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Abstract: Given strict emission targets and legal requirements, especially in the automotive industry,
environmentally friendly and simultaneously versatile applicable production technologies are gaining
importance. In this regard, the use of mechanical joining processes, such as clinching, enable assembly
sheet metals to achieve strength properties similar to those of established thermal joining technologies.
However, to guarantee a high reliability of the generated joint connection, the selection of a best-fitting
joining technology as well as the meaningful description of individual joint properties is essential. In
the context of clinching, few contributions have to date investigated the metamodel-based estimation
and optimization of joint characteristics, such as neck or interlock thickness, by applying machine
learning and genetic algorithms. Therefore, several regression models have been trained on varying
databases and amounts of input parameters. However, if product engineers can only provide limited
data for a new joining task, such as incomplete information on applied joining tool dimensions,
previously trained metamodels often reach their limits. This often results in a significant loss of
prediction quality and leads to increasing uncertainties and inaccuracies within the metamodel-based
design of a clinch joint connection. Motivated by this, the presented contribution investigates different
machine learning algorithms regarding their ability to achieve a satisfying estimation accuracy on
limited input data applying a statistically based feature selection method. Through this, it is possible
to identify which regression models are suitable to predict clinch joint characteristics considering
only a minimum set of required input features. Thus, in addition to the opportunity to decrease the
training effort as well as the model complexity, the subsequent formulation of design equations can
pave the way to a more versatile application and reuse of pretrained metamodels on varying tool
configurations for a given clinch joining task.

Keywords: mechanical joining; clinching; machine learning; design of experiment; FEM

1. Introduction

Given the cost-efficiency and repeatability of clinching, the technology enables the
joining of two or more sheets without the involvement of auxiliary elements, such as rivets.
Furthermore, the ability to generate multimaterial assemblies involving dissimilar and
coated materials is highly beneficial for use in lightweight designs. Thus, clinching repre-
sents a serious alternative to widely applied thermal joining methods, such as welding [1].
In this regard, further process [2,3] and tool developments [4] are available in the field of
mechanical clinching, whereby this contribution focuses on the generation of round clinch
joints. However, to guarantee a robust dimensioning of the resulting joining connection,
not only is the previous selection of a suitable production technology important but the
reliable design of the individual joint also needs to be focused on in more detail. For this
purpose, product engineers can only refer to fewer standards, such as in [5,6], or a few
experimental studies (e.g., in [7]). To face this lack of information, previous contributions
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introduced the utilization of data-driven or machine learning methods [8] for the accurate
analysis and estimation of quality-relevant clinch joint properties as a promising solution.
Because the coverage of the entire joining process mainly implies different process or
tool factors, the generation of meaningful regression models consists of a wide range of
input parameters. However, if not all required input data can be provided for new or
changing tool configurations, pretrained metamodels often reach their prediction limits.
This often results in increased uncertainties and inaccuracies within the metamodel-based
design of a clinch joint connection and thus to a reduced reliability of developed products.
Furthermore, the consideration of irrelevant input features can lead to a significant increase
of the prediction model’s complexity and thus to growing computational as well as mod-
eling efforts. Motivated by these points, the presented contribution considers different
machine learning algorithms and evaluates their ability to achieve a satisfying estimation
accuracy on limited input. Therefore, the implementation of a correlation-based analysis
(calculation of Pearson’s correlation coefficients) as a feature-selection strategy combined
with the calculation of prediction quality measurements, offers the opportunity to evaluate
the performance of different machine learning algorithms on varying input data. As a
result, models are available that show a significantly reduced complexity by at the same
time achieving satisfying prediction qualities. This means that product engineers can
achieve reliable estimations of clinch joint properties even if only a certain number of input
features is provided. Thus, in addition to the decreased modeling effort, the results can
pave the way to a more versatile application of pretrained regression models on varying
tool configurations for a selected joining task.

2. Related Work

Given the intention of reaching a high prediction quality of clinch joint properties for
a certain joining task, few contributions investigated the application of machine learning
and data-driven methods. For instance, Oudjene et al. [9,10] analyzed how varying tool
design parameters influence geometrical joint properties, such as the interlock and neck
thicknesses. Therefore, the utilization of an adopted response surface methodology in
combination with a moving least-square (MLS) approximation identified optimized tool
designs (punch, die) resulting in improved joint resistances against head tensile loading.

By using these results as a fundamental, the authors in [11] set up a predictive
model (Kriging metamodel) to build a response surface describing the clinching pro-
cess. Finally, this method enabled a further improvement of the joint strengths regarding
head tensile loading (+10%, 623 N to 834 N) in comparison to the previously introduced
MLS approximation.

Because not only the clinching process affects the resulting joint properties, Roux and
Bouchard [12] additionally involved ductile damages in the material behavior as an input
parameter. In this context, the application of a global optimization algorithm obtained
enhanced geometric joint characteristics (neck and interlock). Through this, the defined
tool configurations achieved a significant change in the mechanical strengths of the joints
(head tensile +13.5%, shear tensile +46.5%) compared to an initial die and punch design.

Another study [13] investigated the utilization of artificial neural networks (ANN) for
the estimation of the joint strengths in a clinching process with an extensible die. Therefore,
an intelligent design of experiment (DoE) using a Taguchi L27 orthogonal array represents
five tool parameters divided over three levels. Following the model training and fitting
process, a meaningful ANN enabled the prediction of different joint properties for varying
tool configurations. In this regard, the subsequent use of a genetic algorithm (GA) identified
optimal design parameters for changing blank thicknesses.

A further approach was demonstrated by Eshtayeh et al. [14]. The authors introduced
a procedure for the combined use of a Taguchi-based Grey method with an analysis of
variance to determine enhanced tool designs considering a dissimilar material connection.
In this context, a Taguchi L27 DoE with a signal-to-noise ratio builds the basis for the
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subsequent obtainment of impact factors of different tool configurations on multiple clinch
joint properties (interlock, neck, and bottom thickness).

Wang et al. [15] demonstrated a novel method aiming to identify an optimized contour
of the joining tools through the direct communication between a genetic algorithm and a
finite element simulation model. Through this, it is possible to adjust individual positioning
coordinates of previously parameterized shape contour nodes based on the results of the
current GA population. Finally, an optimal contour of the die shows increased clinch joint
properties by improving the joint’s resistance against fractures during the clinching process
at the same time.

Beside the inclusion of tool design parameters, Wang et al. [16] also puts process factors
for the investigation of several joint characteristics, such as the interlock and neck thickness
as well as the tensile force, into consideration. Therefore, the authors used a combination
of the response surface method with a nondominated sorting genetic algorithm (NSGA-II)
to achieve an optimized clinching tool and process configuration for the analyzed use case.

A novel approach was introduced by Schwarz et al. [17]. Thereby, the use of a
principal component analysis (PCA) characterizes individual clinching geometries through
the calculation of statistical eigenmodes combined with the following setup of PCA-based
metamodels. The resulting derivation of a functional relationship between the created
joint contour and the particular input factor set offers the opportunity to apply a genetic
algorithm for the improvement of interlock and neck thickness by simultaneously not
exceeding maximum normal stress values during the joining process.

Bielak et al. [18] and Martin et al. [19] used metamodels to describe the effect of
pretraining in the joining area on geometric characteristics and load capacity. In this context,
validated FE simulation models combined with varying materials and sheet thicknesses
were considered.

In comparison to this, the authors in [20] introduced a novel method for the definition
of optimized clinching tools by using a deep reinforcement learning algorithm. For this
purpose, the training of an agent represented by an artificial neural network predicts indi-
vidual clinch joint characteristics without the consideration of labeled input data. Moreover,
the setup of a value-based deep learning algorithm (Q-Learning) provides the opportunity
to select an optimal design of joining tools in a multidimensional solution space.

3. Research Questions

Whereas available works have mainly focused on the setup and training of several
data-driven or machine learning algorithms considering use case-related databases, this
contribution investigates the influence of limited input data on the prediction accuracy of
different regression models. In particular, if product engineers cannot provide data to all
required input parameters for a new or changing joining task, pretrained and implemented
metamodels often show decreasing prediction qualities. Because a poor estimation of
individual target variables can result in an inaccurate or incorrect dimensioning of product
components, the investigation of how pretrained regression models response on limited
data is crucial. In this context, following the theoretical and methodical background,
the setup of a parameterized and validated clinching FE simulation model combined with
an intelligent design of experiment enables the generation of an initial set of data. Based on
this, the subsequent application of a statistically based feature-selection method provides
the opportunity to answer three research questions (RQ).

First, the focus is on the evaluation and comparison of different machine learning
algorithms considering 330 data points and 13 input features. Therefore, the aim is to
answer the question of which regression models show the best ability to estimate individual
clinch joint properties for the given joining task and which methods are less suitable (RQ1).
Then, Section 5.3 deals with the application of a statistically based feature selection method.
In this context, the systematic reduction of input parameters provides a suitable approach to
answer the question of whether the considered models are capable of achieving satisfying
estimation qualities for varying input data and which parameters are at least required
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for this (RQ2). Simplified and less complex predictive models are available. Based on
this, the subsequent Section 5.4 introduces mathematical representations of the generated
models and evaluates whether these design equations are feasible and applicable for the
accurate description of clinch joint characteristics (RQ3). This can then pave the way to
a reliable design of clinch joining connections without the necessity to once again set up
metamodels for a given joining task. To evaluate the results, an experimental study using
an exemplary tool configuration is considered.

4. Method

In the following, a brief overview of the involved methods for the generation of a nu-
merical clinching process (Section 4.2) and the definition of a suitable design of experiment
(Section 4.3) is provided. In this regard, the realization of a correlation analysis combined
with the application of different machine learning algorithms (Section 4.4) are presented
within a statistical feature-selection method (Section 4.5). Therefore, the defined approach
will be described in more detail in the subsequent Section 4.1.

4.1. General Approach

This chapter provides a brief overview of the applied general approach (cf. Figure 1),
introducing the particular steps beginning with the data sampling process over carrying
out a feature selection strategy to the final definition of minimum required subsets of input
data considering only relevant parameters. In the context of this contribution, the focus
will be on the investigation of varying joining tool configurations and thus mainly on
geometrical parameters of the punch and die. The dimensions of the blank holder remain
constant. Moreover, factors that are often unknown or can only hardly be specified, such
as varying sheet thicknesses or material properties, are not considered in the presented
work. At the beginning, the selection of a statistical DoE provides an intelligent way to
investigate a large number of joining process configurations in a small number of numerical
experiments. For this purpose, the specification of parameter boundaries (min./max.)
combined with suitable factor distribution functions (Gaussian or uniformly distributed)
enables the generation of an initial design space including 13 input features and 330 data
points (Section 4.3). In this regard, an intersection between a parameterized FE clinching
simulation model and the defined DoE offers the opportunity for a fast and consistent
sampling and evaluation of several clinch joint connections. Additionally, an automated
determination of geometrical joint characteristics (neck and interlock thickness) and the
maximum transmittable shear loading as well as the applied force during the joining
process is carried out in Section 4.2. Afterward, the application of a correlation-based
feature selection method provides an efficient approach for the evaluation and comparison
of machine learning algorithms based on their ability to describe clinch joint characteristics
considering a limited number of input parameters. Therefore, the method calculates the
linear influence of all input features on the investigated clinch joint properties. This allows
the definition of a parameter-removing order, whereby features are sorted based on the
calculated impact indices (sorting order: weak to strong impact). After this, the initial
input data is iteratively reduced by the respective parameter in the removing order, while
the number of available samples remains constant. However, due to high computational
efforts of sampling numerical data, only a small set of 330 data points will be considered
for this purpose. Based on this, and in order to reduce the occurrence of overfitting, a cross-
validation method is implemented. In this context, the randomized and nonoverlapping
division of the particular databases into ten equal folds (nine training and one testing
fold) provides the opportunity to calculate 10 times the achieved prediction qualities (CoP
values) of the considered machine learning algorithms for changing training and test
configurations. In this regard and to ensure a reliable evaluation of the regression model’s
performance, the cross-validation method is applied for each feature removing iteration.
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Figure 1. Illustration of the applied general approach.

In summary, the methodical approach is performed for each target variable separately
and enables the identification of suitable regression models requiring only a minimum set
of features to accurately estimate quality-relevant clinch joint properties. These steps will
be demonstrated and carried out in Sections 5.2 and 5.3.

4.2. Numerical Clinching Process

Given the challenges of performing comprehensive experimental studies, such as a
significant time- and cost-effort, the formalization of an initial database depends on the
setup of a parameterized and validated finite element simulation model representing the
clinch joining process. In this regard, a highly nonlinear elastic–plastic material behavior
combined with strong deformations and element distortions have to be accurately cov-
ered. Therefore, the simulation software Ansys LS-DYNA (solver version: smp_d_R910)
is capable of efficiently simulating a 2D-axisymmetric model configuration of the joining
process including the die, punch, blank holder, and punch- and die-sided sheet. The ex-
perimental validation of the simulation model is demonstrated in [18,19]. In this context,
Figure 2a illustrates the structural setup of the FE model and Figure 2b the determined
quality-relevant clinch joint properties.

Figure 2. Illustration of the clinch joining process (a), resulting joint properties (b) and FE model
parameters (c).

Focusing on a realistic representation of the clinching process, the FE model consists
of elastic (001-Elastic) and elastic–plastic (024-Piecewise_linear_plasticity) components.
For example, whereas the die is defined as a entirely elastic part involving a fixed bearing
of several bottom nodes, the punch and the blank holder are divided into elastic and fully
rigid (020-Rigid) parts. Thus, the effects of an elastic tool deformation can be included in
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the analysis. Further settings regarding FE model parameters are summarized in Figure 2c.
In addition, to demonstrate the joining process, the aluminum magnesium silicon alloy
EN AW-6014-T4 (tensile strength, 245.7 MPa; yield strength, 137.8 MPa) with a nominal
thickness of 2.0 mm, Young’s modulus of 70 GPa, and a Poisson’s ratio of v = 0.33 is used as
the blank material. In contrast, the tools are represented by the material HCT590X (tensile
strength, 610.8 MPa; yield strength, 397.3 MPa; Young’s modulus, 210 GPa; Poisson’s ratio,
0.3). Due to the occurrence of high element distortions, adaptive and automatic remeshing
is activated during the simulation procedure. Because the investigation of the blank holder
is not a part of this contribution, the geometrical dimensions of this tool and the related
force (785 N) remain constant during the entire analysis and sampling process. Furthermore,
the joining velocity of 2 mm s−1 causes a compression of the punch-sided material into
the die-sided blank based on cold-forming. In this context, Figure 3a depicts determined
experimental data compared with the results of the generated FE model. Because the
values demonstrate a satisfying agreement, the numerical clinching model can be assumed
as valid.

After this, the generation of a 3D FE simulation model enables the measurement
of maximum shear load capacities based on the described approach in [21]. Therefore,
the transfer and mapping of data, such as node coordinates as well as plastic strains and
stresses, involves previous results of performed joining operations. Moreover, a constant
test velocity of 10 mm/min is applied and decreases the effect of strain rates. In addition
to the results in [21], the applicability of the simulation is further validated in Figure 3a,b.
In this regard, the detected shear simulation curve (red) and the determined maximum
transmittable shear force show a high agreement with the experimental force-displacement
curves. However, no failure criteria and material damage is implemented, and the gener-
ated 3D simulation model can be assumed as sufficiently accurate.

To enable an automated and consistent carrying out of the introduced parameter
study, the generated simulation models involve parameterized factors. Based on the
approach in [22], an algorithm-based intersection between the design of experiment and
the FE models provides the opportunity for a fast sampling of several clinching tool
configurations. After this, an algorithm determines the individual clinch joint characteristics
and automatically combines the DoE data with the obtained results [23]. Thus, an initial
database of 330 samples will be available for the subsequent performance of a correlation-
based feature-selection method.

Figure 3. Experimental validation of clinch joint properties (a) and force-displacement
shear curve (b).

4.3. Design of Experiments

To choose a suitable design of experiment, it is crucial to define the required input
parameters of interest with relating distribution boundary values in advance. In this regard
and in order to ensure a sufficient setup of parameter spaces, it is important to consider
both expert knowledge based on empirical studies and manufacturing standards, such
as in [5,6]. For instance, although the selection of tool dimensions often relies on prelimi-
nary numerical or experimental studies, the limitations of the punch penetration distance
are mainly based on expert recommendations. In summary, Table 1 shows the chosen
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input parameters that represent the clinch joining process and their minimum/maximum
boundaries. Furthermore, the constant settings of the blank holder and joining velocity are
demonstrated.

Table 1. Input parameters and the relating minimum/maximum spaces.

Input Parameter Unit Min.–Max. Input Parameter Unit Min.–Max.

Punch Die
Diameter dP mm 4.5–6.0 Diameter dD mm 7.5–8.5
Radius rI I I mm 0.1–0.6 Depth hD mm 0.8–1.8
Side draft angle αI deg 0.0–4.0 Groove depth hDG mm 0.5–1.3
Face draft angle αI I deg 3.0–8.0 Bottom diameter dDB mm 3.5–4.8
Process Groove diameter dDG mm 5.6–7.0
Punch penetration s % 70–90 * Corner radius I rI mm 0.1–0.4
Joining velocity mm s−1 2 (const.) Corner radius II rI I mm 0.1–0.4
Blank holder Side draft angle αI I I deg 0.0–8.0
Force N 785 (const.)
Tool dimensions const.

* of total sheet thickness.

For the precise analysis of technical systems, often a high amount of data points are
required. In this regard, the application of a statistical design of experiment provides an
intelligent way to describe and represent extensive parameter spaces considering signifi-
cantly fewer samples [24]. Moreover, in contrast to experimental studies, the involvement
of parameterized FE models combined with the implementation of an intersection to the
defined DoE enables the direct specification of tool, process, or material characteristics.
Based on this, the implementation of a Latin hypercube design provides the opportunity to
sample space-filling and uniformly distributed parameter values. Moreover, the statistical
method ensures an efficient representation of a multidimensional design of near-randomly
generated data points combined with a decreased occurrence of unwanted spurious corre-
lations between the input factors [24]. This offers the following detection of multivariate
dependencies taking the investigated input parameters and the individual clinch joint
characteristics into account. As previously mentioned, the initial input dataset will consist
of 330 data points and 13 input parameters.

4.4. Metamodeling

Based on [24,25] the utilization of metamodels enables a powerful method by which
to approximate and analyze relationships between independent input factors, such as
varying tool dimensions, and dependent product properties (e.g., shear or head loading
capacity). In particular, the consideration of machine learning methods (e.g., regression
functions or artificial neural networks) provides a suitable choice of useful algorithms
to realize the estimation of technical systems. In this context, the purpose is to identify
underlying patterns within a set of data and based on this, the accurate and fast prediction
of individual target variables requiring a significantly decreased demand on computing
time and resources. However, because the ability of machine learning algorithms to achieve
a high prediction accuracy strongly depends on the investigated use case and input data,
it is mainly recommended that one consider and evaluate the performance of various
methods in order to identify the best-fitting solution. Thus, this contribution involves
regression functions (linear and polynomial regression), an ensemble learner (random
forest) and artificial neural networks. This also ensures the inclusion of different types of
algorithms based on their structural setup. For instance, although ANNs consider hidden
layers and neurons, the configuration of the random forest model is composed of several
fitted and trained decision trees.

To evaluate the prediction accuracy, the application of the coefficient of prognosis [26]
as a performance score (see Equation (1)) provides the opportunity for an efficient identifica-
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tion of the best-fitting regression models. In this regard, the CoP represents an extension of
the commonly used coefficient of determination (R2) offering an automatic scaling of the cal-
culated results. This means that, for instance, a CoP value of 0.9 is equivalent to a regression
model’s prediction accuracy of 90%. To ensure a high estimation quality, only predictive
models that reached a mean CoP value of at least 0.8 are defined as sufficiently precise:

CoP
(
yp, yt

)
=

(
∑N

i=1
(
yp − ȳp

)
× (yt − ȳt)

(N − 1)× σp × σt

)2

. (1)

4.5. Feature Selection

The following application of a statistically based feature-selection method (cf. Figure 4)
allows the identification of a minimum set of input features that still allows the accurate
estimation of target variables. In particular, the inclusion of irrelevant or less important
factors can result in a decrease of the model’s generalization ability by simultaneously
leading to an increase in the overall model complexity [25]. In this regard, the aim of feature
selection is to identify a set of variables that enables the utilization of useful regression
models considering only relevant input data. Because this contribution deals with labeled
data, it is possible to implement a correlation-based selection method. Therefore, the statis-
tical measure determines the linear relationships between input and output parameters.
Then, based on the calculated correlation coefficients and the following categorization of
factors into relevant parameters and those which have only a marginal impact on resulting
clinch joint properties, varying subsets of input data can be defined.

Figure 4. Process of the feature-selection approach.
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In this context, features are iteratively removed from the input data based on their
relevance (ascending order). This means that one additional parameter will be removed
in each iteration. Moreover, the considered machine learning algorithms will be applied
on each reduced subset combined with the evaluation of their ability to predict individual
target variables taking the CoP into account.

As already introduced in Section 4.1, the performance of a tenfold cross-validation in
each iteration run reduces the influence of overfitting models. In summary, the application
of a statistically based feature selection method enables the definition of a minimum input
data configuration, which is at least required for the accurate estimation of quality-relevant
clinch joint characteristics. This can lead, in addition to the reduction of a computational
and modeling effort, to a more versatile application of pretrained regression models despite
reduced or limited input data.

5. Results

The following section describes the utilization and evaluation of different machine
learning algorithms for the estimation of clinch joint properties in more detail. First, the
performance of machine learning algorithms will be determined on the basis of an initial
generated database and then for limited input data. In this context, the subsequent for-
mulation of design equations enables the accurate estimation of clinch joint characteristics
considering only relevant input parameters.

5.1. Performance of Machine Learning Algorithms on a Comprehensive Database

The purpose of this section is to evaluate the performance of the considered machine
learning algorithms taking the entire input data (330 samples, 13 input parameters) into
account. In this context, the previously explained execution of a tenfold cross-validation
enables the systematic determination and comparison of the regression model’s perfor-
mances providing different test and training data configurations. As an overview, Figure 5
illustrates the reached mean CoP values (CoP13,m, where m ∈ {1, . . . , 4} and represents
the particular machine learning algorithms) for the estimation of the neck and interlock
thickness as well as the joining and shear force.

Figure 5. Performance of machine learning algorithms for the estimation of individual clinch
joint characteristics

One can see that the linear and polynomial regression models achieve a constant CoP
level greater 80% predicting each target variable. Especially the latter algorithm reaches
the highest estimation performances showing additionally small distributions (standard
deviations) of the calculated prediction quality scores. Compared to this, the application
of artificial neural networks achieves only satisfying qualities for the prediction of the
interlock and neck thickness as well as the joining force. In contrast, the setup of random
forest models demonstrates mainly poor results, showing a sufficient prediction level for
the estimation of the neck thickness. In summary, the training of regression functions (linear
and polynomial) presents the highest potentials for the accurate description of clinch joint
properties. Thus, these results provide the basis for the performance of a feature-selection
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process. In this regard, the aim is to evaluate whether and by how much the prediction
qualities change compared to varying input data.

5.2. Correlation Analysis

The carrying out of a Pearson’s correlation analysis within the feature selection process
provides an efficient way to identify the influence of input parameters on individual target
variables determining their interactions. As an overview, Figure 6 depicts the calculated
correlation values for all 13 input factors demonstrating the impact on the neck and interlock
thickness as well as on the joining and shear force. This step represents the initial state
for the first feature selection and reduction iteration considering a constant number of
330 samples.

Figure 6. Illustration of the calculated Pearson’s correlation coefficients.

One can see that the chosen die depth (hD) significantly influences the formation of
the neck thickness. In this context, an increase of the input parameter results in a prolonged
thinning of the die- and punch-sided sheets and thus to a later beginning of the material
displacement [27]. Because the correlation between the neck thickness and the achievable
resistance against shear loading are commonly known and widely investigated, such as
in [7], the strong impact of the die depth on the resulting shear force can be seen as a
confirmation of the result’s validity. Furthermore, the influence of the punch penetration
depth (s) on the interlock thickness and on the joining force corresponds to a higher
downward movement of the punch (total compressibility). This leads to an increased
displacement of material volume and a radially material flow [28,29]. In addition to the
punch penetration depth, the variation of the punch diameter (dP) indicates a high impact
on the joining force as the increase of both input factors can lead to an enlarged volume
displacement into the die and thus to a growing demand on sufficiently high process
forces [27]. In comparison, the tool parameters dD, dDG, rI and rI I show nearly no influence
on the investigated clinch joint properties. Based on these results, it is possible to define
the parameters to be removed in the first feature selection iteration. Therefore, the weakest
absolute correlation values closest to zero will be chosen (neck, αI I = |0.002|; interlock,
dD = | − 0.003|; shear force, s = |0.013|; and joining force, hD = |0.005|). However, it
is important to notice that the calculated indices are only valid for the defined design of
experiment and the relating parameter spaces and can vary for different factor settings.
Because the results show a sufficient agreement with previous works, such as [16] or [29],
the correlation analysis can be assumed as having satisfying accuracy.

5.3. Performance of Machine Learning Algorithms on Varying Input Data

Based on the performance of a feature-selection method, this section investigates
the ability of different machine learning algorithms to estimate individual clinch joint
properties considering a varying set of input data. In this regard, the methodical approach
is performed for each target variable separately. Therefore, features are filtered out step-
by-step based on their calculated correlation coefficient. Thus, the fewer factors are taken
into account, the less input information is available for the accurate prediction of the
joint properties. In this case, the proportion of noise within the data increases in each
reduction step and this complicates the approximation of relationships between input and
output factors.
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Figure 7. Performance of the machine learning algorithms on limited input data.

As mentioned in Section 4.1, the involvement of a tenfold cross-validation in each
iteration provides an efficient method by which to decrease the influence of overfitting
models. Therefore, the generated folds and thus the particular training- and test-data
configurations build the basis for utilizing the particular machine learning algorithms.
In this regard, the amount of samples within the generated dataset remain constant (330
samples, cf. Figure 1) over each feature-selection iteration, whereby only the number
of considered input parameters will be reduced. As an overview, Figure 7 depicts the
performance of the machine learning algorithms on varying input features. To get a
deeper understanding of the generated averaged CoP values (CoPN,m), the additional
calculation of the standard deviation demonstrates the distribution of the individual results.
Furthermore, Table 2 illustrates the particular removed input parameters in each feature
selection iteration as well as the determined minimum set of factors (green) that still allow
the accurate estimation of the particular joint characteristic. Therefore, the removing order
is based entirely on the calculated absolute correlation indices.

Table 2. Overview of the selected and removed input parameters in each feature selection iteration.

Removed Input Parameter in Each Feature Selection Iteration

13 *
(1 **)

12
(2)

11
(3)

10
(4)

9
(5)

8
(6)

7
(7)

6
(8)

5
(9)

4
(10)

3
(11)

2
(12)

1
–

tNE αI I rI I αI s dP rI dDG dD αI I I hDG rI I I dDB hD

tIL dD dDG dP rI I rI αI I αI I I αI dDB rI I I hDG hD s
FJoin hD dDB hDG rI I I rI dD rI I dDG αI I I αI I αI s dP

FShear s *** rI I rI αI I dDG αI rI I I dD αI I I dP dDB hDG hD

* Number of parameters in database for feature selection. ** Current feature selection iteration. *** Parameter that
will be removed from the database in the present iteration.

Taking Figure 7 and Table 2 into consideration, one can see that all machine learning
methods reached high prediction performances for the estimation of the neck thickness
considering at least the two most relevant input parameters (dDB and hD). In particular,
the linear and polynomial regression models as well as the artificial neural network almost
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consistently achieved a prediction accuracy greater than 90%. Thus, a reliable prediction of
the neck thickness can still be reached despite limited input data. Moreover, the results also
lead to a significant reduction in model complexity. In addition, although the predictive
models indicate no drop in prediction quality for removing several irrelevant parameters,
the estimation of the interlock thickness shows an opposite effect. In this regard, a consistent
loss of the prediction performance can be obtained by focusing on the best-fitting model
(polynomial regression). This means that even the parameters classified as irrelevant seem
to have an effect on the target value, which is also reflected in the required number of six
input features (αI , dDB, hDG, rI I I , hD, s). For the estimation of the joint’s resistance against
shear loading, at least the four most relevant parameters (dP, dDB, hDG and hD) have to
be taken into consideration. Although the random forest algorithm performed weakly,
both linear and polynomial models, as well as the ANN, showed satisfying results. Similar
findings could be observed for the prediction of the joining force. Therefore, the input
features αI I I , αI I , αI , s and dP are mostly relevant for an accurate estimation of the target
variable. Because the reduction of the estimation model’s complexity is targeted in this
contribution, the method with a simpler structural configuration is selected in the case
of a similar prediction ability between two or more machine learning algorithms. Based
on this, Table 3 shows an overview of the chosen metamodeling techniques, the achieved
mean CoP values and the required number of input features for the accurate prediction of
individual clinch joint characteristics.

5.4. Design Equations

Because the application of linear and polynomial regression algorithms achieved the
most promising results for the estimation of clinch joint properties, it is possible to define
mathematical representations (design equations) of these models. This offers the possibility
for a versatile and time-efficient calculation of target variables without the previous execu-
tion of an entire sampling and metamodeling process for the presented joining use case.
Moreover, this can lead to a significant reduction of cost-intensive development iterations
because the design equations can already be applied in the early phases of the product
development process. In this context, the mathematical representations of the particular
regression functions are illustrated in Table 4. Furthermore, in order to evaluate whether
these functions are feasible and reliable for the accurate prediction of individual clinch joint
characteristics, an experimental study considering an exemplary tool configuration for the
joining of the considered aluminum alloy EN AW-6014-T4 with a nominal sheet thickness
of 2.0 mm is carried out. The ranges of the determined target variables (n = 5) are also
depicted in Table 4.

Table 3. Overview of the achieved mean CoP values and the minimum required number of input
features for the accurate prediction of individual clinch joint characteristics.

Input Data: 330 Samples, 13 Features Input Data: 330 Samples, N Features
Target Variables CoP13,m Metamodel CoPN,m Remaining Features N

Neck CoP13,2 = 0.98 → Linear
regression CoP2,1 = 0.89

2
(dDB, hD)

Interlock CoP13,2 = 0.94 → Poly.
regression CoP6,2 = 0.81

6
(αI , dDB, hDG, rI I I , hD, s)

Joining force CoP13,2 = 0.89 → Linear
regression CoP5,1 = 0.81

5
(αI I I , αI I , αI , s, dP)

Shear force CoP13,2 = 0.87 → Poly.
regression CoP4,2 = 0.83

4
(dP, dDB, hDG, hD)
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Table 4. Overview of the regression functions and their performances compared to experimental
data.

Regression Functions Prediction Exp. Study *

tNE = −0.267hD + 0.055dDB + 0.507 0.46 mm [0.45-0.49] mm

tIL = −0.089rI I I − 0.001αI + 0.436hD + 0.419hDG − 0.286s
−0.295dDB − 0.173r2

I I I − 0.005α2
I − 0.088h2

D + 0.021s2

−0.170h2
DG + 0.043d2

DG + 0.301

0.34 mm [0.28-0.32] mm

FJoin = 19078pD + 928αI − 473αI I − 285αI I I − 16888s− 54600 29.2 kN [31.5-35.7] kN

FShear = 1611pD − 267hD + 192hDG + 221dDB − 142p2
D − 80h2

D
+7h2

DG − 6d2
DB − 3430

1895 N [1902-1946] N

* number of experimental data = 5.

One can see that the equations mainly achieved precise predictions of the individual
target values. However, with the exception of the estimated neck thickness, the values
are slightly above or below the experimental data. This can be caused by the exclusion
of material or process uncertainties within the joining process, such as differing friction
mechanics, in this contribution. Because different values can lead to a variation in the
results [29], the inclusion of these variations in future work is recommended. Nevertheless,
the results show already high potentials for the accurate estimation of clinch joint properties
considering limited input data and a significantly reduced regression model complexity.

6. Discussion

Reflecting RQ1, Figure 5 illustrates the performances of different machine learning
algorithms for the estimation of individual clinch joint properties considering the initially
generated database (330 samples, 13 input features). In this context, the polynomial
regression model achieved the best-fitting results, showing sufficient averaged CoP values
for the prediction of the neck (CoP13,2 = 0.98) and interlock (CoP13,2 = 0.94) thickness
as well as for the shear (CoP13,2 = 0.87) and joining force (CoP13,2 = 0.89). Furthermore,
the linear regression model reached accurate performances showing slightly worse CoP
values. In particular, the ability to describe relationships between input features and the
interlock thickness is associated with a significantly poorer prediction quality in comparison
to the polynomial model. In contrast, the involvement of an ensemble learner (random
forest) achieved satisfying performances only for the estimation of the neck thickness,
whereas the prediction of further joint characteristics did not reach a sufficient quality
including high standard deviations. However, the performance of predictive models highly
depends on the available data. Thus, the results are only valid for the investigated joining
use case (similar material and sheet thickness) as well as the involved input data and can
differ significantly for considering changing parameter spaces or multimaterial connection.
Moreover, the implemented algorithms represent only a marginal selection of applicable
machine learning algorithms. Nevertheless, it was shown that simpler regression methods,
such as the linear and polynomial models, tend to be more preferable given the presented
input data. In addition to this, the involvement of a hyperparameter optimization can
lead to a significant increase of prediction performances, especially for the application of
artificial neural networks or ensemble learner in future work.

Referring to RQ2, Figure 7 and Table 2 depict that the implementation of a statistically
based filtering method enables the systematic reduction of input features regarding their
impact on individual clinch joint properties. In this context, the methodical approach
provides the opportunity to identify a minimum subset of input parameters, which are at
least required to achieve sufficient prediction qualities for each target variable. Therefore,
the highest potential reducing the model complexity was demonstrated for the estima-
tion of the neck thickness. For this purpose, only the two most relevant input features
(dDB, hD) are required to accurately describe the geometric characteristic. In summary,
the application of a correlation-based feature-selection method combined with linear or
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polynomial regression models achieved a simplified estimation procedure taking only a
few required inputs into account. However, although the reduction of features can lead to a
significant decrease of the prediction model’s complexity and thus to less required joining
input data, the calculated prediction qualities did not reach the initial level considering all
input features. This can cause varying prediction performances and thus an increase of the
estimation uncertainty. For this purpose, machine learning algorithms that are able to mea-
sure their own prediction uncertainty (aleatoric and epistemic), such as Gaussian process
regression models or Bayesian neural networks, can provide high potentials compared to
deterministic models. If the resulting distributions are too high, the minimum number of
required input features has to be increased. Furthermore, due to a high computational and
time effort, only a small number of input data points (330) were generated and used for the
training and testing of metamodels. Although, a tenfold cross validation is carried out for
each feature selection step, it is recommended to involve more data in future work in order
to further increase the reliability of the results.

Leading over to RQ3, Table 4 contains mathematical representations of the previously
selected regression models (see Table 3). To evaluate the applicability of these design equa-
tions, an exemplary tool configuration was chosen to perform an experimental study (n =
5). Subsequently, the required input data were added to the functions and the prediction of
the individual target variables was carried out. As a result, it was shown that a sufficiently
accurate estimation of the clinch joint properties is possible despite a significantly reduced
number of features. Thus, the provision of the mathematical functions enables a much more
simplified design process of clinch joint connections, because no comprehensive represen-
tations of the metamodels are necessary for the satisfying description of the investigated
use case. However, the equations are only valid for joining a similar material and sheet
thickness combination (EN AW-6014; 2.0 mm). The effort and the possibility to apply or cal-
ibrate these functions to new joining task will be investigated in future work. In particular,
for the description of multimaterial connections, an additional evaluation of the calculated
parameter correlation coefficients is recommended. Nevertheless, the demonstrated re-
sults show that the reuse of pretrained regression models is feasible and reliable through
the performance of a feature-selection method and the following formulation of design
equations even for strongly limited input data. Thus, it is possible to cover a wide range of
varying tool configurations for the investigated joining task. In summary, the availability
of mathematical representations allows a decrease of the initial model complexity while
achieving a sufficient ability to estimate individual clinch joint characteristics.

7. Conclusions

The presented work introduces a method for the estimation of clinch joint properties
by using pretrained metamodels and limited input data. In this context, the investigation
of different machine learning algorithms regarding their ability to predict individual clinch
joint characteristics was carried out at the beginning. Then, the application of a statistically
based feature selection method provided the opportunity to determine the impact of input
parameters on individual target factors and based on this the systematic reduction of the
considered input data. Therefore, the involvement of a Pearson’s correlation analysis as
feature filtering strategy combined with a prediction quality measurement (coefficient of
prognosis), offered the opportunity to evaluate the performance of different metamodels
on varying input data. As a result, predictive models and mathematical representations
(design equations) are available that require a significantly reduced number of input
features and thus provide a decreased model complexity by at the same time achieving
a high prediction accuracy for the given use case. Subsequently, in order to verify and
evaluate the feasibility and applicability of the results, the experimental analysis of an
exemplary tool configuration combined with the determination of target variables was
demonstrated. Therefore, a high level of agreement between the predicted clinch joint
properties and the experimental study was determined. In summary, the demonstrated
investigations within this contribution led to the following results.
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• The linear and polynomial regression models achieved the highest ability to predict
the investigated clinch joint properties considering comprehensive and even limited
input data.

• The application of a correlation-based feature-selection method enabled the significant
decrease of the model complexity based on a systematic reduction of the database.
For instance, the accurate estimation of the neck thickness can be achieved by only
considering a linear regression model and data regarding the applied die depth and
die bottom diameter.

• The experimental evaluation of the generated results confirm a high applicability of the
simplified models and design equations for the prediction of clinch joint characteristics
even if only a limited number of features are available. Thus, besides the reduction of
computational and modeling effort, the results can pave the way to a more versatile
application of pretrained regression models on varying tool configurations for a given
joining task.

Our outlook is as follows. Considering the present challenges in the field of lightweight
designs, it is of high interest to also investigate multimaterial connections as well as
dissimilar sheet thickness combinations. Therefore, the demonstrated results need to be
evaluated regarding their transferability and applicability towards new use cases. Moreover,
because this contribution only investigated varying tool configurations, the inclusion
of uncertain material or process parameters combined with further machine learning
algorithms, such as Gaussian process regression models, can lead to a an even better
representation of the clinch joining process. This can pave the way to a more suitable
and robust estimation of clinch joint characteristics and thus to a reliable design of joining
connections and parts towards a high joining safety in the future.
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