
Citation: Fedor, B.; Straub, J. A

Particle Swarm Optimization

Backtracking Technique Inspired by

Science-Fiction Time Travel. AI 2022,

3, 390–415. https://doi.org/

10.3390/ai3020024

Academic Editor:

Agostino Forestiero

Received: 16 February 2022

Accepted: 14 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Particle Swarm Optimization Backtracking Technique
Inspired by Science-Fiction Time Travel
Bob Fedor and Jeremy Straub *

Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA; robert.fedor@ndsu.edu
* Correspondence: jeremy.straub@ndsu.edu; Tel.: +1-701-231-8196

Abstract: Artificial intelligence techniques, such as particle swarm optimization, are used to solve
problems throughout society. Optimization, in particular, seeks to identify the best possible decision
within a search space. Problematically, particle swarm optimization will sometimes have particles
that become trapped inside local minima, preventing them from identifying a global optimal solution.
As a solution to this issue, this paper proposes a science-fiction inspired enhancement of particle
swarm optimization where an impactful iteration is identified and the algorithm is rerun from this
point, with a change made to the swarm. The proposed technique is tested using multiple variations
on several different functions representing optimization problems and several standard test functions
used to test various particle swarm optimization techniques.
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1. Introduction

Artificial intelligence techniques draw inspiration from many different sources. One
common source for inspiration is from nature. Techniques have been inspired by insects,
such as the artificial bee colony algorithm [1], the firefly algorithm [2], and ant colony
optimization [3]. Other techniques have been inspired by birds, such as cuckoo search [4]
and migrating birds optimization [5]. Particle swarm optimization (PSO) is also inspired
by birds [6].

These techniques have found use in numerous problem domains. PSO, for example,
has been demonstrated to be effective for antenna design, biomedical applications, com-
munication network optimization, classification and control problems, engine design and
optimization, fault diagnosis, forecasting, signal processing, power system control, and
robotics [7]. Zhang, Wang, and Ji [8], in fact, reviewed nearly 350 papers on particular
swarm optimization and identified over 25 variants of the technique, which found use in
ten broad categories ranging from communications to civil engineering.

There are many different sources that can be used for inspiration other than nature.
This paper presents a new technique that is inspired by the science fiction concept of time
travel. Time travel is a common plot element used in science fiction where a person travels
to a different point in time. Time travel can be used to answer complex questions; however,
it is only hypothetical and can be, more practically, a source of inspiration. The technique
proposed in this paper uses the concept of time travel by returning to an impactful moment
in PSO and makes alterations.

The proposed time-travel inspired technique is an enhancement of PSO. PSO is a
heuristic method used to solve complex optimization problems that cannot be solved
easily with standard mathematical methods. One issue with PSO is that it oftentimes finds
solutions that are not the globally best solution for a given search space. This happens when
a particle gets trapped in a local minimum and leads other particles to this suboptimal
solution. Another issue is the use of time and computational resources. Enhancements to
the base PSO technique attempt to solve these issues. Examples include center PSO [9],
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chaotic PSO [10], and the hybrid genetic algorithm and PSO [11]. Center PSO adds a
particle to the center of the search space. This particle does not have a velocity and is used
only for calculating the velocity of other particles. The center particle is useful because
it increases efficiency for the common case of the optimum being near the center of the
search space. Chaotic PSO adds the addition of chaos to traditional PSO. This allows for
the algorithm to avoid local maxima. The hybrid Genetic Algorithm and PSO attempts to
combine PSO with a genetic algorithm to utilize the benefits of both algorithms.

The technique presented in this paper is a potential solution to the issue of being
trapped in local minima. The algorithm can be broken down into eight steps, which are
explained in detail in Section 3. It begins by running the PSO algorithm, but not completing
the run. The second step is to calculate the most impactful iteration of the run. The third
step is to copy the swarm at this iteration. The algorithm continues, in the fourth step, by
terminating the particle swarm run. The fifth step of the algorithm is to make an alteration
to the copied swarm. The sixth step is to begin a new particle swarm run with the copied
swarm. The seventh step is to end this run. Finally, the results of the two runs are compared
and the better of the two solutions is chosen. In addition to use with the base PSO algorithm,
this technique has the potential to also enhance variations of PSO. This could be achieved
by running a new enhancement of PSO, instead of regular PSO, for the first and sixth steps
of the algorithm.

This technique aims to change PSO to avoid finding suboptimal solutions. It is
expected to find better solutions at the expense of using more computing resources. This
paper explores multiple methods of implementing the proposed technique. Two methods
for finding impactful iterations are discussed. Multiple changes to the particle swarm, at
the impactful iteration, are also discussed. The experiment, outlined in Section 4, assesses
the efficacy of combinations of four different change technique variations and two different
impact calculation variations of the proposed technique for different complex functions
representing optimization problems and several benchmark functions.

This paper continues with background information on related topics–such as artifi-
cial intelligence, science fiction, time travel, and PSO–being discussed in Section 2. The
proposed technique is described in Section 3 and the experimental design is reviewed in
Section 4. Data are presented and analyzed in Section 5 (related to several problem domain
applications) and Section 6 (related to common PSO evaluation functions). Finally, the
conclusions and potential areas for future work are discussed in Section 7.

2. Background

In this section, background information and related prior work for the proposed
technique are presented. First, prior work on and problems that can be solved using
artificial intelligence are discussed in Section 2.1. Next, prior work related to swarm
intelligence is presented in Section 2.2. PSO is discussed in Section 2.3 and the section
concludes with a brief overview of science-fiction time travel literature being presented
in Section 2.4.

2.1. Artificial Intelligence and Applications

Countless problems can be solved using traditional procedural programming ap-
proaches; however, there are many problems that cannot be solved efficiently in this way.
Artificial intelligence approaches have been created for challenges such as the traveling
salesman problem [12] (using genetic algorithms, the nearest neighbor algorithm, ant
colony optimization, and neuro-fuzzy techniques [13]), computer vision [14] (using neu-
ral networks [15] and convolutional neural networks [16]), decision-making [17] (using
techniques such as expert systems [18] and the Blackboard Architecture [19]), and complex
optimization problems [20].

Artificial intelligence is utilized in many different fields. In medicine [21], it has been
used for drug development, disease diagnostics, the analysis of health plans, health moni-
toring, digital consultation, surgical treatment, managing medical data, and personalized
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medical treatment. In transportation [22], it has been used for planning, making road con-
struction decisions, improving public transport, traffic sensor operations, and commanding
self-driving cars. In law [23], it has been used to automate legal tasks such as filtering
discovery documents, allowing lawyers to search through thousands of documents that
they would not have time to search manually. It has also been used to automate contract
development and predict legal outcomes. In education [24], AI has been used to develop
intelligent tutoring systems, which adapt to students’ feedback, and personalized learning
capabilities. It has also been used to track students’ performance and educational data,
using data mining, to predict potential failure to facilitate intervention. AI, of course, is also
utilized in numerous other fields including mental healthcare [25], ophthalmology [26],
and industrial marketing management [27].

2.2. Swarm Intelligence

Swarm intelligence techniques, many inspired by insects’ and other animals’ behavior,
have also been created to solve problems [28]. Popular insect-based techniques include
ant colony optimization [29], which is frequently used for path finding and has also been
demonstrated for managing peer-to-peer interconnections in a grid computing environ-
ment [30]. Another technique, artificial bee colonies [31], simulates bee colonies by using
groups of simulated bees with different roles which work together to iteratively find
improved solutions to a problem.

An animal-based technique, spider monkey optimization [32], uses monkeys’ foraging
behavior as inspiration. Spider monkeys forage for food in small groups and split into
multiple groups when having difficulty locating food, while still collaborating while dis-
persed. Yet other swarm intelligence techniques are metaheuristic algorithms which are
well suited to and employed for solving “sophisticated . . . optimization problems” [33].
Forestiero [34], for example, demonstrated the use of a neural-concept-based multi-agent
system that was employed to analyze “activity footprints” to tackle the complex task of
detecting anomalies in internet-of-things devices.

2.3. Particle Swarm Optimization

PSO is also a metaheuristic algorithm and swarm intelligence method that is typically
used to solve complex optimization problems [35]. One such problem is the optimal mixing
of ingredients to grow useful microorganisms [36]. Another example is using PSO to
support or replace backpropagation for neural networks [37,38]. Other applications include
its use for Bluetooth and electrical networks, temperature control, and motor design [7]. It
has also been used for disease diagnosis, optimizing equipment placement, clustering, and
combinatorial optimization [7], in addition to numerous other areas [8].

Domains of its use include [8] electrical, mechanical, chemical, biomedical, and civil
engineering, controlling automated systems, communications, and operations management.
Key examples [7] of its use include antenna design, designing and improving communica-
tions networks, engine and motor design and control, fault detection and recovery, and
image analysis. In power systems engineering [39], it has been used for optimization dis-
patch, reactive control, loss reduction, flow control, and controller design. In robotics [40],
it has been used to create collaborative swarm-style techniques for robotic search opera-
tions. In finance, PSO’s efficacy has been demonstrated for portfolio optimization [41]. In
geotechnical engineering [42], it has been used for analyzing the stability of slopes, “pile
and foundation design”, determining rock and soil characteristics and making decisions
regarding tunneling operations.

PSO has also been shown to be able to integrate, support, and enhance other AI
techniques. Grimaldi, et al. [43], for example, showed that it can be used as an approach for
neural network learning processes. Liu, et al. [44] demonstrated its efficacy for supporting
big data analysis.

Numerous applications for PSO have been identified. Sedighizadeh and Masehian [45]
identified nearly 1800 uses for this style of algorithm across numerous areas. There are



AI 2022, 3 393

also numerous PSO technique variants–Sedighizadeh and Masehian [45] identified approx-
imately 60 categories of PSO techniques, that were classified into areas based on criteria
such as the technique’s “fuzziness”, “velocity type”, “recursively”, and “combinatoriality”.

PSO uses a collection of particles [35] that move around in a search space containing
the bounds of the function it is trying to optimize. This allows them to search for an optimal
solution by iteratively improving their current solutions. Each particle has its own velocity
specifying how much distance it will move in the next iteration. This velocity is updated
each iteration based on a number of factors. PSO does not always find the global best
solution because it can get trapped in local solutions or can take an unrealistic time to
converge fully.

2.3.1. Particle Swarm Optimization Variants

A wide number of variants of PSO algorithms have been proposed—Sedighizadeh
and Masehian [45] identified 60 categories of PSO algorithms. Many of the variants in-
clude combinations with other AI techniques, while others are optimizations of or changes
to the base technique. Kashyap and Parhi [46], for example, paired PSO with a propor-
tional integral derivative controller and increased a humanoid robot’s gait performance
through increasing the speed of stabilization and reducing “overshoot” by about a fourth.
Fan, et al. [47] proposed a “random reselection” technique, based on the Cuckoo search
technique, and demonstrated its efficacy for optimizing solar cell systems to provide re-
newable energy. Ceylan [48] showed how PSO could be applied to “grey modeling”. The
PSO grey modeling approach outperformed unaugmented grey modeling, “grey rolling
modeling”, and NARNN modeling for predicting the spread of COVID-19 cases.

Kan, et al. [49] proposed the use of an “adaptive particle swarm optimization convolu-
tional neural network” for securing internet-of-things devices. The technique was shown
to outperform other techniques–including support vector machines, feedforward neural
networks, and convolutional neural networks–in terms of both accuracy and precision.
Zaman and Gharehchopogh [50], similarly, combined PSO and a backtracking search opti-
mization algorithm to produce a technique that outperformed other PSO and metaheuristic
algorithms in terms of convergency, accuracy, and exploration capability. Li, et al. [51]
proposed combining PSO with a grey seasonal model, which was used to predict changes
in natural gas production and demand in China.

2.3.2. Particle Swarm Optimization Techniques Advances

The number of PSO advances are too numerous to fully explore herein. Houssein, et al. [52]
identified over 300 papers that they associated with “major advances” in PSO and multiple
topological categorizations for them. Several recent advances are illustrative of the types of
approaches being taken.

Han, et al. [53], for example, proposed the use of “adaptive strategies” in PSO’s feature
selection process and demonstrated enhanced performance, in terms of solution optimality,
convergence, and diversity, as compared to six other algorithms across 20 datasets with a
notable benefit in data with high dimensionality.

Gu, et al. [54] enhanced PSO with the use of surrogate assistance. They used the
random forest algorithm with PSO and tested the technique using benchmark knapsack
problems. The technique was shown to offer benefits in terms of convergence speed, accu-
racy, and computational cost. Ji, et al. [55] also used surrogates for multimodal optimization
problems. They proposed a dual surrogate design that seeks several optimal solutions. It
was shown to compare favorably with both existing surrogate and existing multimodal evo-
lutionary algorithms, in terms of both solution accuracy and computational performance.

Li, Xue, and Zhang [56] proposed the use of a new feature selection algorithm and
revised initialization and search space reduction approaches for PSO. A “stick binary PSO”
algorithm is used for feature selection, initialization is based on “mutual information”,
and a “dynamic bits” search space reduction strategy was implemented. With these
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enhancements, the technique outperformed eight other techniques that it was compared to.
It generated higher accuracy, in many cases, and reduced features in “most” instances.

Sedighizadeh, et al. [57] proposed a new “generalized” PSO algorithm. This algorithm
added two additional variables to the velocity equation and also introduced a dynamic
update algorithm for particles’ inertia. The proposed technique was compared to multiple
other PSO techniques, using key benchmark functions, and generally outperformed the
other techniques in terms of runtimes and accuracy.

Liu, et al. [58] proposed a PSO technique that trains a neural network as a way to avoid
convergence speed and calculation costs of traditional PSO algorithms. The combined fuzzy
neural network and PSO technique outperformed both component approaches, in terms of
computational speed, while all three were able to consistently find optimal solutions.

Song, et al. [59] also proposed a hybrid approach, combining three techniques to en-
hance the process of feature selection. This approach combined filtering, feature clustering,
and evolutionary algorithm methods and used an “improved integer PSO” technique to
produce a suitable set of features while minimizing processing time requirements.

Wang, Zhang, and Zhou [60] developed a PSO algorithm for problems that require
the consideration of both continuous and discrete variables. This approach featured a
“mixed-variable encoding scheme” and an adaptive approach to parameter setting. It was
found to converge faster and produce more accurate results, while having competitive
performance to four other multi-variable techniques it was compared to.

Song, Zhang, Gong, and Sun [61] demonstrated a bare-bones PSO technique that used
“mutual information” for the problem of feature selection. It optimized the initialization
process and introduced two additional mechanisms for search. The approach was compared
to eleven other algorithms and was shown to find a better set of features than the other
algorithms, while also having superior computational performance.

Domain-related advancements have also been studied, extensively, in regards to
applications such as warehouse operations [62], geotechnical applications [63], financial
portfolios and stock trends [64], and disease identification [65].

2.4. Science Fiction and Time Travel

Science fiction has multiple subgenres and themes, including dystopia [66], space [67],
and time travel. It has been a source of inspiration for many. It has been used as a way
to model the future [68], with prototypes that can be used to compare multiple possible
futures to determine how technologies could contribute to the development of society [68].
Science fiction prototyping is a conceptual form of prototyping rather than a physical
one [69], which is used to present new perspectives on future technology.

Time travel is a well-known genre of science fiction. However, there is considerable
debate about the possibility of time travel because it challenges known principles of physics
and presents paradoxes [70].

Despite this, it is commonly used in the literature to hypothesize about abstract
questions, such as how past actions impact the present and future. Different perspectives
on this exist. Some believe that changes will have pronounced impacts, such as the
“butterfly effect” described in H.G. Well’s Time Machine [71]. Others project less impact,
such as in Issac Assimov’s What if [72]. Speculating about these questions serves as a source
of inspiration in different fields. One example of this is a method for future-oriented user
research [73], which can inspire designers and consumers using themes taken from time
travel. The artificial-intelligence technique presented in this paper also draws upon the
science-fiction genre of time travel as its inspiration.

3. Technique Description

The technique proposed herein is an enhancement of PSO. The technique is split into
eight sections, for easier understanding, which are now discussed. These are also depicted
in Figure 1. The first step is to begin a particle swarm run. The second step is to calculate
the most impactful iteration of this run. The third step is to make a copy of the swarm at
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the impactful iteration. The fourth step is to terminate the particle swarm run. The fifth
step is to make a change to the copied particle swarm from step three. The sixth step is
to begin a new particle swarm run with the copied particle swarm. The seventh step is
to terminate this particle swarm run. The final step is to compare the results of the two
particle-swarm runs and choose the better result.
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3.1. First Step: Particle Swarm Run Initiation

The process starts by initiating a particle swarm run. The proposed technique was
tested with the base particle swarm optimization algorithm; however, it could be easily
adapted for use with other PSO techniques. One minor variation, when implementing PSO,
is the velocity update formula. Although many studies use the original formula, others
include small changes. The original velocity update formula is [74]:

vi+1 = (vi) + (c1 * r1 * (pi − xi)) + (c2 * r2 * (gi − xi)) (1)

In this formula, bolded letters symbolize a vector containing an element for each
dimension. Scalar terms are not bolded. The vector vi+1 contains the velocity for the
particle for the next iteration. The vector vi contains the velocity of the particle in the
current iteration. The constants, c1 and c2, are weights affecting the influence of the
particle’s best position and the swarm’s best position, respectively, on the new velocity. The
variables r1 and r2 are pseudorandom numbers generated between zero (inclusively) and
one (exclusively). The vectors pi and gi are the particle’s best recorded position and the
swarm’s best recorded position, respectively. Finally, the vector xi denotes the particles’
position at the current iteration.

A minor adaptation of this velocity update formula includes another added constant
as its only change. The added constant is denoted by the letter w. This constant is called
the inertia weight and impacts the influence of the velocity at the current iteration. The rest
of the terms are denoted the same. This updated formula is [75]:

vi+1 = (w * vi) + (c1 * r1 * (pi − xi)) + (c2 * r2 * (gi − xi)) (2)

The velocity update equation for the proposed technique is a minor adaptation. The
only change from this formula to the one used for the proposed technique is the removal of
both stochastic variables. The removal of these variables was done to simplify the formula
slightly and add less randomness to the environment. This allows for fewer variables
changing the results of the proposed technique. The formula used for the proposed
technique is shown here with all terms denoted the same as previously:

vi+1 = (w * vi) + (c1 * (pi − xi)) + (c2 * (gi − xi)) (3)

The particle swarm was initialized with ten particles. The particles begin in random
locations of the search space. The swarm is then run for 100 iterations. The results of this
run are saved for the purpose of comparing them to the second particle swarm run.
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3.2. Step Two: Impactful Iteration Identification

The second step of the proposed technique is to calculate the most impactful iteration.
This step begins during the first particle swarm run. This particle swarm run will terminate
before the third step. To determine the most impactful iteration, a numerical variable for
determining impact was used. This variable was defined as the extent to which a particle
was influenced by other particles in one iteration. Impact was calculated for each particle
separately using the equation:

mi = gi − xi (4)

Here, mi identifies the impact at the current iteration, gi represents the global best
position of the swarm, and xi represents the current position of the particle. This formula
was derived from the definition included in the previous paragraph. The only point in
the algorithm where a particle is impacted by other particles is during the velocity update.
The only part of this equation containing effects from other particles during the current
iteration is the third term: c2 * (gi − xi).

There are two other terms of the equation. The first only includes the inertia weight
and the current velocity. Even though the current velocity does contain information that
was impacted by other particles, this information was updated in previous iterations. This
means that this term contains only information regarding the impact of previous iterations,
and thus is not considered for the calculation of the impact of the current iteration. The
second term, c1 * (pi − xi), contains a constant and the distance of the particle from its own
best previously recorded position. This term includes no information from other particles,
and thus is not included in the calculation of impact. The last term, c2 * (gi − xi), contains a
constant and the distance of the particle from the current global best position. Since the
global best position contains information from other particles, the last term has a direct
impact on the updating of the velocity of the particle. There are no other terms that include
information where a particle influences the particle in the current iteration. Thus, this is the
only term that is important in calculating impact. Finally, c2 is a constant that is the same
for every particle. Because of this, it was removed from the calculation of impact.

The most impactful iteration, which is defined as the iteration where the most impact
occurred, determines which iteration the algorithm will return to later.

In order to determine what the most effective iteration to travel back to would be,
the most impactful iteration was calculated in two different methods. In the first method,
shown in Listing 1, the most impactful iteration is calculated first by summing the impact of
each particle. Then, the total impacts for each iteration are compared. The iteration with the
highest total impact is the most impactful iteration. The second method, shown in Listing 2,
of calculating the most impactful iteration is similar to the first. The difference is that the
more impactful iteration only replaces the current most impactful iteration if it is greater by
a certain amount. For the purposes of this experiment, this was calculated by performing a
comparison during every iteration of the particle swarm run. This comparison involved
first subtracting the largest total impact recorded from the current total impact. Then, this
value was divided by the largest total impact recorded. The final value was compared
with a set value of 0.05. This value was chosen to ensure the increase was high enough to
be worth the computational resources of copying the swarm. If the calculated value was
greater than 0.05, then the current total impact replaced the recorded largest total impact. If
not, then the current total impact was ignored. For both methods, the largest total impact is
saved to be used in the next step.
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Listing 1. Impact Calculation Method 1.

GreatestTotalImpact = 0
Foreach Iteration After Iteration 1:

IterationTotalImpact = 0
For particle in swarm:

IterationTotalImpact += ImpactOfParticle
If IterationTotalImpact > GreatestTotalImpact:

GreatestTotalImpact = IterationTotalImpact

Listing 2. Impact Calculation Method 2.

GreatestTotalImpact = 0
ImpactThreshold = 0.05
Foreach Iteration after Iteration 1:

IterationTotalImpact = 0
For particle in swarm:

IterationTotalImpact += ImpactOfParticle
If (IterationTotalImpact-GreatestTotalImpact)/GreatestTotalImpact > ImpactThreshold:

GreatestTotalImpact = IterationTotalImpact

3.3. Third Step: Swarm Duplication

The third step is to create a copy of the particle swarm at the most impactful iteration
found in the previous step. Every variable is copied over. This includes the number of
particles, the positions of the particles, the velocities of the particles, the individual best
position found for each particle, and the global best position found by the swarm. This
copied swarm will be used for the second particle swarm run.

3.4. Fourth Step: Particle Swarm Run Completion

The fourth step is to finish the first particle swarm run. This particle swarm run is
finished by reaching a termination condition. The most common termination condition for
PSO is reaching a set a number of iterations of the algorithm running. This is necessary
because PSO typically does not find the global optimum, and it was the termination
condition used for this technique. The result found by terminating the particle swarm run
at this iteration is recorded for use in the last step.

3.5. Fifth Step: Duplicated Swarm Alternation

The fifth step, which is depicted in Figure 2, is to alter the copied swarm from step three.
The original velocity update formula for particle swarm contained stochastic variables.
This would result in a changed final result if the swarm was run beginning at the copied
iteration and terminated at the same iteration as the original. One major goal of the
proposed technique was for the particles to avoid being trapped by local optima. A concern
of using these variables as the only variation from the original swarm and the copied
swarm was that they may not provide a great enough change to escape a local optimum
in the second particle swarm run. Instead, a deterministic velocity update formula was
used, along with other changes, to solve this problem. The determinism of this formula
allows for a comparison of the changes presented with fewer stochastic variables altering
the results.

In order to test which form of alteration to the copied swarm would be most effective,
four different types of changes were analyzed. The first change randomized the velocities
of all particles. These velocities were randomized in the same range as they were first
randomized. New velocities, at this point, allow each particle to travel to a location very
different than they had in the initial particle swarm run. The particles will then travel back
toward the global optimum and the particle’s best recorded optimum, allowing for different
areas of the search space to be explored. The second change randomized the positions of
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each particle in the same range as they were first initialized. This also allowed each particle
to explore areas of the search space they normally would not explore. It also gives them a
head start towards the best global optimum found so far and each particle’s best recorded
optimum. The third change randomized the global best position. This change intended
to pull particles toward parts of the search space that were not very well explored, while
allowing them to also search for better locations along the way. The final change altered the
constant values used in the velocity update equation. The inertia weight (w), the individual
weight (c1), and the global weight (c2) were all changed. These weights began with the
values 0.65, 1.15, and 1.15, respectively. The constants were randomized in this change
between the ranges of 0.55–0.65, 1.2–1.3, and 1.0–1.1, respectively.
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3.6. Step Six: Altered Swarm Run Initiation

The proposed technique continues in the sixth step by initiating a new particle swarm
run using the copied and altered particle swarm. This run begins at the same iteration it
was copied from in step three. The run will still terminate at the same iteration specified for
the first particle swarm run. This means that the second particle swarm run will run for less
iterations than the first. For example, if the first run was specified to stop at iteration ten,
and was copied at iteration four, the second particle swarm run will go for six iterations.
The only alteration to this copied swarm is the change made during the fifth step.

3.7. Step Seven: Swarm Run Completion

Step seven is to finish the particle swarm run. This occurrs automatically when the
iteration count reaches the iterations specified by the termination condition. The best
position and value of this position is then recorded.

3.8. Step Eight: Swarm Results Comparison

The final step compares the best position recorded by the first and second particle
swarm runs. The best position of the two is used as the final output from the technique.
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4. Experimental Design

An experiment was performed to test the efficacy of the proposed technique through
the comparison of execution times, positions, and optima values. The proposed technique
was compared with basic PSO using the velocity update equation presented as Equation (3).

The impact of the four different changes and two different impact calculation methods
were compared and tested on four different two-dimensional functions. These functions
were chosen because of the high number of local optima, to test the proposed technique’s
effectiveness in finding new optima. They also had extremely large domains, and because
they are still difficult to optimize even with only two dimensions. Two-dimensional
functions were chosen for visualization and easier understanding. The four functions
used were:

Function 1:

a(x,y) = −10(((sin(x))/(x)) + ((sin(y))/(y))) (5)

Function 2:

a(x,y) = ((−10 sin(x))/(x)) + 0.005 yˆ(2) + 10 sin(y) (6)

Function 3:

a(x,y) = −((5 sin(x))/(x)) + abs(((x)/(10))) − ((5 sin(y))/(y)) + abs(((y)/(10))) (7)

Function 4:

a(x,y) = tanˆ(−1)(x) + sin(x) + 0.1 abs(x) + abs(((y)/(10))) (8)

The experiment tested each combination of change and impact calculation on each
function individually. It was conducted by running the proposed algorithm with each
of these differences 1000 times. The algorithm was run with a swarm of ten particles for
100 iterations. The time of the PSO section of the algorithm was recorded to compare with
the total time of the algorithm, which was recorded in the same run. The final best position
and values of both the regular particle swarm before backtracking to the impactful iteration,
and after the entire algorithm had finished were recorded. When all tests were completed,
averages of these values were calculated, which are presented in tables in Section 5.

In Section 6, a similar technique was used to collect performance data for several
benchmark functions. For these functions, only 100 runs per experimental condition
were performed.

5. Data and Analysis

This section presents the results of the experimentation performed using the four func-
tions described in the previous section. Section 5.1 describes and compares the performance
and speed of the proposed method with standard PSO. Section 5.2 describes how often
and to what extent the proposed technique evicenced improvement over standard particle
swarm optimization.

5.1. Performance and Time Comparison

This section compares the different speeds, changes in position, and changes in final
value between standard PSO and the proposed technique. The data are organized into
multiple tables to compare the efficacy of the technique with regards to different functions,
changes, and impact calculations. The column headers for each table in this section are
now described in detail.

“PSO Time” refers to the average length of time taken for particle swarm optimization
to calculate 100 iterations for ten particles. “Total Time” is the average time taken for the
entire proposed technique to run. This includes the time for all steps described in Section 3.
The average distance between the final best X1 position of the standard particle swarm
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run and the run of the proposed technique is represented by “Change in X1.” “Change in
X2” is the same as “Change in X1”, but with the X2 positions instead of the X1 positions.
“Change in value” is the average change from the PSO algorithm’s final optimum value
discovered to the proposed technique’s final optimum value discovered. Lower values for
this column mean that the average value improved from the proposed technique. “Value”
is the average value of the final optimum value discovered after ten iterations. Negative
values are better optima because the test aims to find the global minimum.

The data in this section are divided into three groups to facilitate comparison. These
groups show some of the same information from different perspectives. Tables 1–4 present
the results for functions 1 to 4, respectively. The second group, Tables 5–8, is organized by
the different changes made in step 5 of the algorithm. Finally, Tables 9 and 10 present the
two different impact calculation methods.

Table 1. Comparison of function 1.

PSO Time Total Time Change in
X1

Change in
X2

Change in
Value Value

F1, I1 & C1 1906.74 3656.92 34,078,812 267,861,325 −0.0295 −9.4024
F1, I1 & C2 1837.40 3542.67 26,018,991 283,211,393 0.0034 −9.5030
F1, I1 & C3 2069.83 3952.30 250,289,093 517,481,896 3.0996 −6.2696
F1, I1 & C4 1977.63 3805.72 22,425,846 222,378,901 −0.0513 −9.3670
F1, I2 & C1 2015.62 3986.66 36,024,424 274,591,924 0.1143 −9.2700
F1, I2 & C2 1887.17 3786.91 29,194,097 295,384,920 −0.0172 −9.5209
F1, I2 & C3 1859.88 3697.64 240,798,443 517,338,752 2.9458 −6.4036
F1, I2 & C4 1904.72 3813.94 21,392,322 228,101,911 0.0944 −9.3825

Table 2. Comparison of function 2.

PSO
Time

Total
Time

Change in
X1

Change in
X2

Change in
Value Value

F2, I1 & C1 2486.05 4800.38 177,429,539 4.6397 −0.0003 −9.8239
F2, I1 & C2 2469.92 4812.83 206,924,458 4.6868 0.0339 −9.8290
F2, I1 & C3 2434.81 4592.64 633,244,942 420,833,343 48,603,832,417 48,603,832,407
F2, I1 & C4 2421.85 4706.79 93,562,681 5.6614 0.1307 −9.7363
F2, I2 & C1 2437.54 4849.93 188,760,574 4.4250 0.0132 −9.8410
F2, I2 & C2 2441.50 4945.26 209,017,240 5.1077 0.0114 −9.8196
F2, I2 & C3 2418.41 4707.88 642,499,949 433,470,976 85,864,135,795 85,864,135,785
F2, I2 & C4 2417.00 4835.95 92,924,865 5.8958 0.1151 −9.7383

Table 3. Comparison of function 3.

PSO Time Total Time Change in
X1

Change in
X2

Change in
Value Value

F3, I1 & C1 2004.48 3883.06 15.4937 42.0990 2.4393 −4.2073
F3, I1 & C2 1996.79 3877.26 13.7871 13.4733 −0.5233 −7.2252
F3, I1 & C3 2009.03 3824.96 207,643,577 190,931,237 3,155,097 3,155,089
F3, I1 & C4 2037.09 3943.05 34.0384 12.6906 3.7742 −4.0658
F3, I2 & C1 2004.24 4029.31 9.8725 22.3586 −0.3845 −7.0554
F3, I2 & C2 1991.91 4010.13 34.8143 13.8667 2.4043 −4.7250
F3, I2 & C3 1999.80 3943.97 204,505,389 201,069,169 3,354,125 3,354,118
F3, I2& C4 1980.15 3979.76 14.6592 22.7822 1.3499 −5.5003
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Table 4. Comparison of function 4.

PSO Time Total Time Change in
X1

Change in
X2

Change in
Value Value

F4, I1 & C1 2141.81 4142.65 12.3266 17.8024 0.3539 −0.1905
F4, I1 & C2 2167.64 4189.43 7.9138 12.0675 −1.0295 −1.3873
F4, I1 & C3 2573.76 4864.35 327,232,859 305,720,882 2,319,123 2,319,122
F4, I1 & C4 2635.89 5110.99 19.9872 14.5960 1.4735 0.6155
F4, I2 & C1 2936.89 5873.21 8.8748 13.7558 0.4099 −0.5241
F4, I2 & C2 2606.76 5216.14 10.9687 13.9923 −1.0635 −1.1463
F4, I2 & C3 2755.83 5404.85 337,688,827 339,171,181 2,352,079 2,352,078
F4, I2 & C4 2717.42 5493.25 78.1190 12.3391 7.8356 6.5991

Table 5. Comparison of change 1.

PSO
Time Total Time Change in X1 Change in

X2
Change in

Value Value

F1, I1 & C1 1906.74 3656.92 34,078,812 267,861,325 −0.0295 −9.4024
F2, I1 & C1 2486.05 4800.38 177,429,539 4.6397 −0.0003 −9.8239
F3, I1 & C1 2004.48 3883.06 15.4937 42.0990 2.4393 −4.2073
F4, I1 & C1 2141.81 4142.65 12.3266 17.8024 0.3539 −0.1905
F1, I2 & C1 2015.62 3986.66 36,024,423.56 274,591,924 0.1143 −9.2700
F2, I2 & C1 2437.54 4849.93 188,760,573.76 4.4250 0.0132 −9.8410
F3, I2 & C1 2004.24 4029.31 9.8725 22.3586 −0.3845 −7.0554
F4, I2 & C1 2936.89 5873.21 8.8748 13.7558 0.4099 −0.5241

Table 6. Comparison of change 2.

PSO Time Total Time Change in
X1

Change in
X2

Change in
Value Value

F1, I1 & C2 1837.40 3542.67 26,018,991 283,211,393 0.0034 −9.5030
F2, I1 & C2 2469.92 4812.83 206,924,458 4.6868 0.0339 −9.8290
F3, I1 & C2 1996.79 3877.26 13.7871 13.4733 −0.5233 −7.2252
F4, I1 & C2 2167.64 4189.43 7.9138 12.0675 −1.0295 −1.3873
F1, I2 & C2 1887.17 3786.91 29,194,097 295,384,920 −0.0172 −9.5209
F2, I2 & C2 2441.50 4945.26 209,017,240 5.1077 0.0114 −9.8196
F3, I2 & C2 1991.91 4010.13 34.8143 13.8667 2.4043 −4.7250
F4, I2 & C2 2606.76 5216.14 10.9687 13.9923 −1.0635 −1.1463

Table 7. Comparison of change 3.

PSO
Time

Total
Time

Change in
X1

Change in
X2

Change in
Value Value

F1, I1 & C3 2069.83 3952.30 250,289,093 517,481,896 3.0996 −6.2696
F2, I1 & C3 2434.81 4592.64 633,244,942 420,833,343 48,603,832,417 48,603,832,407
F3, I1 & C3 2009.03 3824.96 207,643,577 190,931,237 3,155,097 3,155,089
F4, I1 & C3 2573.76 4864.35 327,232,859 305,720,882 2,319,123 2,319,122
F1, I2 & C3 1859.88 3697.64 240,798,443 517,338,752 2.9458 −6.4036
F2, I2 & C3 2418.41 4707.88 642,499,949 433,470,976 85,864,135,795 85,864,135,785
F3, I2 & C3 1999.80 3943.97 204,505,389 201,069,169 3,354,125 3,354,118
F4, I2 & C3 2755.83 5404.85 337,688,827 339,171,181 2,352,079 2,352,078
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Table 8. Comparison of change 4.

PSO Time Total Time Change in
X1

Change in
X2

Change in
Value Value

F1, I1 & C4 1977.63 3805.72 22,425,846 222,378,901 −0.0513 −9.3670
F2, I1 & C4 2421.85 4706.79 93,562,681 5.6614 0.1307 −9.7363
F3, I1 & C4 2037.09 3943.05 34.0384 12.6906 3.7742 −4.0658
F4, I1 & C4 2635.89 5110.99 19.9872 14.5960 1.4735 0.6155
F1, I2 & C4 1904.72 3813.94 21,392,322 228,101,911 0.0944 −9.3825
F2, I2 & C4 2417.00 4835.95 92,924,865 5.8958 0.1151 −9.7383
F3, I2 & C4 1980.15 3979.76 14.6592 22.7822 1.3499 −5.5003
F4, I2 & C4 2717.42 5493.25 78.1190 12.3391 7.8356 6.5991

Table 9. Comparison of impact 1.

PSO
Time

Total
Time

Change in
X1

Change in
X2

Change in
Value Value

F1, I1 & C1 1906.74 3656.92 34,078,812 267,861,325 −0.0295 −9.4024
F1, I1 & C2 1837.40 3542.67 26,018,991 283,211,393 0.0034 −9.5030
F1, I1 & C3 2069.83 3952.30 250,289,093 517,481,896 3.0996 −6.2696
F1, I1 & C4 1977.63 3805.72 22,425,846 222,378,901 −0.0513 −9.3670
F2, I1 & C1 2486.05 4800.38 177,429,539 4.6397 −0.0003 −9.8239
F2, I1 & C2 2469.92 4812.83 206,924,458 4.6868 0.0339 −9.8290
F2, I1 & C3 2434.81 4592.64 633,244,942 420,833,343 48,603,832,417 48,603,832,407
F2, I1 & C4 2421.85 4706.79 93,562,681 5.6614 0.1307 −9.7363
F3, I1 & C1 2004.48 3883.06 15.4937 42.0990 2.4393 −4.2073
F3, I1 & C2 1996.79 3877.26 13.7871 13.4733 −0.5233 −7.2252
F3, I1 & C3 2009.03 3824.96 207,643,577 190,931,237 3,155,097 3,155,089
F3, I1 & C4 2037.09 3943.05 34.0384 12.6906 3.7742 −4.0658
F4, I1 & C1 2141.81 4142.65 12.3266 17.8024 0.3539 −0.1905
F4, I1 & C2 2167.64 4189.43 7.9138 12.0675 −1.0295 −1.3873
F4, I1 & C3 2573.76 4864.35 327,232,859 305,720,882 2,319,123 2,319,122
F4, I1 & C4 2635.89 5110.99 19.9872 14.5960 1.4735 0.6155

Table 10. Comparison of impact 2.

PSO
Time

Total
Time

Change in
X1

Change in
X2

Change in
Value Value

F1, I2 & C1 2015.62 3986.66 36,024,424 274,591,924 0.1143 −9.2700
F1, I2 & C2 1887.17 3786.91 29,194,097 295,384,920 −0.0172 −9.5209
F1, I2 & C3 1859.88 3697.64 240,798,443 517,338,752 2.9458 −6.4036
F1, I2 & C4 1904.72 3813.94 21,392,322 228,101,911 0.0944 −9.3825
F2, I2 & C1 2437.54 4849.93 188,760,574 4.4250 0.0132 −9.8410
F2, I2 & C2 2441.50 4945.26 209,017,240 5.1077 0.0114 −9.8196
F2, I2 & C3 2418.41 4707.88 642,499,949 433,470,976 85,864,135,795 85,864,135,785
F2, I2 & C4 2417.00 4835.95 92,924,865 5.8958 0.1151 −9.7383
F3, I2 & C1 2004.24 4029.31 9.8725 22.3586 −0.3845 −7.0554
F3, I2 & C2 1991.91 4010.13 34.8143 13.8667 2.4043 −4.7250
F3, I2 & C3 1999.80 3943.97 204,505,389 201,069,169 3,354,125 3,354,118
F3, I2 & C4 1980.15 3979.76 14.6592 22.7822 1.3499 −5.5003
F4, I2 & C1 2936.89 5873.21 8.8748 13.7558 0.4099 −0.5241
F4, I2 & C2 2606.76 5216.14 10.9687 13.9923 −1.0635 −1.1463
F4, I2 & C3 2755.83 5404.85 337,688,827 339,171,181 2,352,079 2,352,078
F4, I2 & C4 2717.42 5493.25 78.1190 12.3391 7.8356 6.5991

Some trends can be seen in this data. Function 3 tends to have deviation from the
mean values and changes in value more than the other functions, even when change 3 is
removed from the calculations. Functions 1, 2, and 4 are more consistent in this regard.
Functions 1 and 2 tend to vary much more than functions 3 and 4 for the change in position
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when not considering change 3. It is likely that these large variations show that the particles
in proposed technique ended up in different minima for functions 1 and 2. The time taken
for PSO and the proposed technique varies by function.

When comparing the data from the perspective of changes instead of functions, some
interesting trends stand out. First, and most notably, change 3 finds consistently worse
values, by many orders of magnitude, in all tests. This shows that change 3 does not
perform well at finding optimum values. The average time taken for PSO runs is consistent
when comparing different changes. This is because the changes do not affect the PSO
process. Another notable trend is that the differences between the total time taken for
each change vary very little. This demonstrates that the different benefits of the changes
have similar costs. Apart from change 3, changes in position are more correlated with the
function than with the type of change. This shows that these changes are capable of finding
new minima in functions 1 and 2, as was the goal of the technique.

The average of the PSO times for impact calculation 1 was approximately 2198.17. For
impact calculation 2, it was approximately 2273.43. The lack of major change here was
expected because standard PSO does not use the impact calculation. The average of the
total time for iteration 1 was approximately 4231.63, while it was 4535.92 for iteration 2.
This is also not a major change. The changes in the other columns, between the two iteration
calculation methods, are also minor.

5.2. Improvement Comparison

This section evaluates the frequency of the improvement of the proposed technique
and the magnitude of the improvement when it occurs. The table headers for the data
presented in this section are now described in detail.

“Runs Improved” represents the percentage of runs, out of 1000, where the proposed
technique found a better solution than standard PSO. “Improvement” indicates the average
change from the PSO’s final optimum value discovered to the proposed technique’s final
optimum value discovered during runs where improvement occurred. This is the same as
the “Change in Value” from Section 5.1 with the values where improvement did not occur
excluded from the calculation.

The tables in this section are grouped similarly to in Section 5.1. They are split into three
groups with each group containing all information from the data in this section. The groups
allow for an easier comparison of data. Tables 11–14 are grouped by function. Tables 15–18
are grouped by the four changes. The last group is comprised of Tables 19 and 20, which
are organized by the different PSO impact calculations.

Table 11. Improvement of function 1.

Runs Improved Improvement

F1, I1 & C1 41.7% −0.8570
F1, I1 & C2 38.7% −0.8668
F1, I1 & C3 26.1% −1.5409
F1, I1 & C4 67.3% −0.5053
F1, I2 & C1 41.7% −0.8591
F1, I2 & C2 38.0% −0.8442
F1, I2 & C3 28.4% −1.4751
F1, I2 & C4 59.5% −0.4014
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Table 12. Improvement of function 2.

Runs Improved Improvement

F2, I1 & C1 48.3% −0.2692
F2, I1 & C2 42.4% −0.2193
F2, I1 & C3 68.0% −0.1428
F2, I1 & C4 46.1% −0.1703
F2, I2 & C1 44.3% −0.2222
F2, I2 & C2 44.8% −0.2653
F2, I2 & C3 62.0% −0.0917
F2, I2 & C4 50.8% −0.1854

Table 13. Improvement of function 3.

Runs Improved Improvement

F3, I1 & C1 42.9% −6.1536
F3, I1 & C2 42.1% −6.1991
F3, I1 & C3 25.7% −4.2054
F3, I1 & C4 45.2% −3.2761
F3, I2 & C1 45.3% −6.0144
F3, I2 & C2 40.1% −5.3847
F3, I2 & C3 25.9% −4.0437
F3, I2& C4 43.9% −5.3050

Table 14. Improvement of function 4.

Runs Improved Improvement

F4, I1 & C1 45.1% −2.6140
F4, I1 & C2 48.9% −2.8208
F4, I1 & C3 15.9% −3.5479
F4, I1 & C4 47.0% −1.8359
F4, I2 & C1 44.9% −1.7645
F4, I2 & C2 49.4% −3.3121
F4, I2 & C3 17.1% −0.7406
F4, I2 & C4 42.7% −1.1226

Table 15. Improvement of change 1.

Runs Improved Improvement

F1, I1 & C1 41.7% −0.8570
F2, I1 & C1 48.3% −0.2692
F3, I1 & C1 42.9% −6.1536
F4, I1 & C1 45.1% −2.6140
F1, I2 & C1 41.7% −0.8591
F2, I2 & C1 44.3% −0.2222
F3, I2 & C1 45.3% −6.0144
F4, I2 & C1 44.9% −1.7645

Table 16. Improvement of change 2.

Runs Improved Improvement

F1, I1 & C2 38.7% −0.8668
F2, I1 & C2 42.4% −0.2193
F3, I1 & C2 42.1% −6.1991
F4, I1 & C2 48.9% −2.8208
F1, I2 & C2 38.0% −0.8442
F2, I2 & C2 44.8% −0.2653
F3, I2 & C2 40.1% −5.3847
F4, I2 & C2 49.4% −3.3121
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Table 17. Improvement of change 3.

Runs Improved Improvement

F1, I1 & C3 26.1% −1.5409
F2, I1 & C3 68.0% −0.1428
F3, I1 & C3 25.7% −4.2054
F4, I1 & C3 15.9% −3.5479
F1, I2 & C3 28.4% −1.4751
F2, I2 & C3 62.0% −0.0917
F3, I2 & C3 25.9% −4.0437
F4, I2 & C3 17.1% −0.7406

Table 18. Improvement of change 4.

Runs Improved Improvement

F1, I1 & C4 67.3% −0.5053
F2, I1 & C4 46.1% −0.1703
F3, I1 & C4 45.2% −3.2761
F4, I1 & C4 47.0% −1.8359
F1, I2 & C4 59.5% −0.4014
F2, I2 & C4 50.8% −0.1854
F3, I2 & C4 43.9% −5.3050
F4, I2 & C4 42.7% −1.1226

Table 19. Improvement of impact 1.

Runs Improved Improvement

F1, I1 & C1 41.7% −0.8570
F1, I1 & C2 38.7% −0.8668
F1, I1 & C3 26.1% −1.5409
F1, I1 & C4 67.3% −0.5053
F2, I1 & C1 48.3% −0.2692
F2, I1 & C2 42.4% −0.2193
F2, I1 & C3 68.0% −0.1428
F2, I1 & C4 46.1% −0.1703
F3, I1 & C1 42.9% −6.1536
F3, I1 & C2 42.1% −6.1991
F3, I1 & C3 25.7% −4.2054
F3, I1 & C4 45.2% −3.2761
F4, I1 & C1 45.1% −2.6140
F4, I1 & C2 48.9% −2.8208
F4, I1 & C3 15.9% −3.5479
F4, I1 & C4 47.0% −1.8359

Several conclusions can be drawn from comparing the first group of tables, which
compare the different functions. The average values for the column “runs improved”
for Tables 1–4 are 42.7%, 36.2%, 38.9%, and 38.9%, respectively. This shows that the
proposed technique was effective most often for function 1, effective less frequently for
functions 3 and 4, and effective least often for function 2. The average values for the column
“Improvement” for the same tables are −0.92, −0.20, −5.07, and −2.22, respectively. This
means that the when the proposed technique improved, it improved much more for
function 3 than the other functions. The technique shows the next best improvement for
function 4, then function 1, then finally, function 2. Looking at the columns together, the
technique performed the worst for function 2 in terms of both metrics.



AI 2022, 3 406

Table 20. Improvement of impact 2.

Runs Improved Improvement

F1, I2 & C1 41.7% −0.8591
F1, I2 & C2 38.0% −0.8442
F1, I2 & C3 28.4% −1.4751
F1, I2 & C4 59.5% −0.4014
F2, I2 & C1 44.3% −0.2222
F2, I2 & C2 44.8% −0.2653
F2, I2 & C3 62.0% −0.0917
F2, I2 & C4 50.8% −0.1854
F3, I2 & C1 45.3% −6.0144
F3, I2 & C2 40.1% −5.3847
F3, I2 & C3 25.9% −4.0437
F3, I2 & C4 43.9% −5.3050
F4, I2 & C1 44.9% −1.7645
F4, I2 & C2 49.4% −3.3121
F4, I2 & C3 17.1% −0.7406
F4, I2 & C4 42.7% −1.1226

There are also several notable trends in the data for the second group of tables com-
paring the efficacy of the changes. First, change 3 improved significantly less often than the
other three changes. The average values for the column “runs improved” for change 3 was
19.0%, while for changes 1, 2, and 4, the average values for this column were 44.3%, 43.1%,
and 50.3%, respectively. Changes 1 and 2 improved approximately as often as each other.
Change 4 improved the most often. The average values for the column “improvement”
are −2.34, −2.49, −1.97, and −1.60 for changes 1, 2, 3, and 4, respectively. This data show
that change 3 provided the third least improvement when improvement occurred. This,
combined with the trend that change 3 improved the least often, shows that the other
changes were more effective than change 3. Changes 1 and 2 caused improvement by simi-
lar amounts when improvement occurred and improved significantly more than change 4.
Change 4 caused improvement by the least on runs where improvement occurred.

When comparing the results for group 3, there is not much difference between the
two. The average value for the column “runs improved” is 39.4% for Table 9 and 39.1%
for Table 10, while for the column “Improvement” the values are −2.20 for Table 9 and
−2.09 for Table 10. This shows that the two different impact calculations are approximately
the same in terms of how often they indicate that the proposed technique improved and
how much the proposed technique improved. Figures 3 and 4 show the frequency of
improvement, for each function, for all of the changes.
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6. Evaluation with Standard PSO Benchmark Functions

The proposed technique was also tested with ten functions that have been used, in
the past, as benchmarks for testing PSO and new techniques based on PSO [76]. This data
is presented in Tables 21–30. Functions 1, 2, 4, 5, and 7 were used to test an improved
PSO algorithm in [77]. Functions 1, 2, 3, 4, and 7 were also used for testing another
improved PSO algorithm in [78]. Additionally, functions 1, 2, 3, 4, 5, 7, and 10 have been
considered when deciding which benchmark functions should be made as an acceptable
standard for testing PSO algorithms [79]. All of the functions used for this section were
tested with 20 dimensions, except for functions 9 and 10. Functions 1, 3, 6, 8, 9, and
10 are known as the Rastrigin Function, Griewank Function, Schewefel Function, Sine
Function, Himmelblau Function, and Shubert Function, respectively [76]. These functions
are highly multimodal, which make them effective choices for testing the efficacy of PSO-
based techniques. Function 2, the Spherical Function, and function 4 have considerably
fewer minima. Function 5 is an interesting function because it adds noise with the random
variable to make it more difficult to optimize. These tests were performed in a similar
manner as those in Section 5. For each experimental condition, 100 tests of ten particles
on 100 iterations were conducted and averaged for each combination of function, impact
method, and change.

Table 21. Comparison with benchmark function 1.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F1, I1 & C1 9318 17,329 0 0 1 0% N/A
F1, I1 & C2 8940 16,912 0 0 1 0% N/A
F1, I1 & C3 8925 16,762 0.0247 0 1 0% N/A
F1, I1 & C4 8846 16,790 0 0 1 0% N/A
F1, I2 & C1 8971 16,971 0 0 1 0% N/A
F1, I2 & C2 8968 16,985 0 0 1 0% N/A
F1, I2 & C3 8957 16,813 −0.1124 0 1 0% N/A
F1, I2 & C4 8959 16,917 0 0 1 0% N/A
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Table 22. Comparison with benchmark function 2.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F2, I1 & C1 5064 9580 0.0092 −0.4120 27.2435 50% −9.6565
F2, I1 & C2 5087 9626 0.0367 7.5621 26.6005 83% −9.1360
F2, I1 & C3 5173 9720 −0.0005 8.0648 28.5200 74% −7.9428
F2, I1 & C4 5311 9857 −0.0214 3.8585 26.9951 70% −5.8806
F2, I2 & C1 5207 9763 0.0552 0.1058 27.7079 52% −8.9848
F2, I2 & C2 5205 9769 0.0528 7.2876 27.3065 74% −8.0300
F2, I2 & C3 5167 9738 −0.0549 9.7383 28.7330 80% −6.4364
F2, I2 & C4 5209 9771 0.0030 1.5293 25.6713 51% −6.2276

Table 23. Comparison with benchmark function 3.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F3, I1 & C1 10,283 19,323 0 0 1 0% N/A
F3, I1 & C2 10,063 19,087 0 0 1 0% N/A
F3, I1 & C3 10,117 19,119 −13.6258 0 1 0% N/A
F3, I1 & C4 10,117 19,144 0 0 1 0% N/A
F3, I2 & C1 10,057 19,080 0 0 1 0% N/A
F3, I2 & C2 10,147 19,215 0 0 1 0% N/A
F3, I2 & C3 10,359 19,480 −8.9945 0 1 0% N/A
F3, I2 & C4 10,191 19,217 0 0 1 0% N/A

Table 24. Comparison with benchmark function 4.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F4, I1 & C1 18,297 35,081 0.0216 −391,077 9,682,501 51% −7,093,880
F4, I1 & C2 18,130 34,914 0.0223 2,934,024 7,950,988 72% −4,359,232
F4, I1 & C3 18,048 34,785 0.3493 3,345,096 8,617,884 70% −6,209,680
F4, I1 & C4 18,310 35,131 0.0865 2,065,790 8,335,492 54% −3,640,395
F4, I2 & C1 18,007 34,736 0.1709 −753,083 7,469,017 48% −5,543,224
F4, I2 & C2 18,205 34,980 0.0668 2,601,946 7,449,964 72% −5,552,574
F4, I2 & C3 18,179 34,974 0.0382 3,872,248 9,314,394 70% −4,400,500
F4, I2 & C4 18,011 34,773 0.1183 1,521,172 9,061,885 62% −5,372,956

Table 25. Comparison with benchmark function 5.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F5, I1 & C1 11,606 21,922 −0.0011 0.0493 4.1104 52% −2.2445
F5, I1 & C2 11,209 21,489 0.0090 1.5136 4.0880 79% −2.5291
F5, I1 & C3 11,273 21,538 −0.0080 2.0433 4.3406 76% −1.1821
F5, I1 & C4 11,377 21,645 −0.0024 1.0877 4.6155 59% −1.3654
F5, I2 & C1 11,263 21,566 0.0006 −0.8312 3.9002 52% −3.6427
F5, I2 & C2 11,219 21,536 0.0023 1.9756 4.5419 80% −2.1435
F5, I2 & C3 11,437 21,705 −0.0089 2.7756 5.4746 74% −2.2397
F5, I2 & C4 11,459 21,754 0.0047 1.4385 5.2161 66% −1.5336
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Table 26. Comparison with benchmark function 6.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F6, I1 & C1 9629 18,133 5.8234 49.3390 −3068 55% −749.3261
F6, I1 & C2 9435 17,918 6.3788 11.5119 −3113 53% −644.3833
F6, I1 & C3 9361 17,676 −20.7022 −584.7923 −3083 28% −1065.7971
F6, I1 & C4 9359 17,832 −10.6618 3.7847 −2915 49% −468.4169
F6, I2 & C1 9686 18,351 −1.4783 70.2354 −3048 52% −577.0189
F6, I2 & C2 9351 17,840 1.5395 81.6112 −3087 56% −636.2701
F6, I2 & C3 9384 17,758 −33.7632 −368.4185 −3049 31% −848.1303
F6, I2 & C4 9313 17,826 0.4329 −85.4887 −3037 43% −608.0977

Table 27. Comparison with benchmark function 7.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F7, I1 & C1 9657 18,146 0 0 3.7183 0% N/A
F7, I1 & C2 9485 18,032 0 0 3.7183 0% N/A
F7, I1 & C3 9389 17,889 0.6205 0 3.7183 0% N/A
F7, I1 & C4 9459 17,972 0 0 3.7183 0% N/A
F7, I2 & C1 9687 18,210 0 0 3.7183 0% N/A
F7, I2 & C2 9756 18,297 0 0 3.7183 0% N/A
F7, I2 & C3 9451 17,944 −1.5810 0 3.7183 0% N/A
F7, I2 & C4 9448 17,940 0 0 3.7183 0% N/A

Table 28. Comparison with benchmark function 8.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F8, I1 & C1 22,987 44,161 −0.0383 0.1029 −4.6241 52% −0.8649
F8, I1 & C2 22,849 44,009 −0.0438 0.1850 −4.6897 58% −0.9351
F8, I1 & C3 22,806 43,804 0.1100 −0.6258 −4.8657 36% −1.5932
F8, I1 & C4 22,996 44,384 −0.0169 −0.0445 −4.5657 44% −0.7414
F8, I2 & C1 22,961 44,214 −0.0723 0.1657 −4.6208 54% −0.8010
F8, I2 & C2 22,859 43,995 −0.0159 0.1207 −4.9178 54% −0.7732
F8, I2 & C3 22,846 43,935 0.2216 −0.7431 −4.9491 31% −1.5442
F8, I2 & C4 23,068 44,248 0.0093 −0.0877 −4.8044 41% −0.8018

Table 29. Comparison with benchmark function 9.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F9, I1 & C1 5199 9619 0.0466 0.0535 1.0017 24% −0.5949
F9, I1 & C2 5162 9560 −0.0013 0.0737 0.6616 19% −0.9214
F9, I1 & C3 5145 9471 0.0304 −0.8746 0.3072 25% −2.7818
F9, I1 & C4 5102 9516 −0.0666 0.1514 1.1479 26% 0.0000
F9, I2 & C1 5007 9391 −0.0216 −0.1897 1.1415 22% −1.4582
F9, I2 & C2 5042 9469 −0.0940 0.1708 0.7372 26% −1.0355
F9, I2 & C3 4971 9270 0.1578 −0.8412 0.7867 27% −3.6594
F9, I2 & C4 5278 9729 0.0060 0.0155 0.8567 14% −0.3658
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Table 30. Comparison with benchmark function 10.

PSO Time Total Time Change in X Change in
Value Value Runs

Improved Improvement

F10, I1 & C1 6822 12,704 −0.0494 0.6181 −22.5957 54% −3.0810
F10, I1 & C2 6734 12,620 −0.1095 0.8752 −21.8569 43% −2.1479
F10, I1 & C3 6684 12,564 0.0234 −0.7976 −22.9332 25% −2.8714
F10, I1 & C4 6638 12,614 −0.0540 −0.5018 −22.5002 44% −4.1088
F10, I2 & C1 6698 12,570 0.0779 0.4714 −22.7737 46% −2.5588
F10, I2 & C2 6796 12,721 −0.0070 0.5604 −22.8090 45% −2.5770
F10, I2 & C3 6784 12,688 0.2066 −0.2227 −23.3400 39% −2.6049
F10, I2 & C4 6799 12,819 0.1804 −0.2463 −23.0105 43% −3.0330

Several conclusions can be drawn from looking at the results of the tests on the
benchmark functions. Most notably, change 3 performed much better running against these
functions as compared to the functions discussed in Section 5. In Section 5, change 3 was
outperformed by the other changes in both improvement frequency and improvement
amount on most functions. In this section, change 3 had a significantly higher improvement
level for functions 6, 8, and 9 than the other changes. It also improved about as often as the
other changes for functions 2 and 9. It also performed well, improving the most or second
most often, for functions 4 and 5.

Change 2 performed similarly to these functions as it had for the functions in Section 5.
It performed better more often than the other changes, on average, for most functions. This
is similar to the results from Section 5. There is a major difference for change 1 with these
functions. Change 2 outperformed change 1 notably, in terms of frequency of improvement,
for functions 2, 4, and 5. These changes were roughly equal in performance for the tests
in Section 5. Change 1 still outperformed change 2 for functions 9 and 10, although not
by much.

Similar to change 2, change 4 did about as well for the benchmark functions as it
performed in Section 5. Change 4 performed moderately well for the functions in Section 5
and repeated this trend for the benchmark functions. It was rarely the best or the worst
change for the benchmark functions in terms of frequency of improvement. In terms of
improvement amount, it tended to do worse than all other changes on average. It did show
the highest improvement on function 10, however. Figures 5 and 6 show the frequency of
improvement, for each function, for all of the changes.
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Compared to other algorithms, which have been previously analyzed by others, the
approaches proposed herein would appear to outperform some and underperform others.
As there are considerable differences in the testing conditions used by prior work, direct
comparison has notable limitations. Engelbrecht [78], who noted the importance of the
swarm size in comparisons, performed evaluations with a swarm size of ten (as did the
work presented herein), among other sizes. Performance with this swarm size ranged
from 1.34 to 4.90, with overall values (across all swarm sizes) ranging from 0.00 to 5.08.
Pant, Thangaraj, and Abraham [76], using four different algorithms and three different
initialization techniques found results as high as 22.34 and as low as nearly 0, for functions
with a 0 ideal value. Yi [77], similarly, compared four functions, returning values as high as
52.43 and as low as nearly 0, for functions with a 0 ideal value. This was also the case with
the work of Uriarte, Melin, and Valdez [79], who compared two functions and had average
values as high as 4.26 and as low as 0 (again, for functions with a 0 ideal value). These prior
studies, though, failed to report the percentage or number of runs improved. Additionally,
some studies reported far better base PSO results than were seen in this study, further
impairing the direct comparison of results. As the techniques proposed herein have the
potential to be added to other techniques to further improve their performance, additional
study of the discussed techniques and the proposed algorithms’ ability to perform them is
a key area of potential future work.

7. Conclusions and Future Work

This paper has proposed a new method for solving optimization problems based upon
particle swarm optimization, which has been inspired by science-fiction time travel. It
has also presented and analyzed experimentation showing the efficacy of the proposed
technique. A description of the proposed technique was provided, experimentation was
described in detail, and the effectiveness of the technique was demonstrated using the data
presented in Sections 5 and 6.

The method outlined in this paper, which is based on PSO, uses an eight-step process.
It initiates a particle swarm run, calculates the most impactful iteration of the run, copies the
swarm at the impactful iteration, terminates the particle swarm run, makes a change to the
copied particle swarm, begins a second particle swarm run with the copied particle swarm,
terminates the second particle swarm run, compares the results of the two particle-swarm
runs, and selects the best solution.

The experimentation described in this paper characterized the efficacy of the proposed
technique on four different complex functions and ten standard benchmark functions.
The proposed technique was compared to the basic form of PSO. For the proposed tech-
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nique, four different variations of changes were tested along with two different impact
calculation methods.

The analysis of the proposed technique, operating under the four functions presented
in Section 5, shows that it is capable of improving PSO’s performance with all four change
types. Function 1 experienced improvement the most often, of the functions, and function
3 experienced the most improvement, when improvement occurred. Change 3 produced
the worst improvement; however, it might have utility in finding minima, due to the
substantial position change it incorporates. Change 4 caused improvement the most often,
but caused the least improvement. Changes 1 and 2 caused the most improvement, when
improvement occurred, but did not cause improvement as often as change 4 did. Different
impact calculation methods were not shown to have a notable effect on the results.

Section 6 showed that all four changes were capable of improving performance for
many of the benchmark functions. The changes caused improvement for functions 2, 4,
5, 6, 8, 9, and 10. They did not cause improve for functions 1, 2, and 7. For all three
functions, where the technique did not provide an improvement, the technique produced
the same results as basic PSO. The results from testing on benchmark functions, in terms
of the performance of the different change types, were somewhat different than the four
functions presented in Section 5. For the benchmark functions, change three was often more
effective than change 4. Change 2 proved to be the most effective change, for the benchmark
functions, both in terms of the frequency of improvement and the amount of improvement
when change occurred. Change 1 performed second best in regards to both of these metrics.
Changes 3 and 4 excelled in different areas from each other. Change 3 performed better in
terms of the amount of improvement produced. Change 4 performed better in terms of the
frequency of improvement produced.

These findings show that each of the changes could have potential applications.
Change 4 could be used in cases where a reliable slight improvement is more impor-
tant than a lower chance at a high improvement in an optimization problem. Changes 1
and 2 could be used in the opposite situation, where a chance at a high improvement is
more important. Change 3 could be used for applications where exploring new areas of a
search space is valued the most. The PSO process could potentially be run multiple times
or different changes could be used in conjunction with one another to take advantage of
their different strengths. For example, the first and second changes could first be used
together for a particular application for a larger improvement. If these fail to produce
an improvement, change 4 could be used to attempt to achieve a smaller improvement
with a higher chance of improvement. Change 3 could also be added in to explore new
areas of the search space to find undiscovered minima, while giving a low chance of a high
improvement as well. Combinations of the number of iterations and changes might also
have some benefit. These, along with trying the technique with other PSO techniques, are
all potential areas of future work.
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