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Abstract: Model soups synthesize multiple models after fine-tuning them with different hyperparam-
eters based on the accuracy of the validation data. They train different models on the same training
and validation data sets. In this study, we maximized the model fine-tuning accuracy using the
inference time and memory cost of a single model. We extended the model soups to create subsets of
k training and validation data using a method similar to k-fold cross-validation and trained models
on these subsets. First, we showed the correlation between the validation and test data when the
models are synthesized, such that their training data contain validation data. Thereafter, we showed
that synthesizing k of these models, after synthesizing models based on subsets of the same training
and validation data, provides a single model with high test accuracy. This study provides a method
for learning models with both high accuracy and reliability for small datasets such as medical images.

Keywords: fine-tuning; computer vision; pattern recognition; deep learning; machine learning

1. Introduction

In recent years, researchers have focused on applying deep learning to numerous
tasks, mainly because of the development of large datasets and computers to achieve
high accuracy in areas such as image processing. Examples of such applications include
AlexNet [1], VGG [2], ResNet [3], EfficientNet [4], and VisionTransformer [5]. The range
of applications is expanding. In addition to general object recognition, it has also been
applied in highly specialized fields, such as medical images [6,7]. However, the number of
datasets and parameters in the model is becoming increasingly important [8]. It is difficult
for state-of-the-art models, such as VisionTransformer, to perform well, especially for small
datasets. Nevertheless, the high cost of collecting rare and specialized images makes it
difficult to collect a sufficient sample size.

Pre-training models on similar datasets including large number of samples often
improves performance when an objective has limited datasets [9–12]. For example, Vi-
sionTransformer is pre-trained on JET-300M [8] before training the inference model on
ImageNet-1K [13] because ImageNet-1k has 10 million images, which is insufficient for
training VisionTransformer. In contrast, JET-300M contains 300 million images and can be
used as a sufficient pre-training dataset for VisionTransformer. Thus, when training on a
small- or medium-scale dataset, pre-training on a larger dataset yielded higher accuracy
than training on a full scratch dataset.

CLIP [14] and ALIGN [15] are effective models for several downstream tasks trained
on large datasets. CLIP trains two models from a combination of 400 million images and
natural language explanatory text for each image: a model that obtains image features and
one that obtains text features. CLIP can be used as a pre-trained model to obtain higher
accuracy with small datasets. Similarly, ALIGN learns image features from over one billion
images and alternative text pairs from the web. Instead of manually screening the samples,
ALIGN was trained on a dataset containing noise samples to collect a larger dataset.

However, regardless of the pre-trained model employed, adequate accuracy cannot be
obtained without fine-tuning with appropriate hyperparameters, which vary with the datasets.
Therefore, the best model must be obtained by searching for hyperparameters [16–18] using
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methods, such as grid search [19], random search [20], and generic algorithms [21]. In addi-
tion, certain hyperparameters can improve or worsen the learned model. To increase the
accuracy of the model obtained via fine-tuning, we must combine the best parts of these
multiple models.

In general, using several different models for inference can be highly efficient. For ex-
ample, ensembles [22] increase accuracy by averaging the outputs of several different
classifiers. Ensembles are typically used to increase the accuracy of machine learning and
other methods. In deep learning, ensembles improve the accuracy [23] and obtain good
fine-tuning points for several models. However, the computational cost of a single deep
learning model is higher than that of other machine-learning models. Therefore, increasing
the accuracy of a single model is essential as an alternative to using several different models
during inference.

Model soups [24] provided a model with a computational cost of inference of a single
model and an accuracy comparable to that of an ensemble. The method averages the
weights of fine-tuned models with different hyperparameters from the same pre-trained
model. This method does not increase the computational cost of the model during inference
and provides the best of several models, such as an ensemble.

However, the model soups train models based on the same training data, although they
are trained using different hyperparameters. Typically, different training data change the
behavior of the model. Partitioning the data into training and validation data changes the
behavior of the model, particularly when the number of datasets is small. In particular,
the accuracy should be equally high regardless of how the dataset is divided. This problem
must be overcome to extend the model soups to smaller datasets.

The method of k-fold cross-validation [25] is popular for avoiding errors caused by
partitioning datasets into training and validation datasets. The method of k-fold cross-
validation divides the available data into k subsets, creates k different training and valida-
tion datasets, and trains the models on these subsets. We assume that synthesizing models
from different training and validation datasets will provide higher accuracy in model soups
than synthesizing models with different hyperparameters, such as the learning rate and
data augmentation intensity.

This study aimed to apply model soups to different training and validation data in
divided datasets to achieve robust learning on small amounts of data. Two experiments
were performed for this purpose. First, we examined how the correlation between valida-
tion accuracy and test accuracy changes when models for different training and validation
datasets are synthesized using model soups. Second, this study demonstrates how synthe-
sizing models based on different training and validation data achieves both high accuracy
and reliability.

2. Preliminaries
2.1. Model Soups

There are numerous ways to obtain a better model after training multiple models.
The simplest method, “Best on val”, uses the model with the highest accuracy in the
validation data as the resulting model. However, this approach only uses the selected
model. We hypothesize that the accuracy is improved when using more models.

Model soups [24] is a simple insight-based method. The weights of models fine-tuned
from the same pre-trained model with different hyperparameters can be interpolated to
improve recognition accuracy and robustness. The study proposes two main methods:
uniform and greedy soups. Uniform soups take the average weight of all the learned
models as the weight of the new model. Considering the parameters of several different
models {θ1, · · · , θk}, the function average, which represents the average of the parameters
of a particular model, can be expressed as follows:

average({θ1, · · · , θk}) =
1
k

k

∑
i=1

θi (1)
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Specifically, uniform soups apply the function average to all the models obtained with
different hyperparameters.

Greedy soups greedily adopted models with high accuracy for the validation data.
Acc(θ, D) is the accuracy for dataset D and the model parameters θ and Dval are the valida-
tion data shared in the model soups. Here, greedy soups are executed, as in Algorithm 1.

Algorithm 1 Greedy Soups

Input: Parameters {θ1, · · · , θk} (sorted in decreasing order of Acc(θi, Dval))
ingredients← {}
for i = 1 to k do do

if Acc(average(ingredients ∩ θi), Dval) ≥ Acc(average(ingredients), Dval) then
ingredients← ingredients ∩ θi

end if
end for

return: average(ingredients)

Prior experimental studies have shown that greedy soups are more accurate on test data
and more robust for distribution-shifted data than uniform soups and the original models.

However, prior research has focused on fine-tuning medium-sized datasets, such
as ImageNet [13]. ImageNet contains approximately 1.2 million images for 1000 classes
of images, and its number of samples is considered sufficient to reduce the influence of
splitting the training data into training and validation data. However, in many cases, it is
difficult to collect even medium-sized numbers. For example, CIFAR10 [26] contains only
50,000 images from 10 classes. For the stable application of model soups to these domains,
the results of different training data should be considered.

2.2. k-Fold cross Validation

The k-fold cross-validation [25] is a common evaluation method in machine learning,
as shown in Figure 1. Algorithm 2 was used for the training and evaluation.

Figure 1. k-Fold Cross Validation.

Algorithm 2 k-Fold Cross Validation

Input: Original dataset Dtrain and number of split k
Divide evenly Dtrain into k groups S1, S2, . . . , Sk without duplication.
for i = 1 to k do do

Dtrain,i ←
⋃
j 6=i

Sj

Dval,i ← Si
end for

return: Dtrain,1, Dval,1, · · · , Dtrain,k, Dval,k

This method improves the reliability of machine learning. For example, in a hyperpa-
rameter search, when optimizing a fixed set of training and validation data, overfitting may
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occur on the combination. The k-fold cross-validation prevents overfitting by optimizing k
types of training and validation data.

As described above, the k-fold cross-validation was more effective with smaller
datasets. Therefore, dataset bias, a bottleneck in applying model soups, may be reduced
by splitting datasets into several subsets of training and validation data, as in the k-fold
cross-validation. The following sections describe the methods used to reduce the bias.

3. Methods

This study determines whether model soups can be effectively applied to models
trained using different training and validation data. A distinct problem arises from k-fold
cross-validation. When training a model, we separate the training and validation data.
However, when some models are synthesized, validation data for one model are included
in the training data for the other models. This is a critical problem because the validation
data are responsible for detecting whether the model is overfitted with the training data.
Additionally, the accuracy of the validation data for a model indicates whether the model
is selected. For example, for Best on val, which served as the baseline in model soups,
the model with the highest accuracy against the validation data was adopted. Furthermore,
greedy soups adopt a model with higher accuracy for the validation data, as shown in
Algorithm 1. Therefore, when training and validation data are separated, the accuracy of
the validation data determines whether the synthesized model is expected to outperform
the pre-synthesized models. However, when models based on different training and
validation data are synthesized, we use validation data to learn the parameters of the
post-synthesized model. Even validation data for the pre-synthesized models are less
reliable for the post-synthesized models. For instance, consider training and validation
data divided into five subsets. Model A is assigned the first subset as validation data
and the remaining subset as training data. For model A, the ratio of each subset used for
training is 0:1:1:1:1. Similarly, model B is assigned the second subset as validation data
and the remaining subsets as training data. For model B, the ratio of each subset used for
training is 1:0:1:1:1. When the two models are synthesized, the ratio of the trained subsets
for the post-synthesized model becomes 1:1:2:2:2. The first and second two subsets are
used less frequently than the other subset, but not zero. The validation data, as defined by
k-fold cross-validation, do not exist for the post-synthesized model. Then, an alternative
indicator is required to validate the post-synthesized model. Here, we investigated whether
the validation data for pre-synthesized models can be used as an accuracy indicator the
post-synthesized model.

First, we show the relationship between the accuracy of the validation and test data
when uniform soups are applied to the same hyperparameters and the training and valida-
tion data. The dataset used in the experiment provides the test data, which are independent
of the training and validation data. Therefore, the accuracy of the test data determines the
accuracy of all models, including the post-synthesized models. The test data cannot be
used to indicate the model to be synthesized, to avoid leaks. Based on the above results,
we showed how to merge models based on different training and validation data while
utilizing the validation data as effectively as possible.

3.1. Uniform Soups for Different Training and Validation Data

We conducted experiments to illustrate the relationship between the validation and
test data when models trained by different subsets were combined with model soups.

1. Create a subset of k types of training and validation data through k-fold cross-validation.
2. Provide T type hyperparameters.
3. Fine-tune t× k kinds of models.
4. Synthesize t ∑k

n=1 kCn models by applying uniform soups from k models to n models
for each hyperparameter.
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First, let θi be a parameter of the model trained on Dtrain,i and validated on Dval,i:
Second, Acc(θ, Dval,i) is the accuracy of the model with the parameter θ with respect to the
validation data Dval,i. Third, Acc(θ, Dtest) is the accuracy of the model with the parameter
θ for the test data Dtest. Finally, average({θ1, · · · , θk)} is the average of the provided model
parameters, similar to the uniform soups. We propose two measures for the accuracy of the
validation data:

AvgAcc(θ1, · · · , θk) =
1
k

k

∑
i=1

Acc(average({θ1, · · · , θk)}, Dval,i) (2)

MinAcc(θ1, · · · , θk) = min[{Acc(average({θ1, · · · , θk)}, Dval,i); i ∈ {1, · · · , k}}] (3)

AvgAcc is the average of the set of accuracies for the validation data corresponding to
the included models. Similarly, MinAcc represents the minimum accuracy among the sets
of accuracies for the validation data corresponding to the included models.

The following points were verified for each synthesized number of models created
using the above procedure.

1. RMSE for each of AvgAcc, MinAcc for validation data, and Acc for test data.
2. Correlations between val accuracy and test accuracy.

First, to measure how far the validation data are from the test data for a particular number
of synthesized models n, RMSE (root mean squared error) is calculated as in Equation (4):

RMSE =

√√√√ 1
T

T

∑
t=1

(ValAcc(θ̄t)−Acc(θ̄t, Dtest))2 (4)

where θ̄t is the model synthesized with the t-th hyperparameter and ValAcc is the val
accuracy: AvgAcc or MinAcc. The expected value of the difference between the accuracies
ValAcc(Dval) and Acc(Dtest, θ) for model fθ is close to zero if the validation data Dval
and test data Dtest have the same distribution. In contrast, the difference is likely to be
larger when the validation data are larger than the test data, because of the synthesis
of different training and validation data. This experiment shows that the distribution
over the validation data diverges from the test data, depending on the number of merged
models. Furthermore, we showed that MinAcc is more effective than AvgAcc based
on the hypothesis that a more stringent criterion for the model is more robust than an
average criterion.

Second, by calculating the correlation between the val accuracy and test accuracy for
the number of models to be merged, we showed that the validation data effectively select
models that enhance the test data. Furthermore, it showed correlations in regions of high
accuracy, which is particularly important when applying greedy soups.

3.2. Greedy Soups Containing Different Training and Validation Data

To apply model soups to different training and validation data, we experimented with
three different extensions of greedy soups.

• Greedy soups (for all subset)
• Best on val for greedy soups per subset (BGSSs)
• Greedy soups for greedy soups per subset (GSGSs)

The first method applies greedy soups without distinguishing between models that
include all training and validation data based on MinAcc calculated using Equation (3).
Although mixing models from different training data may improve the test accuracy of
the synthesized model, it can mix the models multiple times based on unreliable valida-
tion data.
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The second method is to apply greedy soups to each training and validation dataset
and then adopt the model with the highest val accuracy. The validation data are more
reliable because they are not mixed with the training data that the synthesized model
follows; however, they do not interpolate between models with different training data.
Hence, the benefit of the improved accuracy is small.

The last method is to apply greedy soups to each training and validation dataset and
then to each synthesized model. As the models synthesized in the first step were based
on the same training and validation data, the same greedy soups as in previous studies
were applied. The next step is to apply greedy soups to different models of the training
and validation data. Thus, they are synthesized using indicators based on val accuracy.
This method applies greedy soups on a subset-by-subset basis, allowing decisions to be
made using MinAcc only in the last k − 1 iterations, maintaining the reliability of the
validation data.

The val and test accuracies of the models were compared.

3.3. Experimental Setup

As in previous studies, we employed CLIP ViT-B/32 [14] as the pre-trained model.
Furthermore, we applied fine-tuning only to the final linear layer before fine-tuning the
entire model (LP initialization), as described by Kumar et al. [27]. To make this correspond
to different training and validation subsets, we applied LP initialization to each of the k
subsets and trained the model of the corresponding subset.

CIFAR10 was used as the dataset. CIFAR10 provides training data and test data. Note
that there is no official validation data. The training data include 50,000 samples, and the
test data include 10,000 samples. Each sample is an image belonging to one of the 10 classes.
The size of these images is 32× 32, but the images are scaled up to 224× 224 when they are
input to the model. Both the training and test data include an equal number of samples for
each class: the training data include 5000 images of the same class each, and the test data
include 1000 images of the same class each.

Moreover, We split the training data defined in CIFAR10 into subsets of training and
validation data, as shown in Algorithm 2. We experiment with five splits; hence, each
subset contained training data including 40,000 samples and validation data including
10,000 samples. The training data are divided so that each subset contains an equal number
of image classes. Training and validation data are assigned when training each model.
Note that the validation data assigned to a model is not used for training the model,
before synthesis.

We trained the models with 18 different hyperparameters. The searched hyperpa-
rameters contain the learning rate, strength of data augmentation and whether to apply
mixup [28]. This study adopts grid search. The learning rate is chosen from 0.00003,
0.00001 or 0.000003. Strength of data augmentation is chosen from minimal, medium or
strong categories, which were defined in a previous study [24]. As a result, there are 18
combinations of hyperparameters that are searched for by grid search. In addition, based
on five different training and validation data, a total of 90 models are trained.

4. Experimental Results

As described in Section 3.3, this study trained 90 models based on 18 hyperparameters
and 5 training and validation data in the experiment. We show the relationship between the
validation accuracy and test accuracy of the trained models using Figure 2. These models’
validation data have the highest accuracy (0.9844), and the corresponding model’s test
data have the best accuracy (0.9809). The lowest accuracy of the validation data is 0.9720,
and the corresponding model’s test data accuracy is 0.9721, the 11th least accurate. These
models are used in both of the following experiments.



AI 2022, 3 802

Figure 2. Comparison of the validation accuracy and test accuracy of the trained models. The models
were trained based on 18 types of hyperparameters and 5 types of training and test data.

4.1. Model Soups for Different Training and Validation Data
4.1.1. Comparison between AvgAcc and MinAcc

Table 1 shows the RMSE of the validation and test accuracies for each number of
models merged in the graph.

Table 1. RMSE of model soups val and test accuracies for each number of models synthesized.
The merged models have the same hyperparameters but different training and validation data.

n AvgAcc MinAcc

1 0.30%
2 0.87% 0.92%
3 0.98% 1.06%
4 1.02% 1.11%
5 1.03% 1.14%

The experimental results showed that the distribution of the validation and test data
shifted as the number of merged models increased. In addition, the RMSE of MinAcc
was smaller than that of AvgAcc for any number of merged models, indicating that the
validation data are reliable.

4.1.2. Correlation of Classification Accuracy between Validation and Test Data

Figure 3 shows the accuracy of the validation and test data when n models with the
same hyperparameters and different training and validation data were synthesized via
uniform soups.

In the above graph, the correlation between val and test accuracies for each number of
models n merged in uniform soups is shown in “corr for all” in Table 2. This result implies
that the greater the number of synthesized models, the stronger the correlation between
MinAcc and test accuracy.
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Figure 3. Comparison of uniform soups validation and test data accuracies for models with different
training and validation data. We selected n ∈ {1, · · · , k}models from different training and validation
data with the same hyperparameters and compared the results of applying uniform soups to the
n models.

Table 2. Correlation coefficients between validation accuracy and test accuracy for each number of
models to be merged in uniform soups. “corr for all” is the correlation coefficient for all models,
and ”corr over thre” is the correlation coefficient for models whose evaluation accuracy is above a
certain threshold. The threshold is the lowest validation accuracy of the models before merging.

n Corr for All Corr over Thre

1 0.878
2 0.934 0.763
3 0.978 0.707
4 0.985 0.673
5 0.989 0.685

However, to improve the accuracy of greedy soups, reliability in domains with high
accuracy is important. In Figure 3, there are regions in which both MinAcc and the test
accuracy have low accuracy. These samples were those in which the interpolation of
weights worsened the accuracy because of the significant distance between the models.
Owing to their low validation accuracy, these models have not been synthesized to improve
the accuracy of greedy soups. Next, we investigated how the accuracy changes for each
number of synthesized models in the domain with a high val accuracy.

Figure 4 shows a graph of the results of the synthesized model, removing the results
of the model with a value accuracy less than the threshold. The threshold is the minimum
val accuracy of the model before the synthesis. The correlation between the val accuracy
and test accuracy in the extracted models shows that the correlation coefficient is lower for
n > 1 than for n = 1, as indicated by the “corr over thre” in Table 2.

As shown above, the synthesis of models based on different training and validation
data reduced the reliability of the validation data. Conversely, although the validation data
are overestimated, this allows us to confirm that synthesizing different subsets of models
can increase the accuracy. Therefore, val accuracy can detect an extreme decrease in the test
accuracy when the model is synthesized.
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Figure 4. Val and test accuracies for models with val accuracy greater than or equal to that of the
model with the lowest val accuracy before the application of uniform soups in Figure 3.

4.2. Greedy Soups Containing Different Training and Validation Data

For greedy soups with different training and validation data, we conducted the
following experiments.

• Three types of greedy soups based on different subsets of training and validation data.
• Uniform soups for all models.
• Best on val, the single model with the greatest accuracy on the validation data.

The results of these vals (calculated based on MinAcc, except for Best on val) and test
accuracies are shown in Table 3.

Table 3. Comparison of the val and test accuracies of the proposed and existing methods for CIFAR10.
Greedy soups has the highest val accuracy, but the lowest test accuracy among the proposed methods.
The gap between the val accuracy and test accuracy of greedy soups is large. However, the proposed
method GSGSs has the highest test accuracy compared to the other methods. The gap between the
val accuracy and test accuracy of GSGSs is not as large as that of greedy soups.

Method Val Test

Best on val 98.44% 98.09%
Uniform soups 98.14% 96.88%
Greedy soups 99.67% 98.26%

BGSSs 98.66% 98.27%
GSGSs 98.97% 98.32%

The experiment shows that GSGSs, applying greedy soups for each subset and finally
applying greedy soups between subsets produces the best test accuracy. The highest val
accuracy was achieved by applying greedy soups with all subsets mixed; however, the test
accuracy was lower than that of other greedy soup methods. This observation seems
to result from the unreliability of the validation data owing to the repeated synthesis of
models that include each other’s validation data in the training data. However, greedy
soups exceeded the baseline Best on val, indicating that the method eliminated cases in
which synthesis would result in extremely low accuracy.
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5. Discussion and Future Work
5.1. Reliability of val Accuracy

This study synthesized models with different subsets of training and validation data
assigned by greedy soups while maximally preserving the reliability of the validation data.
Conversely, even if the number of models is approximately five, the correlation between
the val and test accuracies indicates that synthesizing different model subsets reduces the
reliability of val accuracy.

Some accuracy is maintained even when applying greedy soups based on val accuracy,
which has decreased in reliability because val accuracy is an adequate evaluation index for
test accuracy for low accuracy. This situation prevents merging, which results in a lower
accuracy than the baseline. However, the choice to maximize accuracy is difficult because
reliability is lower in areas with higher accuracy.

In the future, we will develop and verify a method for calculating the val accuracy
that is more reliable than the MinAcc. In addition, we will investigate whether there is an
index with a higher correlation with test accuracy, and verify whether test accuracy can be
improved by combining it with greedy soups.

5.2. Hyperparameters Optimization

Uniform soup results were above the baseline in the previous study and below the
baseline in this study. This difference may be because some hyperparameter settings
deviated from those of the original model. To show that this deterioration in accuracy was
not related to the combination with k-fold cross-validation, we ran uniform soups for each
subset, and the one with the highest validation was adopted. Table 4 confirms that the
accuracy deteriorated when combined with the k-fold cross-validation.

Table 4. Comparison of uniform soups and Best on val.

Method Acc

Best on val 98.44%
Uniform Soups 98.14%

Best Uniform Soups per split on val 96.88%

The above results suggest that greedy soups are more effective when the region of the
optimal parameters is unknown.

5.3. Generalization Performance for Highly Specialized Datasets

This research aims to apply this method to highly specialized fields, such as medical
images, where it is difficult to collect multiple samples. However, this experiment was
conducted within the scope of general category recognition. In the future, we will consider
the type of problems that may arise when the proposed method is applied to highly
specialized datasets.

First, a few samples may cause considerable distance between the models trained using
different training and validation data. If the distance between the models is significantly
large, the effectiveness of merging by model soups is reduced, and the result would be
the same as if the model with the highest validation accuracy was simply adopted. This
problem can be solved by adjusting the hyperparameters to constrain the distance from the
source model such that it is not considerably far.

Second, the source model possibly did not capture the features of the target dataset.
For example, CLIP [14] comprises generic images that have been collected. Therefore,
it is known that excessive specialization of the target data reduces the effectiveness of
transfer learning from ImageNet when the distance from the source dataset is large. One
way to address this issue is to use datasets that are closer to the target data. For example,
for medical images, such as CT images, it is important to use a dataset in a close domain,
such as RadImageNet [29] to train the source model.
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5.4. Model Constraints

The proposed method is essentially model agnostic. The model employed in this
experiment is overly large to be applicable for running on low-memory devices. However,
lighter pre-trained models make the proposed method applicable. Alternatively, the study
is not limited by the size or type of model. As the proposed method is applied to various
tasks in the future, the best model for each task can be adopted.

5.5. Future Works

This study shows experimentally that synthesized models trained on multiple subsets
of training and validation data are more accurate than synthesized models trained on
each subset. However, it is unclear how efficient these methods are. Alternatively, is it
more efficient to explore the learning rate or the strength of data augmentation than to
explore multiple subsets? In this experiment, 90 different models were trained based on 18
hyperparameters and 5 sub-sets. For example, increasing the range of the learning rate or
increasing the density of the search may improve accuracy. To verify this possibility, we
must first consider the optimal search, as described above. In the future, we will show that
the accuracy of the test data with respect to the total number of models trained benefits the
proposed method.

6. Conclusions

In this study, models trained with different training and validation data using a
similar method to k-fold cross-validation were verified to improve accuracy by merging the
weights of multiple models using model soups. Therefore, we examined how the reliability
of val accuracy changes when models that include validation data in the training data are
synthesized by model soups.

First, for validation, we synthesized multiple models within the same hyperparameter
by using uniform soups on a set of models trained with different hyperparameters and
training and validation data. We observed that the correlation between the validation
and test data results decreased with each merged model, especially in regions where the
accuracy of the validation data was higher than that of the baseline. However, if the
validation data contained regions where the accuracy of the validation data was lower than
the baseline, the correlation increased, indicating that it can be used to detect a significant
decrease in test accuracy.

Based on the above results, we proposed two greedy soups that allow models to be
synthesized with each other’s validation data in the training data and compared them with
the baselines. In particular, the accuracy of GSGSs is higher than that of the baseline, which
performs greedy soups on each model based on the same training and validation data.
Thereafter, it performs greedy soups on different subsets. This observation shows that val
accuracy estimates the test accuracy, even if the models are synthesized using different
training and validation data.

This research allowed us to create models that are less susceptible to bias owing to
differences in assignments for training and validation. In particular, the smaller the amount
of data, the larger this bias becomes, making this study more valid for fine-tuning the small
amounts of data for which model soups are effective.

However, this study has four limitations. First, the val accuracy is not sufficiently
reliable when models based on different training and validation data are synthesized. We
showed that the val accuracy computed by the proposed method is sufficiently reliable to
be used as an indicator of which model should be synthesized by experiments. However, it
is less reliable than the conventional val accuracy. In further research, we must investigate
whether there is a calculation method that is more reliable than the proposed method,
even if the model is synthesized based on training and validation data. Second, the search
space for hyperparameters is non-trivial. The optimal hyperparameters vary for each
dataset. If the search space cannot be narrowed down to an optimal range, the accuracy
of the learned model becomes highly variable. We must improve the efficiency of the
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search in model soups in future works. Third, a single benchmark dataset was used in
the experiments. This research has a high affinity for datasets that find it difficult to
collect numerous samples due to their specialized nature, such as medical images. Future
experiments should be conducted on such datasets. Finally, although the proposed method
has been shown to improve the accuracy of the synthesized model, it has not shown its
efficiency compared to existing methods. In the future, we will show the effectiveness of
the proposed method.
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