameters which become computationally expensive for
very high-dimension datasets [59]. However, in the original paper by [51], the method was
shown to have a low error at on a 784-dimensional dataset. This is a higher dimensionality
compared to the 750 dimensions in the nut runner time series. Details of the optimization
for the t-SNE and UMAP are discussed in Section 3.2.3.

3.2.3. GMM

Consider a Gaussian process for which some output X is a continuous random variable.
It is impossible to define a probability distribution function for all x, as there are an
uncountably infinite number of potential values. To overcome this, a closely related
function can be used to describe the probabilities associated with a continuous random
variable [60]. This is called the Probability Density Function (PDF), given by:

p(x) =
d

dx
F(x) (3)

F(x) =
∫ x

−∞
p(x)dx. (4)

A scalar Gaussian component has two parameters that can be used to describe the
PDF: the mean µ, and the variance σ2. This gives a PDF in the form:

p(x|µ, σ2) = N (x|µ, σ2) =
1√

2πσ2
exp
(
−(x− µ)2)

2σ2

)
. (5)

The Gaussian Mixture Model (GMM) assumes that the process can be described by
several sub-processes, each of which can be described by a Gaussian probability density
with a mean µ, and the variance σ2 [37]. However, it is often the case when applying GMM
that there are multiple features and high dimensionality [46]. For a multivariate Gaussian
with n features and D-dimensions, a multivariate Gaussian PDF with the same quadratic
form is used to describe these components, given by:

p(~x|~µ, Σ) = N (~x|~µi, Σi) =
1

(2π)D/2|Σi|1/2 exp
(
−1

2
(~x− ~µi)

′Σ−1
i (~x− ~µi)

)
, (6)

where ~µ is the vector mean of length n, and Σ is the n× n covariance matrix [46].
The GMM also introduces a scalar weight wi for each Gaussian component, where

∑M
i=1 wi = 1. Therefore, a GMM can be described as a weighted sum of M Gaussian

components, given by:

p~x|{wi, ~µi, Σi}) =
M

∑
i=1

wiN (~x|~µi, Σi), (7)

where i = 1, . . . , M. To apply the GMM to make predictions on new data, the model must
first be fit to some training dataset comprised of T training vectors, given by given by
X = {~xi, . . . ,~xT}. This is achieved by making initial estimates for the mixture weights
wi mean vectors ~µi, and covariance matrices Σi before optimising these values. The most
common approach to optimise the GMM parameters is to use an iterative Expectation–
Maximisation (EM) algorithm [46,47,61].
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For a M components and with initial estimates for the mixture weights wimean
vectors ~µi, and covariance matrices Σi, the next step in the EM algorithm is to calculate the
probability that ~xT is assigned to component i, given by:

Pr(i|~xt, γ}) = wiN (~xt|~µi, Σi)

∑M
k=1 wkN (~xt|~µk, Σk)

, (8)

where γ = {wi, ~µi, Σi}. This probability Pr(i|~xt, γ)is known as the A Posterioi and is used to
calculate the next iterations parameters γ′ using the following equations [46]:

w′i =
1
T

T

∑
t=1

Pr(i|~xt, γ) (9)

~µi
′ =

∑T
t=1 Pr(i|~xt, γ)~xt

∑T
t=1 Pr(i|~xt, γ)

(10)

Σ′i =
∑T

t=1 Pr(i|~xt, γ)x2
t

∑T
t=1 Pr(i|~xt, γ)

− µ
′2
i . (11)

The result of the EM process is dependent on the initialisation points for which to
begin the EM optimisation process. This makes the user’s selection of the number of
Gaussian components important in achieving optimal results. Researchers commonly use
methods such as the Bayesian Information Criterion or the Akaike Information Criterion
to optimise M [61,62]. Similarly, the result of the GMM is also dependent on the training
vectors, which often require careful pre-processing and feature engineering to reduce the
dimensionality and cluster the data before applying the GMM. Because of the dependence
on the initialisation points, GMM will converge on the local optimum, which may not
necessarily be the global optimum. For this reason, multiple runs are required to compare
model performance with different. Because the model is deterministic, the best result
obtained over multiple runs can then can be used to generate future Gaussian mixture
components for classification.

A Gaussian Mixture Model (GMM) was trained in a semi-supervised manner, using
400 normal training data and the number of Gaussian components. For the GMM model,
two hyperparameters were optimised using a random search approach—the number of
Gaussian components M, and the scalar weights wi. The number of Gaussian components
M was searched in the range of integers 1 to 6, and the initial estimates for the scalar weights
wi were multiplied by a value in the range of 1 to 3 with intervals of 0.5. When optimising
these hyperparameters for the GMM model, hyperparameters were also optimised for the
respective dimensionality reduction methods. When applying PCA, the optimum principle
components were also included in the random search, considering all possible pairwise
combinations of the first ten components. For t-SNE, perplexity was studied in the range
of 5 to 50 in steps of 5, and the learn rate in the range of 100 to 1000 with steps of 100; all
other values were set as MATLAB defaults. For UMAP, the minimum distance was studied
between 0.1 and 0.5 in steps of 0.1, and the number of nearest neighbours was studied
between 5 and 25. All other parameters were kept as default in the modified code originally
sourced from MATLAB File Exchange [63]. For each combination of hyperparameters, the
experiment was repeated three times and the average f-score was calculated. For each
model, the random search was stopped after 2 h. This limitation on the optimisation time
was decided by those managing the Cloud-based architecture of the anomaly detection
pipeline. Because of bandwidth limitations, this 2-h estimate would ensure that, in a worst-
case scenario, optimisation runs would still be able to be successfully completed during
weekend non-productive time. This would avoid unnecessary downtime of the anomaly
detection solution during productive time. At this development stage, all experiments were
run locally using a NVIDIA GeForce GTX 1050 GPU.
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By training the model using only normal data, the resultant Gaussian approximate
components were used to define a threshold boundary to highlight outliers in the testing
dataset. Figure 7 shows a plot of datasets 1 and 2 with the outlier thresholds visualised.

Figure 7. Outlier regions calculated using Gaussian mixture model trained on the reduced normal
data. Any points that fall in the red area are identified as anomalies. Labelled data includes Nominal
points (blue), ANC (green), and True Anomalies (red).

3.3. Metrics

In this study, anomalies were treated as the positive class. With this in mind, the
following aims are outlined for this study:

• Minimise False Negative Rate: The end goal of this study was to develop an anomaly
detection system to improve overall product quality. Therefore, our main objective
was to reduce the number of True Anomalies incorrectly identified as Normal;

• Identify a High Percentage of True Anomalies: Reducing the false negative rate should
not come at the expense of identifying a low percentage of True Anomalies;

• Near Real Time: Any solution must be able to identify a potential anomalous reading
before the part continues onto the next process in the production line. While this time
varies between processes, we set a target of under 5 s to perform the analysis;

• Adaptable and Transferable: As processes change over time, any provided solution
must be re-trainable with minimal additional development by engineers. Furthermore,
any solution must be demonstrated to be effective on multiple nut runner datasets to
demonstrate its transferability to multiple use cases.

Given these objectives, we used the F-score false negative rate as our main metric to
measure the performance of our methods. The F-score is defined as:

F-score = 2× Precision× Recall
Precision + Recall

, (12)

where precision is the ratio between true positives and all positives,

Precision =
TP

TP + FP
. (13)
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Recall is the measure of the method to correctly identify true positives,

Recall =
TP

TP + FN
. (14)

An optimal solution will maximise the F-score while minimising the false positive
rate.

These metrics were complicated slightly through the introduction of the ANC class.
As discussed in Section 3.1, it can be useful to view ANCs as either an anomaly or a
nominal data point depending on the circumstances. For this reason, in any results, we
state explicitly whether ANCs are being treated as nominal or as anomalies and discuss the
findings within the relevant contexts.

4. Results

Typically, when evaluating the performance of models, data scientists at Ford Motor
Company treat ’Anomaly No Concern’ as ’True Anomalies’. This approach makes sense,
as ANCs are still outliers and should be reviewed by test engineers to err on the side of
caution and ensure the highest output quality. However, the author argues that this ANC
information can provide additional insights into the performance of the models and should
be further considered when analysing performance. This is particularly true for nut runner
data where the quality of the datasets is difficult to assure given that there is some level of
subjective judgement required when labelling the data that affect the overall quality of the
datasets. For this reason, two situations are considered:

(a) ANCs are considered as True Anomalies. (Tables 2 and 3);
(b) ANCs are considered to be normal. (Tables 4 and 5).

Table 2. Comparison of ML approaches for test Dataset 1a where ANCs are considered as True
Anomalies.

Method F-Score Precision Recall TP FN FP TN

PCA+DBSCAN 0.14 0.14 0.14 9 54 55 945
PCA+GMM 0.49 0.56 0.43 27 36 21 979

t-SNE+GMM 0.25 0.35 0.19 12 51 22 978
UMAP+GMM 0.27 0.17 0.68 43 20 216 784

Table 3. Experiment results for Dataset 2a where ANCs are considered as True Anomalies.

Method F-Score Precision Recall TP FN FP TN

PCA+DBSCAN 0.23 0.49 0.15 25 142 26 974
PCA+GMM 0.83 0.84 0.81 136 31 26 974

t-SNE+GMM 0.73 0.73 0.74 124 43 47 953
UMAP+GMM 0.59 0.48 0.77 128 39 137 863

Table 4. Experiment results for Dataset 1 where ANCs are NOT considered as True Anomalies.

Method F-Score Precision Recall TP FN FP TN

PCA+DBSCAN 0.09 0.06 0.15 4 22 60 977
PCA+GMM 0.43 0.31 0.70 18 8 40 1007

t-SNE+GMM 0.29 0.22 0.42 11 15 38 999
UMAP+GMM 0.02 0.01 0.96 25 1 234 803
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Table 5. Experiment results for Dataset 2 where ANCs are NOT considered as True Anomalies.

Method F-Score Precision Recall TP FN FP TN

PCA+DBSCAN 0.07 0.08 0.06 4 63 47 1053
PCA+GMM 0.58 0.41 1.00 67 0 95 1005

t-SNE+GMM 0.61 0.45 0.97 65 2 78 1022
UMAP+GMM 0.35 0.22 0.87 58 9 207 893

The results of the semi-supervised GMM method are largely dependent on the dimen-
sionality reduction approach used to prepare the data. For Dataset 1a, containing manual
nut runner data where ANCs are considered True Anomalies, the PCA-GMM performs
the best, achieving F-scores of 0.55 compared to 0.25 and 0.27 for t-SNE-GMM and UMAP-
GMM respectively. The t-SNE and UMAP approaches are less desirable in comparison,
with t-SNE returning a low recall while UMAP returns a low precision. However, all
methods outperform the current PCA+DBSCAN used for anomaly detection.

When considering Dataset 1b, where ANCs are considered as normal, the PCA-GMM
method sees a drop in true positive rates and false negative rates. The t-SNE approach is
the only method for which F-score increases when ANCs are treated as normal data. This
aligns with the findings during the model development phases, where t-SNE was found to
be particularly useful in identifying true anomalies contaminating the normal training data.
However, the method was not as good at distinguishing between ANC and normal data.
UMAP-GMM achieves the highest recall of all methods on Dataset 1, however, the very
low precision makes the approach undesirable in practice as it would result in considerable
added work for test engineers to review these false positives.

For Dataset 2a, PCA-GMM performs the best of all methods, achieving the highest
recall and second-highest precision. Furthermore, when considering Dataset 2b, it can be
seen that this method identifies 100% of the true anomalies. t-SNE-GMM also performs
well on Dataset 2, with similar results to the PCA-GMM method. UMAP-GMM is once
again the least best method due to high false positive rates; however, it still achieves a
higher F-score than the original PCA-DBSCAN approach.

5. Discussion of Results

For both datasets, PCA-GMM performs well and is the most consistent of all methods.
This approach performs the best on Dataset 2 identifying 100% of the true anomalies.
Unlike t-SNE and UMAP, PCA is deterministic meaning the eigenvectors of the initial
transform that gives an optimal result can be easily used to project any new data into the
same feature space with minimal computational requirements. Furthermore, the current
anomaly detection trial already uses PCA in its current anomaly detection solution, and
teams have a good understanding of the work required to further develop and optimize this
solution. For these reasons, it was decided to focus continued efforts on the PCA+GMM
solutions for nut runner anomaly detection.

Because t-SNE and UMAP are stochastic processes, results will vary between runs,
and specific results can be difficult to reproduce. Repeated experiments found that the
F-score varied significantly; however, when successful t-SNE produced the most useful
visualisations. For example, in Figure 6, the t-SNE results produce a distinct cluster of
True Anomalies that were correctly identified and also resulted in a low false positive
rate. Furthermore, this run also reveals a mislabelled data point in the training data that
appears to be a True Anomaly at [−20, −20]. This highlights a major benefit of dimension
reduction clustering approaches to produce 2D visualisations. By visualising the data in
this abstracted feature space, a quick visual inspection can highlight potential labelling
errors in training and testing datasets. These findings are aligned with previous research in
which t-SNE was found to be the best method to visualise anomalies in fault detection and
manufacturing production data [54,55].

Despite the added value of the visualisations produced by t-SNE and UMAP, the
retraining requirements for these algorithms present challenges when considering real-
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world implementation due to the variability of results and high computational requirements
when compared to PCA. Given that the proposed architecture for the end solution uses
Cloud-based services, any additional computational requirements will lead to higher
processing costs and may affect the ability of the solution of delivering analysis in near
real-time. There are opportunities for future research to explore non-random initialisation
options for t-SNE and UMAP that reduce the variability of the final mapping after training.
However, this can be complex to implement and may require additional optimisation steps
to ensure a solution converges on global minima, rather than local minima. Future research
should also explore more efficient Bayesian optimisation approaches that consider more
hyperparameters, especially for higher dimensionality datasets greater than 784 dimensions,
where the performance of the t-SNE approach is likely to decrease [51].

Although further work is required to apply t-SNE and UMAP for near real-time
anomaly detection in nut runner data, our results show that t-SNE and UMAP are still
useful tools. Labelling production data is a difficult task, and during our research, it was
found that even the most experienced test engineers disagree on True Anomaly and ANC
labels, and mistakes are not uncommon when using our labelling tool. Throughout this
project, visual inspection of the 2D t-SNE, PCA, and UMAP plots played an important role
in cleaning labelled data and highlighting potential labelling errors. The false negative
mentioned above in Figure 6 at [−20 −20] has since been confirmed by the test engineer
to be an error and is indeed a True Anomaly. Following these results, these methods have
since been adopted by Ford Motor Company to validate data labelling efforts as part of
this wider project. It is suggested that future research into real-world production data also
use t-SNE and UMAP to help clean data before model training if sufficient labelled data
are available.

Section 3.1 discusses how part of the reasoning for introducing the ANC category was
to overcome some level of subjectivity when labelling data. It is discussed that the training
and testing datasets were developed by getting three domain experts to label the data
independently. This inevitably results in some disagreement between True Anomaly and
ANC classes when labelling data, which is overcome by selecting anomaly data for which
at least one person believes it is an anomaly. As more data are compared, this highlights an
opportunity for further work to quantify any variability between labelling efforts and how
this compares to the resultant accuracy of the models.

It was also mentioned in Section 3 that architectural limitations prevented the use
of LSTM in this research. Further work should aim to overcome architectural limitations
preventing the implementation of Tensorflow GPU environments.

6. Conclusions

This paper proposed three semi-supervised solutions to detect anomalies in nut runner
processes. Multiple reasons make nut runner data a challenging anomaly detection problem,
including process staging, human-induced variability, and the subjectivity and ambiguity
of the anomalous class. These process characteristics lead to an anomaly detection scenario
where anomalies are not outliers, and the normal operating conditions are difficult to
define. For these reasons, previous unsupervised attempts to automate nut runner anomaly
detection have had limited success.

To develop a solution to address these challenges, two bespoke datasets were devel-
oped using data collected from two nut runner processes—one manual and one automated.
This paper represents the first attempt to identify anomalies in manual manufacturing
processes using hand-held tools.

In developing these datasets, a simple user interface and labelling methodology
were developed to minimise the human resource requirements to label large amounts of
time series data. This dashboard and labelling approach has since been used to support
additional projects at Ford Motor Company and is currently being developed as an internal
dashboard.
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In addition to the data labelling dashboard, a novel concept was introduced to label
the training and testing data. When asked to label data, domain experts were given the
opportunity to label data as ‘Anomaly No Concern’, in addition to the traditional labels
of ‘True Anomaly’ and ‘Normal’. Introducing this new term helped address knowledge
gaps between data scientists and domain experts by highlighting conditions where some
processing error had occurred but could be clearly explained as something that would
not impact part quality or require any maintenance actions. The inclusion of the ANC
class became a key consideration throughout the model development and testing to help
clean data, build testing and training data, and address disagreement when labelling
data. Furthermore, the ANC class provided further insights into model performance when
analysing the results and can be used as further justification for the business case when
estimating the solution’s impact on quality metrics.

To overcome the challenges of nut runner anomaly detection, multiple solutions were
presented that use the available normal data to train machine learning models. These semi-
supervised approaches significantly outperform current methods at Ford Motor Company,
increasing F-scores by a factor of ten in some cases. The methods presented use a semi-
supervised clustering approach, using a combination of dimensionality reduction and
GMM for outlier detection. Three dimensionality reduction methods were compared:
Principle Component Analysis (PCA), t- Distributed Stochastic Neighbour Embedding (t-
SNE), and Uniform Manifold Approximation and Projection (UMAP). Of the three methods,
t-SNE and UMAP were found to produce the best visualisations when developing the
models, allowing data scientists and domain experts to identify mistakes when labelling
data and support data cleaning and model development. However, the combination of PCA
and GMM produced the best results when tested on two real-world datasets. To conclude,
this paper presents multiple advancements in anomaly detection. This paper represents
the first attempt in the academic literature to identify anomalies in manual manufacturing
processes that use hand-held tools. A novel concept of an ‘Anomaly No Concern’ category
was introduced to overcome the challenges of labelling real-world data. Multiple semi-
supervised clustering approaches were compared, including UMAP, the latest state-of-the-
art approach yet to be applied to real-world manufacturing data for anomaly detection.
These contributions have led to the successful development of an anomaly detection
solution that is currently being implemented at a major automotive company.
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