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Abstract: To obtain a better performance when modeling soil spectral data for attribute prediction,
researchers frequently resort to data pretreatment, aiming to reduce noise and highlight the spectral
features. Even with the awareness of the existence of dimensionality reduction statistical approaches
that can cope with data sparse dimensionality, few studies have explored its applicability in soil sens-
ing. Therefore, this study’s objective was to assess the predictive performance of two dimensionality
reduction statistical models that are not widespread in the proximal soil sensing community: principal
components regression (PCR) and least absolute shrinkage and selection operator (lasso). Here, these
two approaches were compared with multiple linear regressions (MLR). All of the modelling strate-
gies were applied without employing pretreatment techniques for soil attribute determination using
X-ray fluorescence spectroscopy (XRF) and visible and near-infrared diffuse reflectance spectroscopy
(Vis-NIR) data. In addition, the achieved results were compared against the ones reported in the
literature that applied pretreatment techniques. The study was carried out with 102 soil samples from
two distinct fields. Predictive models were developed for nine chemical and physical soil attributes,
using lasso, PCR and MLR. Both Vis-NIR and XRF raw spectral data presented a great performance
for soil attribute prediction when modelled with PCR and the lasso method. In general, similar results
were found comparing the root mean squared error (RMSE) and coefficient of determination (R2)
from the literature that applied pretreatment techniques and this study. For example, considering
base saturation (V%), for Vis-NIR combined with PCR, in this study, RMSE and R2 values of 10.60
and 0.79 were found compared with 10.38 and 0.80, respectively, in the literature. In addition, looking
at potassium (K), XRF associated with lasso yielded an RMSE value of 0.60 and R2 of 0.92, and in
the literature, RMSE and R2 of 0.53 and 0.95, respectively, were found. The major discrepancy was
observed for phosphorus (P) and organic matter (OM) prediction applying PCR in the XRF data,
which showed R2 of 0.33 (for P) and 0.52 (for OM) without using pretreatment techniques in this
study, and R2 of 0.01 (for P) and 0.74 (for OM) when using preprocessing techniques in the literature.
These results indicate that data pretreatment can be disposable for predicting some soil attributes
when using Vis-NIR and XRF raw data modeled with dimensionality reduction statistical models.
Despite this, there is no consensus on the best way to calibrate data, as this seems to be attribute and
area specific.

Keywords: multivariate analysis; visible near-infrared; X-ray fluorescence

1. Introduction

High spatial density monitoring of soil attributes is a crucial step to build soil maps
that can guide better management decisions in crop fields. Fine-scale monitoring of soil
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properties is important because if this is neglected, the maps produced are inefficient and
unreliable [1], as increasing the spatial density of the soil information directly implies an
understanding of the spatial variability of these attributes [2].

The main issues with the traditional soil sampling and analysis methods are cost and
time consumption, which become barriers for farmers to increase the density of soil data
acquisition [3,4]. Nevertheless, the traditional laboratory analysis consumes reagents that
the community aims to diminish, as agriculture production moves towards new global
sustainability guidelines. In this scenario, alternative or complementary techniques have
slowed down the efforts of soil scientists. Over the last decades, aiming to increase the
amount of data related to soil, researchers began to study different soil sensing techniques
and their applicability in agriculture [5]. These approaches allow for the rapid acquisition of
soil data directly in the field. However, to convert sensor data into agronomic information,
predictive models need to be calibrated.

Among the sensing techniques that have shown potential for soil research are the
visible and near-infrared diffuse reflectance spectroscopy (Vis-NIR) and X-ray fluorescence
spectroscopy (XRF). The core idea for the application of both is to use different spectral
data, obtained quickly and without the use of reagents, in order to predict agronomic
attributes [6].

The current approach will not replace laboratory analysis, but will allow for augment-
ing the number of observations, as it uses sensors’ output and soil laboratorial analysis
to build specific calibrations, transforming spectral data into predictions of physical and
chemical soil properties. Therefore, the importance of machine learning (ML) techniques to
leverage this novel analysis method is settled. Once ML calibrations are built, soil spectral
data can be acquired, allowing for predicting soil attributes in a sustainable, time saving,
and cost-effective way [7].

In addition, another highlight of the use of ML calibrations for this task is to create
artificial intelligence systems to predict soil attributes. This can reduce human interference
in the determination of the physical and chemical soil properties, aiming to simplify and
standardize the sample acquisition, processing, and analysis steps [8].

The Vis-NIR spectra of the soil can be related with contents of clay, organic matter (OM),
organic carbon (OC), and moisture, and its applications in the literature are observed mainly
using laboratory spectral acquisition [9,10]. In the last few years, researchers have developed
prediction systems with spectral Vis-NIR acquisition directly in the field, using embedded
sensors in agricultural machinery [11–13]. Conversely, XRF is based on the induction of
fluorescence in a soil sample through its excitation with an incident X-ray source, as well
as the subsequent measurement of specific photons emitted after this process [14]. This
technique can accurately measure the total content of some soil elements (Fe, Al, Si, Ca, and
K), and can be used to generate indirect calibration models to predict other soil parameters
(e.g., cation exchange capacity (CEC), potential of hydrogen (pH), etc.) [15,16].

After data acquisition from the sensors, samples must be taken for chemical and
physical analysis in the laboratory to obtain the reference values for each sample in order
to fit the predictive models. This last step is usually conducted after applying several
combinations of spectra pretreatment methods (e.g., normalization, smoothing, derivative
algorithms, and stepwise procedures) aiming to highlight specific features, reduce spectral
noise, and select variables to reduce covariates [17,18]. There is not a unique formula to
perform this step, nor a method or a set of methods, that have been found to be the best
pretreatment sequence. This means that the performance of the prediction will rely on the
ability of the researcher who calibrates the models. On the other hand, there are also studies
that have applied statistical methods to predict attributes based on spectral data without
using pretreatment methods, that have argued that the application of pretreatments can
reduce the sensors’ predictive performance [19].

In fact, the spectra, whether from Vis-NIR or XRF, have a large number of variables
(e.g., n > 300), and some of them will deliver a low contribution to prediction models,
which, in some cases, can hinder its performance. Nevertheless, it is necessary to consider
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the cost of data processing (time consumption), and especially to evaluate its trade-off with
performance gain. This is particularly advantageous, because there are methods that can
handle the high dimensionality of spectral data without pretreatment or excluding part of
the raw data. If a machine learning method can maintain the performance of prediction,
using less steps of calibration, or even standardizing the procedure, it can be useful for
the soil spectroscopy community. For this purpose, the modeling techniques of principal
component regression (PCR) and least absolute shrinkage and selection operator (lasso)
regression can be highlighted. These techniques are not widespread in the proximal soil
sensing community, and, if successfully applied for predicting the soil attributes, may be
an alternative to avoid the spectral preprocessing step. To the best of our knowledge, the
performance of these techniques has not yet been evaluated for the prediction of fertility
attributes using data from XRF and Vis-NIR sensors, which is the motivation for the
execution of this study.

PCR is a regression method that combines principal components analysis with least
squares regression [20]. It is a relatively simple, but very useful method [21]. On the
other hand, lasso allows for the identification of relevant and irrelevant predictor vari-
ables, assigning different weights to each of them [22], a process known as shrinkage or
regularization. In the context of proximal soil sensing, although it is easier to find studies
applying PCR [18,23] than lasso [24], both methods have not been explored much in the
literature and are hardly cited. In this sense, partial least squares (PLS) is often cited as
the best method to fit predictive models using soil spectroscopy data, outperforming other
models such as artificial neural network (ANN) [25], random forest (RF) [26], or multiple
linear regression (MLR) [27]. Therefore, PLS is the most documented technique in the
literature [28,29].

Thus, the goal of the present study was to evaluate the predictive performance of the
dimensionality reduction statistical models of PCR, lasso, and MLR for soil attribute determi-
nation using XRF and Vis-NIR publicly available data without pretreatment, and comparing
these results against the ones reported in the literature that applied pretreatment methods.

2. Materials and Methods
2.1. Soil Samples

The dataset used consists of 102 soil samples from the soil database of the Laboratory
of Precision Agriculture (LAP) from Luiz de Queiroz College of Agriculture, University of
São Paulo [30]. The samples were collected from 0–20 cm depth in two fields under active
agricultural production. Field 1 (22◦41′57′′ S and 47◦38′33′′ W) is located in the municipality
of Piracicaba, State of São Paulo, where 58 samples were collected. Field 2 (14◦06′05′′ S
and 57◦45′58′′ W) is located in Campo Novo do Parecis, State of Mato Grosso, where the
remaining 44 samples were collected. Both fields have considerable textural dissimilarity,
as observed from their classification—Lixisol with a clayey texture and Ferralsol with a
sandy loam to sandy clay loam texture, respectively. The samples were stored after being
air-dried and sieved at 2 mm.

2.2. Physical and Chemical Attributes Analyses

The reference analysis of the clay content, OM, CEC, pH, base saturation (V%), ex-
tractable phosphorus (P), extractable potassium (K), extractable calcium (Ca), and extractable
magnesium (Mg) were determined in a commercial laboratory for the soil fertility analyses.
The laboratorial procedure followed the methodology described by Van Raij et al. [31]. Ex-
tractable nutrients (P, K, Ca, and Mg) were determined using ion exchange resin extraction.
The OM content was determined via oxidation with a potassium dichromate solution, and
the pH was determined via the calcium chloride solution. The texture was determined using
the Bouyoucos hydrometer method in a dispersing solution for the clay content.
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2.3. Spectral Data Acquisition

The soil spectral data were acquired for all samples using commercial Vis-NIR
(351 spectral variables) and XRF (1458 spectral variables) equipment. The Vis-NIR analysis
was performed using Veris Vis-NIR spectrometer (Veris Technologies, Salina, KS, USA),
which collected the spectra from 343 to 2222 nm, with a spectral resolution of around 5 nm.
All of the acquisitions were performed under laboratory conditions, placing the sample
at a circular sapphire window located in the bottom portion of a shank module. This
spectrometer self-calibrated before each spectra acquisition by collecting a dark reference
measurement and a known internal reference material measurement. Spectral regions at
343–432 and 2153–2222 nm were removed due to the high presence of noise, resulting
in a raw spectra from 437 to 2149 nm. For the XRF spectra acquisition, the portable XRF
equipment Tracer III-SD (Bruker AXS, Madison, WI, USA) was used. The equipment was
configured using the instrumental conditions suggested by Tavares et al. [32]. Samples
were scanned in triplicate and then averaged for further analysis.

2.4. Data Modeling

For all of the three methods, data from the two sensors were individually used. All of
the processes were conducted in RStudio [33]. Raw spectral data were used as the input
variables to fit the prediction models of the clay, OM, CEC, pH, V%, P, K, Ca, and Mg.
The prediction models were fitted by applying three regression models: MLR, PCR, and
lasso regression.

The MLR method is a regression analysis that has one target related to more than one
feature, where the target can be estimated by Equation (1) [34].

Y = Xβ+ e (1)

where Y is a (n × 1) target vector, X is a (n × p) features matrix (predictor variables), β is a
p × 1 vector of unknown coefficients, and e is a n × 1 random vector of errors.

The PCR method occurs in three steps: (a) perform principal component analysis on the
observed data matrix to obtain principal components; (b) apply linear regression to obtain
the vector of estimated regression coefficients; and (c) use PCA loadings (eigenvectors) to
obtain the PCR estimator (β), as shown in Equation (2).

β̂k = Vk δ̂k (2)

where β̂ is the PCR estimator, k belongs to {1, . . . , p}, p is the number of covariates, V is the
orthonormal set of eigenvectors, and δ̂ is the vector of estimated regression coefficients.

Lasso is a regression with an l1-norm penalty aiming to find β = {βj}, which minimizes
Equation (3) [35].

N
∑

i=1
(yi −∑

j
xijβj)

2 + λ∑
p
j=1

∣∣∣βj

∣∣∣ (3)

where xij is the standardized features, yi is the centered target values, and i = 1, 2, . . . , N
and j = 1, 2, . . . , p.

Data were split into 75% as the training set and 25% as the validation set. Therefore,
76 samples were used for training and 26 for validation. The data split was randomly
selected using the seed (666). Although this is a random procedure to avoid bias, the seed
allows for repeatability after the process is finished. Both PCR and lasso were performed
using the R language library caret [36], setting the method as pcr() for PCR and glmnet()
for lasso.

In PCR, the optimal number of principal components was defined using the tuning
control function trainControl with the cross-validation (cv) as 10 and the tuneLength
(number of principal components tested) equal to 30 in the training dataset. The elbow
rule [37] was used to minimize the root mean squared error (RMSE) of cross-validation
and to maximize the variance explained, aiming, when possible, to obtain at least 70% of
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the explained variance. Although this rule will not always choose the model that present
the highest coefficient of determination (R2) and lowest RMSE, it follows the principle of
parsimony in multivariate calibration, assuming that of the two models with meaningful
predictions, the one with fewer parameters is preferred [38]. The scale within train function
was set to TRUE as it standardized each variable before the generation of the principal
components. Then, the model was tuned and applied to the validation dataset, calculating
the RMSE and R2 of the prediction.

For the lasso method, standardize within the function train was set to TRUE for data
scaling, which removes the effect of features that present different unit/magnitude. The
best alpha (α) and lambda (λ) values were extracted from the fitted model, which was
applied to the validation dataset and obtained the RMSE and R2 of prediction.

MLR method was applied using the function lm. The model was fitted on the training
dataset and then applied to the validation dataset, obtaining the respective RMSE and R2

for each attribute predicted.

3. Results and Discussion

For the PCR prediction, both Vis-NIR and XRF soil attributes prediction presented R2

values from 0.52 to 0.85, being P the only exception (Table 1). The R2 for P was 0.03 and 0.33
for Vis-NIR and XRF, respectively, indicating that P was better predicted, for the data used
in this study, using PCR prediction and XRF sensor technique. P prediction yielded poor
parameters in both studies because it has no direct spectral response in Vis-NIR [9] nor
emission lines for XRF technique [32]. The accurate prediction of P, sometimes observed
in literature [39,40], lies into the covariation with other soil properties of the studied area,
allowing indirect calibrations [41].

Table 1. Results from the principal component regression (PCR) fitting model applied to the soil
physical-chemical attributes studied.

Sensor Target
Variable

Number of
Components Used

Variance
Explained (%)

Validation Tavares et al. [42]

RMSE R2 RMSE R2

Vis-NIR

Clay 2 84.91 42.80 0.80 27.32 0.93
OM 7 72.29 2.95 0.72 2.10 0.86
CEC 10 71.39 18.91 0.56 18.66 0.51
pH 19 70.47 0.28 0.58 0.34 0.19
V% 2 75.99 10.60 0.79 10.38 0.80
P 3 11.87 13.76 0.03 12.05 0.07
K 4 66.29 0.90 0.82 1.20 0.74
Ca 2 69.61 12.80 0.63 10.98 0.68
Mg 10 71.05 9.34 0.59 8.85 0.52

XRF

Clay 1 83.00 45.63 0.78 29.40 0.92
OM 19 66.28 3.89 0.52 3.01 0.74
CEC 4 72.46 15.37 0.70 10.19 0.88
pH 13 53.80 0.24 0.68 0.33 0.34
V% 1 78.87 9.68 0.83 5.60 0.95
P 15 41.26 11.39 0.33 13.27 0.01
K 2 67.47 0.82 0.85 0.53 0.95
Ca 1 72.06 11.99 0.68 4.09 0.96
Mg 4 71.54 8.13 0.68 4.28 0.89

Vis-NIR: visible and near-infrared diffuse reflectance spectroscopy; XRF: X-ray fluorescence spectroscopy;
Clay (g kg−1); OM: organic matter content (g kg−1); CEC: cation exchange capacity (mmolc kg−1); pH: potential
of hydrogen; V%: base saturation (mmolc kg−1); P: phosphorus (mmolc kg−1); K: potassium (mmolc kg−1);
Ca: calcium (mmolc kg−1); Mg: magnesium (mmolc kg−1); RMSE: root mean squared error; R2: coefficient
of determination.

The application of PCR on XRF raw data used less components when compared
with the Vis-NIR raw data, except for OM, pH, and P. It is well known that clay and
organic matter have a direct spectral response on Vis-NIR [41]. Therefore, the model can
maximize the explained variance with a low number of principal components (PC), as it
will identify well established spectral regions that are modified due to the present amount
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of these attributes [9]. In this context, other soil attributes that present a strong linear
correlation with clay and OM (i.e., Vis-NIR primary response attributes) can be indirectly
predicted [41]. Once this covariation exists, the model will tend to identify the same spectral
regions used for the primary response attributes. However, the portion of the variance
that are not correlated with primary response attributes will be randomly assigned by the
model. Hence, the weaker the linear correlation, the greater the number of PCs the model
will need to increase the explained variance.

The indirect calibrations built with PCR (i.e., CEC, pH, V%, K, Ca, and Mg) presented a
similar or slightly improved performance in comparison with the results in Tavares et al. [42],
although this applied the elbow rule. In this sense, the pH prediction of this study was
highlighted due to the R2 of 0.58 (Vis-NIR) and 0.68 (XRF) obtained by PCR. These results
reinforced the capacity of dimensionality reduction models for identifying important pH-
related spectral regions as those reported in the literature by wavebands of around 2200 nm
of O–H and N–H bonds, for OM direct responses that can also be indirectly related to pH,
as described by Chang et al. [43] and Li et al. [44].

The different calibration strategies used in Tavares et al. [42] achieved slightly better
performances than the results reached by the present study. For example, the R2 for clay
and OM obtained by the authors were 0.93 and 0.86, respectively, compared with 0.80 and
0.72 achieved by our study. Despite this difference, the method used in this study was
justified by the principle of parsimony applied to the multivariate calibration [38], reduc-
ing the calibration parameters and providing satisfactory predictions, even diminishing
the performance.

Comparing the lasso predictions obtained in this study with the results reported in
Tavares et al. [42] (Table 2), a similar pattern as that reported for PCR predictions was
noted. Despite the sensor used, clay and OM had their prediction performance reduced,
but still presented a satisfactory prediction. The other calibrations presented a similar
performance, except for the CEC, Ca, and Mg prediction from the XRF data, for which the
RMSE from lasso increased by over 50% when compared with the results from the above-
mentioned authors.

Table 2. Results from least absolute shrinkage and selection operator (lasso) regression fitting models
applied to the soil physical-chemical attributes studied.

Sensor Target Variable α λ
Validation Tavares et al. [42]

RMSE R2 RMSE R2

Vis-NIR

Clay 0.10 5.140 38.03 0.84 27.32 0.93
OM 0.10 0.218 2.95 0.71 2.10 0.86
CEC 0.10 1.149 21.27 0.44 18.66 0.51
pH 0.55 0.044 0.35 0.33 0.34 0.19
V% 0.10 1.140 10.98 0.78 10.38 0.80
P 1.00 3.220 13.30 0.06 12.05 0.07
K 0.10 0.387 0.94 0.81 1.20 0.74
Ca 0.55 0.929 12.95 0.62 10.98 0.68
Mg 0.10 0.557 10.72 0.45 8.85 0.52

XRF

Clay 0.10 5.554 42.23 0.81 29.40 0.92
OM 0.10 2.513 3.58 0.59 3.01 0.74
CEC 0.55 4.329 16.45 0.68 10.19 0.88
pH 0.10 0.148 0.24 0.70 0.33 0.34
V% 0.10 4.051 4.63 0.96 5.60 0.95
P 1.00 4.432 12.42 0.34 13.27 0.01
K 0.10 0.145 0.60 0.92 0.53 0.95
Ca 1.00 1.110 7.91 0.86 4.09 0.96
Mg 0.10 0.660 6.63 0.81 4.28 0.89

Vis-NIR: visible and near-infrared diffuse reflectance spectroscopy; XRF: X-ray fluorescence spectroscopy;
Clay (g kg−1); OM: organic matter content (g kg−1); CEC: cation exchange capacity (mmolc kg−1); pH: potential
of hydrogen; V%: base saturation (mmolc kg−1); P: phosphorus (mmolc kg−1); K: potassium (mmolc kg−1);
Ca: calcium (mmolc kg−1); Mg: magnesium (mmolc kg−1); RMSE: root mean squared error; R2: coefficient
of determination.
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Considering Vis-NIR, the P predictions were not accurately predicted in this study
(RMSE and R2 of 13.30 mmolc kg−1 and 0.06, respectively) nor in that of Tavares et al. [42]
(RMSE and R2 of 12.05 mmolc kg−1 and 0.07, respectively). Both Vis-NIR and XRF pre-
dictions of V% presented low RMSE (Vis-NIR using lasso achieved 10.98 mmolc kg−1 and
Tavares et al. [42] reached 10.38 mmolc kg−1; XRF using lasso obtained 4.63 mmolc kg−1 and
Tavares et al. [42] achieved 5.60 mmolc kg−1) and high R2 (Vis-NIR using lasso achieved 0.78
and Tavares et al. [42] reached 0.80; XRF using lasso obtained 0.96 and Tavares et al. [42]
achieved 0.95) values. This comparison highlights that instead of using pretreatment tech-
niques, which can be time consuming, dimensionality reduction statistical models are capable
of coping with soil spectral data for the successful predictions of the fertility attributes.

In a study of moisture sensibility of soil attributes prediction using Vis-NIR spectra [45],
the authors applied the average pretreatment (averaging values of the spectra within a
given interval to reduce dimensionality) before fitting partial least squares regression
(PLSR), random forest (RF) regression, artificial neural network (ANN), and support vector
machine (SVM) models. As a result, no major discrepancy in prediction among the different
models tested was found. This corroborates the difficulty in defining whether pretreatment
methods can regularly cope with a singular statistical model, but not with others, as no
pattern was observed in the results. This emphasizes the complexity to settle a standard
procedure to build ML calibrations for the soil spectral data using pretreatment techniques.

Another study used Vis-NIR spectra to predict the soil attributes, which aimed to
define the lime requirement doses [46]. The pretreatments involved smoothing and re-
sampling for all of the data, and then the authors tested the maximum normalization,
multiplicative scatter correction, and standard normal variate to build PLSR predictive
models. The best results found for RMSE were 0.33 for pH. Compared with the results
reported in this study, applying lasso (RMSE values of 0.35 for pH) and PCR (RMSE values
of 0.28 for pH), no major differences were observed, even compared with the results in
Tavares et al. [42], which presented RMSE values of 0.34.

More recently, in a study using Vis-NIR spectra, testing several pretreatment sequences,
the authors used the strategy of choosing a specific combination for each individual soil
property, aiming to predict using PLSR [39]. Comparing the results of the prediction
from the models that contained only laboratory measured spectra, the pH presented R2

of 0.45 and RMSE of 0.56. The R2 values for K, Ca, and Mg were 0.13, 0.48, and 0.25,
respectively. Thus, we can infer that the results in this study, without pretreatment and
using alternative statistical modelling presented a higher R2, indicating that dimensionality
reduction statistical models can be used to predict soil attributes, with the advantage of not
requiring spectral preprocessing.

Another study evaluated alternative statistical approaches (RF regression, and SVM
with radial and linear kernel) to predict the soil physical attributes using both Vis-NIR
and XRF spectra, separately and in tandem [47]. The authors tested the datasets with and
without pretreatment. Analyzing the results, just as observed in the present study, there
was also no major difference between the predictions, and no pattern was found. The main
factors of variation appeared to be the technique used (Vis-NIR, XRF, or the combination of
both) and the soil sampling depth.

These comparisons corroborate and incite the question of whether the use of pretreat-
ment methods is decisive or not for soil attribute prediction using spectral data, as there are
few methods that automatically apply pretreatment techniques and fit predictive models,
such as the ‘all-possibilities’ approach (APA) of Kopačková et al. [48]. The APA method
is an algorithm that automatically fits predictive models (e.g., ANN and PLSR) using
several pretreatment methods, including averaging, centering, smoothing, standardization,
normalization, and transformations, among others. Furthermore, for the application of this
algorithm, it is necessary to have a high computational processing power. In their study,
the PARACUDA® computing engine was used, which the authors defined as “an extremely
computer power-consuming method and thus it runs on a grid based supercomputer with
many processing cores for rapid analysis”. Without automatic methods, the majority of
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studies that apply pretreatment techniques on soil spectral data rely on the expertise of the
user to calibrate the predictive models. Therefore, the use of alternative approaches is an
opportunity to standardize the procedure, and to reduce the time and cost consumption.

Depending on the purpose of the study, pretreatment is indeed needed for some
applications, e.g., detailed chemometrics analysis, where the visualization of the spectra
range is important for a given attribute. On the other hand, looking at only predictive
models based on spectral data, there may be an opportunity to explore the application of
predictive models based on raw soil spectral data, as observed in a study that applied deep
learning on raw spectral data to predict fresh fruit attributes [19].

Further in this subject, Velliangiri and Alagumuthukrishnan [49] described that using
dimensionality reduction models, such as PCR and lasso, can aid in the removal of noisy,
redundant, and irrelevant data, which are similar characteristics to the goals of pretreatment
methods. This corroborates the methods tested in this study and also explains the results
that were found by the models calibrated using PCR and lasso

The results for the MLR fitted models (Table 3) indicate that the use of raw spectral
data to calibrate MLR models for soil attribute prediction is not feasible independently
of the source of the data tested (Vis-NIR or XRF). This is because MLR is a method that
handles high-dimensional data poorly in comparison with PCR and lasso. The assumptions
underlying the dimensionality reduction statistical models include the correlations among
the predictors, the noise to signal, and model errors [49]. This is often more realistic than
the MLR assumptions of independent and error free predictors, allowing these models to
handle high-dimensional data better than ordinary MLR [27].

Table 3. The results from the multiple linear regression fitting models applied to the soil physical-
chemical attributes studied.

Sensor Target
Variable

Validation Tavares et al. [42]

RMSE R2 RMSE R2

Vis-NIR

Clay 158.60 0.32 27.32 0.93
OM 38.98 0.01 2.10 0.86
CEC 86.61 0.10 18.66 0.51
pH 1.37 0.01 0.34 0.19
V% 81.66 0.15 10.38 0.80
P 70.10 0.03 12.05 0.07
K 9.54 0.22 1.20 0.74
Ca 83.37 0.07 10.98 0.68
Mg 35.72 0.09 8.85 0.52

XRF

Clay 448.21 0.02 29.40 0.92
OM 33.79 0.13 3.01 0.74
CEC 444.65 0.01 10.19 0.88
pH 10.20 0.01 0.33 0.34
V% 482.51 0.00 5.60 0.95
P 51.07 0.09 13.27 0.01
K 23.35 0.01 0.53 0.95
Ca 394.45 0.00 4.09 0.96
Mg 314.98 0.03 4.28 0.89

Vis-NIR: visible and near-infrared diffuse reflectance spectroscopy; XRF: X-ray fluorescence spectroscopy;
Clay (g kg−1); OM: organic matter content (g kg−1); CEC: cation exchange capacity (mmolc kg−1); pH: potential
of hydrogen; V%: base saturation (mmolc kg−1); P: Phosphorus (mmolc kg−1); K: potassium (mmolc kg−1);
Ca: calcium (mmolc kg−1); Mg: magnesium (mmolc kg−1); RMSE: root mean squared error; R2: coefficient
of determination.

Note that pretreatment followed by MLR improved the prediction accuracy, as shown
in the results from Tavares et al. [42], highlighting that MLR can be applied to predict soil
attributes based on spectral data. However, the application of pretreatment techniques
is necessary.
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Despite the close values of the quality indicators of the dimensionality reduction
statistical models and the models using pretreatment methods, it was not possible to
observe an optimal method that is unanimously the best for all attributes and sensors. It is
important to highlight that the aim of this study was not to indicate the best set (sensor
and method) to predict soil physical-chemical attributes, but to show the potential of
applying unusual methods that can be suitable to fit predictive models based on the soil raw
spectral data.

Spectra pretreatment relies on the ability of the person who calibrates the model, to
choose the combination of techniques that will extract the best prediction. The proposed
method in this study is advantageous as it presents the potential for standardizing the
model calibration step, thus diminishing human interference.

The sensors used in the laboratory to obtain spectral data are being adapted to be
used directly in the field, with Vis-NIR being the only that has already been tested. The
main use in the laboratory justifies the appliance of pretreatment techniques before fitting
the predictive model. However, looking at the advances in agricultural machines towards
proximal soil sensing, strategies to predict soil attributes online in a standard manner, and
reducing the time and processing cost needed as much as possible, can be a helpful way to
leverage soil sensing techniques with a high spatial resolution [3]. Therefore, the advances
in this research area can further decide whether methods using less processing steps become
more interesting than the classical approaches. The comparison of the results found in this
study was restricted to laboratory measured spectra, as there was a disadvantage in the
quality of online acquired spectra when compared with the laboratory acquisition [41].

Future works should evaluate different statistical approaches, including those con-
ducted in this study, comparing the results from models built with and without pretreat-
ment techniques for online and laboratory spectra acquisition. If possible, they should be
applied in a dataset that presents a large variability and number of samples. In addition,
they should be postulated not only by metrics that assess mean values, such as RMSE, but
also by the correlation among predicted values, so as to observe the discrepancy among the
different modelling methods.

4. Conclusions

The application of principal component regression and the lasso method overper-
formed the multiple linear regression approach. The R2 values found in this study applying
PCR and the lasso method ranged from 0.33 to 0.96 and 0.03 to 0.84 for XRF and Vis-NIR
sensor data, respectively. The MLR approach did not present satisfactory results for any of
the evaluated attributes (R2 ≤ 0.32), indicating that it cannot be applied on raw spectral data.
When comparing the results achieved in the present study using the tested dimensionality
reduction statistical models with the studies in the literature that applied data pretreatment
methods, we noticed that both strategies presented similarly satisfactory results. Hence,
this suggests the possibility of predicting soil attributes without applying pretreatment
methods, making the data processing faster.
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