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Abstract: We present a supervised deep neural network model for phase retrieval of coherent X-ray
imaging and evaluate the performance. A supervised deep-learning-based approach requires a large
amount of pre-training datasets. In most proposed models, the various experimental uncertainties
are not considered when the input dataset, corresponding to the diffraction image in reciprocal space,
is generated. We explore the performance of the deep neural network model, which is trained with
an ideal quality of dataset, when it faces real-like corrupted diffraction images. We focus on three
aspects of data qualities such as a detection dynamic range, a degree of coherence and noise level.
The investigation shows that the deep neural network model is robust to a limited dynamic range
and partially coherent X-ray illumination in comparison to the traditional phase retrieval, although
it is more sensitive to the noise than the iteration-based method. This study suggests a baseline
capability of the supervised deep neural network model for coherent X-ray imaging in preparation
for the deployment to the laboratory where diffraction images are acquired.
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1. Introduction

Phase retrieval problems, meaning the problem of recovering a complex-valued object
from intensities alone, are a ubiquitous challenge spanning from quantum physics, elec-
tron microscopy, crystallography, X-ray imaging and astronomy [1–5]. In coherent X-ray
diffractive imaging (CDI), the X-ray beam illuminates an object of interest and diffracted
intensities are measured in the far field. It is essential to solve the phase retrieval problem
in CDI to reconstruct the image of an object in real space. The phase retrieval employing
an iterative method provides a unique solution when the particular requirements for the
convergence are satisfied [6,7]. In experiments, an object has to be illuminated by a coherent
X-ray beam and the data should be well oversampled [8,9]. In the image reconstruction
process, at least several hundreds of iterations are needed and multiple runs with a random
guess of initial phases are required to gain a reliable solution [10–12]. The fundamental
idea for the iteration-based approach is that the function goes back and forth between real
and reciprocal space by using Fourier transformation repeatedly. During the iterations,
it is refined by the constraints until it reaches a converged solution in real space [13–16].
Coherent X-ray diffractive imaging has grown to be a powerful technique to explore in
situ and operando dynamics of materials at the modern X-ray sources such as synchrotron
storages and fourth-generation X-ray free-electron lasers [17–22]. Despite the advantages,
it does not deliver a solution in a timely manner due to the iterative nature.

It has been demonstrated that a deep neural network-based method, which is a
non-iterative end-to-end method, provides rapid results for phase retrieval in 2D and 3D
coherent X-ray imaging [23–26]. Moreover, there have been rapid progresses for optical
tomography [27,28], ghost imaging [29,30], face detection [31], growth stage detection [32],
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and low photon imaging [33]. In addition, an unsupervised approach has been developed
to overcome the limitations that the supervised neural networks can have due to aiming
for matching a particular label [34,35]. In the future, a deep learning-based image recon-
struction is expected to be deployed and used in a laboratory where diffraction images
are collected. Most proposed supervised neural network models have a tacit assumption
that diffraction images for the training and test are collected under flawless and ideal
experimental conditions. For instance, the models assume that input image data has a
constant degree of dynamic range, noise-free, and fully coherent illumination. There are,
however, inherently technical limitations in experiments, preventing us from obtaining
an accurate and clear diffraction image [36,37]. In reality, there are various experimental
uncertainties including an imperfection of optical elements, vacuum quality in the beam
transport system, and detector performance, etc. The combinations of these parameters
affect the resultant quality of diffraction images. The conventional phase retrieval algo-
rithm has been continuously improved to be robust to the low quality of actual images
obtained from experiments [38–42]. Since the ultimate goal of neural network models for
the phase retrieval is to perform the best with the actual diffraction images, it is crucial
to understand how sensitive the model is to different aspects of image qualities and find
a baseline capability of the model. We present a supervised deep neural network model
for image prediction based on the diffraction images and conducted the evaluation of the
performance in a systematic way.

2. Materials and Methods
2.1. Coherent X-ray Imaging

We consider the diffraction phenomenon in the kinetic regime, which can be analyt-
ically described using the classical formulation of the kinetic scattering of X-rays from
crystalline materials [43] as shown in Figure 1a. It allows the Fourier transformation
relationship between an object and its measured intensity [38].

f (x) = | f (x)|exp[iη(x)] (1)

where f (x) is a complex-valued object and η(x) is its phase. The Fourier transformation of
the object is expressed as follows [38].

F(u) = |F(u)|exp[iψ(u)] = FT[ f (x)] (2)

where FT denotes the Fourier Transformation. The goal of phase retrieval is to find an
amplitude and phase of f (x) with a given |F(u)|, which is from the intensity recorded
on a detector. In order to recover a complex-valued object, the Gerchberg–Saxton (G-S)
algorithm [38], which is the iteration-based phase retrieval algorithm, is widely used. While
a complex-valued function is going back and forth between real and reciprocal space, the
constraints are applied in each space and eventually a converged solution is obtained,
which is an object image that consists of amplitude and phase. The concept of the G-S
algorithm and an example of converged solution are displayed in Figure 1b,c, respectively.
The real space constraints ensure that the amplitude outside of the support, in which the
object is assumed to exist is set to zero. In reciprocal space, the amplitude of complex-value
is replaced with the square root of intensity.
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Figure 1. (a) A schematic of experimental setup for coherent X-ray imaging. Coherent X-ray beam
illuminates a sample in a transmission geometry and a diffracted image is recorded on a detector
in a far field. (b) A conceptual architecture of the Gerchberg–Saxton algorithm. A diffracted image
obtained in experiment is used for a constraint in reciprocal space. (c) A reconstructed amplitude of
an object results from the Gerchberg–Saxton algorithm.

The Gerchberg–Saxton (G-S) algorithm [38] consists of iterating over the following
four steps. (1) Fourier transform an estimate of the object; (2) replace the modulus of the
resulting computed Fourier transform with measured Fourier modulus; (3) inverse Fourier
transform the updated function in (2); and (4) replace the modulus of the computed inverse
transform with the measured object modulus as the estimated object in a new round of
iteration. It can be written in expressions as follows:

Gk(u) = |Gk(u)|exp[i∅k(u)] = FT[gk(x)] (3)

G′k(u) = |F(u)|exp[i∅k(u)] (4)

g′k(x) = |g′k(x)|exp[iθ′k(x)] = FT−1[G′k(u)] (5)

gk+1(x) = | f (x)|exp[iθk+1(x)] = | f (x)|exp[iθ′k(x)] (6)

where gk, θk, G′k, and ∅k are estimates of f, η, F and ψ, respectively. In the case of error-
reduction (ER) algorithm [38], the first three steps are identical to that of G-S algorithm,
and fourth step is given by

gk+1(x) =
{

g′k(x), i f x ∈ γ
0, i f x /∈ γ

(7)

where γ is the set of points where real space constraints are not violated. The hybrid
input-output (HIO) algorithm [38] is modified from ER algorithm.

gk+1(x) =
{

g′k(x), i f x ∈ γ
gk(x)− βg′k(x), i f x /∈ γ

(8)

where β is a constant ranging from 0 to 1. Unlike the G-S algorithm, our approach is to train
an end-to-end deep neural network model so that we can obtain a solution instantly without
the refinement. The process flows as follows: First, we develop a deep convolutional neural
network model for phase retrieval of coherent X-ray imaging. This is the model trained
and tested with the ideal diffraction images generated based on the X-ray scattering theory.
Once it is confirmed that the model is reliable, the diffraction images with artifacts are fed
into it.

2.2. Scope of Image Qualities

Among many different kinds of artifacts in diffraction images, we focus on those
associated with a spatial resolution and occur inevitably in experiments such as a detection
dynamic range, a degree of coherence and noise level. The diffraction images that have
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artifacts are manipulated from ideal images by adding noises or blurring with convolution
of Gaussian filters or cutting intensities below certain thresholds. Depending on the artifacts
on diffraction images, the performance of the deep neural network model would be poorer
than in the absence of artifacts. Similarly, the iterative phase retrieval algorithm can produce
reconstructed images that contain artifacts or fail to converge at all.

2.2.1. Degree of Coherence

Needless to say, the illuminating wavefields are required to be coherent in coher-
ent X-ray imaging. However, most coherent X-ray imaging experiments are performed
at third-generation synchrotron or electron sources that are not fully coherent, although
highly coherent [44–46]. In practice, the majority of the synchrotron undulator sources
have a limited degree of partial coherence, leading to a lower speckle contrast in coher-
ent diffraction images [47]. If it is assumed that the incoming X-ray is fully coherent,
there is a simple Fourier transformation relationship between the object shape and its
diffracted intensity. However, the recorded intensity from partially coherent illumination is
as follows [36,43,48].

Ipc(q) = Ic(q)⊗ γ̂(q) (9)

where Ipc(q) and Ic(q) are the partially coherent intensity and fully coherent intensity,
respectively. γ̂(q) is the Fourier transformation of mutual coherence function (MCF) and ⊗
denotes a convolutional operator.

The effect of Equation (9) is blurring the coherent intensity by convolution with the
Fourier transform of the normalized MCF [49], which is assumed to be a 2D Gaussian
distribution.

2.2.2. Detection Dynamic Range

A dynamic range is an extent of modulation in diffraction images and the diffracted
intensity decays dramatically with a spatial frequency. Because a dynamic range contributes
to a spatial resolution in coherent X-ray imaging, it is crucial to increase the dynamic range
as much as possible while avoiding the damage of samples by the adjustment of exposure
time or accumulation of repeated exposures [50,51]. The detection dynamic range is limited
by the susceptibility of a sample to the X-ray beam, and the capability of a detector including
the robustness to an electrical uncertainty and the efficiency of a detection. In this study,
we apply different thresholds for the minimum intensity by enforcing the intensity below it
zero to generate various dynamic ranges in diffraction images [52].

2.2.3. Noise Level

A noise is one of the artifacts that contributes to the degradation of diffraction images.
Any deviation of the measured intensity from the true intensity can make errors in the
reconstruction of images [53]. Sources of noise can include shot noise, any X-ray signal
from external sources and the noise associated with thermal and mechanical uncertainty of
experimental setup [40]. In X-ray diffraction experiments, there is an inherent uncertainty
in the measurement of arriving photons governed by the Poisson distribution, commonly
known as shot noise. It is widely used in the CDI community for testing algorithms [54].
The intrinsic signal-to-noise ratio due to the photon counting shot noise can be improved
by increasing exposure.

2.3. Architecture and Parameters of Convolutional Neural Network

As presented in Figure 2, the deep neural network for coherent X-ray diffraction
imaging employs an encoder-decoder architecture. It takes an intensity of 2D coherent
X-ray diffraction pattern in reciprocal space as input and real-space amplitude images
are considered as outputs. The architecture is based on the studies of convolutional deep
learning neural networks for coherent X-ray imaging [23–26,55–57]. The proposed model
is implemented using an architecture composed entirely of 2D convolutional, max-pooling,
and upsampling layers. In this 2D deep convolutional neural network, the rectified linear
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unit (ReLU) is used for all activation functions except for the last 2D convolutional layer,
where the sigmoid activation function is used. The convolutional neural network has two
convolutional layers of filter size of 3 × 3 and the max-sampling layer with a pool size
of 2 × 2. A max-sampling layer follows each convolutional layer. The convolutional and
pooling layers together extract the features of the image. The parameters of the network,
as well as the kernel, are updated during the training process until the desired accuracy
is achieved. Figure 3a shows the training and validation loss as a function of epochs.
Each epoch refers to one complete pass of the training data. We trained the networks for
16 epochs using a batch size of 32. At each step, we used adaptive moment estimation
(ADAMS) [58] with a learning rate of 0.001 to update the weights, while the loss (or error
metric) for both training and validation was computed using cross-entropy. It also shows
that the training and validation loss decrease and are saturated finally as the epoch increases.
Since no divergence occurs in the validation loss, it is indicative of the stability of our model.
In addition, the X2 error, which is widely used to evaluate the quality of reconstruction
images in phase retrieval methods, is employed in this study.

X2 =
∑

Np
i=1

(√
Ii
p −

√
Ii
g

)2

∑
Np
i=1 Ii

g

(10)

where Ii
p and Ii

g are the reconstructed X-ray diffraction intensity, and the ground-truth
diffraction intensity in the i-th pixel, respectively. Np denotes the number of pixels in an
image. The average (µ) of X2 error over 6000 test images is 0.041 for our deep neural
network model as shown in Figure 3b.

Figure 2. The architecture of 2D deep convolutional neural network for coherent X-ray imaging. The
proposed neural network consists of two mirrored sub-networks. The diffraction pattern in reciprocal
space and the object image in real space are input and output, respectively.
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Figure 3. (a) The training and validation loss as function of training epoch, (b) the histogram of X2

error for the test samples.

Training was performed on the NVIDIA Tesla K80 GPU using the Keras package
running the Tensorflow backend [59]. The training for each network took about 15 min
for 16 epochs. We employ a publicly available dataset, which is a handwritten Kannada
language, termed Kannada-MNIST [60]. These handwritten images and corresponding
diffraction images were used for the output and input data, respectively. The dataset
consists of 54,000 pairs of gray-scale images for training, and a test set of 6000 sample
images uniformly distributed across the 10 classes. We enlarged 28 × 28-pixel-size of
original images to 64 × 64-pixel-size images by padding zero matrices that allowed us to
not only train a deep learning model, but also conduct a traditional phase retrieval because
the zero padding around the sample image results in the oversampling on diffraction
images [8]. The ideal diffraction images were used for pre-training and the degraded
images were used for the evaluation of the model.

3. Results
3.1. Degree of Coherence

In Figure 4a, there are four input and output images, corresponding to the diffraction
images and object images that result from the deep neural network model, respectively.
The left side image of the second row is a fully coherent diffraction image, and the rest
three images are partially coherent diffraction images. Three different degrees of partial
coherence are made with different standard deviations of Gaussian filters such as 0.42, 0.55
and 0.78 pixel, which are defined as the level I, II and III, respectively. The first row shows
1-D plots of the horizontal lines depicted as white dashed lines on the images of the second
row. Needless to say, as the X-ray beam is less coherent, the diffraction image is more
blurred. The level III diffraction images are significantly smoothed out, so that the iterative
phase retrieval method fails to converge or ends up having greater than 0.5 of the X2 error.
The X2 errors are averaged over 6000 test datasets for each level. As the degree of coherence
deviates from a full coherence, the X2 error shifts to the right moderately as shown in
Figure 4b. There has been progress in improving the phase retrieval algorithms to mitigate
the effect of partial coherence [36,47]. However, the advanced algorithm to mitigate the
partially coherent illumination is not included in the iterative phase retrieval process since
the partial coherence is not taken into account when the neural network model is trained.
However, despite the lack of coherence, it is observed that there are reasonable matches
between true object images and the predictions based on the level III of diffraction images
as shown in Figure 4c.



AI 2022, 3 324

Figure 4. (a) Four input images and corresponding predicted images. The input image on the left
side of the second row is a fully coherent diffraction image and the rest three images are partially
coherent diffraction images. There are three different degrees of coherence (defined as the level I, II
and III) as clearly seen in the first row, which is a 1D plot of horizontal lines depicted as white dashed
lines on the images in the second row. (b) The histograms of errors for different datasets. The average
(µ) of X2 error increases as the degree of coherence decreases. (c) The first row shows a series of input
images, which are the level III partially coherent diffraction images. The second and third row show
the predicted images and ground truth, respectively.

3.2. Detection Dynamic Range

Figure 5a shows four input diffraction images and corresponding object images pre-
dicted by the neural network model. The input image on the left side of the second row
has the same detection dynamic range as the pre-training dataset and the rest three images
have shorter dynamic ranges. The images in the first row include white contours below
which the intensities are removed as shown in the second row. The thresholds chosen to
limit the dynamic range are 0.4%, 0.6%, and 0.8% of the maximum intensity, which are
named as the level I, II, and III of dynamic ranges, respectively. Figure 5b shows that as the
dynamic range becomes shorter, the average of X2 error increases. The effective number
of pixels is calculated circularly. It is an average extent from a center to the farthest pixel
above the threshold and they are 29.1, 26.8 and 25.0 out of 32 for the level I, II, and III,
respectively. It is revealed that the dynamic range of the level III is too short to enable
the iterative phase retrieval method to produce a converged solution. However, the deep
neural network model shows excellent performance in predicting the object image from
the same level of dynamic range as shown in Figure 5c. It implies that the model is capable
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of predicting an object image while data are acquired, for example, repeated exposure of
sample to X-ray beam to accumulate diffraction images.

Figure 5. (a) Input images and corresponding predicted images. The thresholds defined as white
contours in the first row, result in the different dynamic ranges of input images in the second row. The
third row shows the predicted images based on the corresponding input images. (b) The comparison
of performance. The average (µ) of X2 error increases as the detection dynamic range decreases.
(c) The first row shows a series of input images that have the level III detection dynamic ranges. The
second and third row show the predicted images and ground truth, respectively.

3.3. Noise Level

Shot noises following a Poisson distribution are added to the artifact-free diffraction
images. Figure 6a shows four input images and corresponding predicted images from the
neural network model. The input images are noise-free and three different levels of noisy
diffraction images. We introduced Poisson-distributed noise and calculated the signal-to-
noise ratio (SNR) as the ratio of the power of the diffracted intensity to the power of the
noise [61]. The SNRs are 106, 105, and 104 for level I, II, and III, respectively. The average
(µ) of X2 error drastically increases when the SNRs are 105 or less than that as shown in
Figure 6b. With the level III noises, the traditional phase retrieval provides solutions that
have lower X2 error than the neural network model.
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Figure 6. (a) The first row shows the shot noises that result in the noisy input images in the second
row. The third row shows the predicted images based on the corresponding input images. (b) The
histograms of X2 errors show the performances of four cases defined in (a).

4. Discussion
4.1. Degree of Coherence

To quantify a degree of coherence with respect to an object, we use a ratio of the
standard deviation of mutual coherence function (MCF) to the size of the object. The stan-
dard deviation of mutual coherence function (MCF), which is related to the degree of
coherence [36], can be calculated based on the formula σ = N/(2πσ̂) with N the number
of pixels across the image, which is 64 and the standard deviations of the Gaussian filter in
reciprocal space σ̂, which are 0.42, 0.55 and 0.78 pixel. These result in 24.3, 18.5, and 13.1 of
the standard deviations of MCF for the level I, II, and III, respectively. Since the average size
of objects is 18.5 × 18.5 pixels in 64 × 64-pixel images, the ratios of the standard deviations
of MCF to the size of objects are 1.3, 1.0, and 0.7 for the level I, II, and III, respectively.
It indicates that the model robustly handles the various degrees of coherence when the
mutual coherence function is 30% larger, equal to or 30% smaller than the object size. The
performances depending on a relative size of MCF are found in Table 1.

Table 1. Performance of the neural network model depends on the degree of coherence, which is
defined as the ratio of the size of the mutual coherence function (i.e., standard deviation) to the size
of the object.

Relative Size of MCF 1.3 1.0 0.7

X2 0.043 0.061 0.109

4.2. Detection Dynamic Range

The detection dynamic range can be measured by the number of meaningful pixels
from a center to the farthest point. In this regard, the detection dynamic range is defined
by the ratio of the effective number of pixels to the total number of pixels across a half size
of image. Thus, the level I, II, and III has 91%, 84%, and 78% of detection dynamic ranges,
respectively. The average X2 errors depending on a detection dynamic range are shown in
Table 2.

Table 2. Performance of the neural network model depends on the detection dynamic range, which
is defined as the ratio of the number of meaningful pixels from a center to the total number of pixels
across a half size of image.

Detection Dynamic Range 91% 84% 78%

X2 0.071 0.075 0.099
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4.3. Noise Level

As a coherent X-ray image deviates from ideal quality, it is obvious that the perfor-
mances of both iterative feedback-based algorithms and end-to-end algorithms become
worse. In the former case, a diffractive image leads a convergence of solution to an inaccu-
rate direction and in the latter case, the prediction is less reliable due to the lack of similarity
between the images used in pre-training and actual input image. Therefore, the approach to
enhance the accuracy of iterative models is to improve the quality of diffractive images such
as denoising images [62] or to improve noise tolerance in phase retrieval process [63,64],
whereas the effort to increase the reliability of end-to-end model is to make the images for
pre-training similar to the input images fed into the model [56].

The test images are generated with SNRs ranging from 106 to 104 to mimic noise
levels that are typical of Bragg coherent diffractive imaging measurements at synchrotron
facilities (104) up to those anticipated at XFEL light sources (106) [61]. Our approach is to
predict object images with coherent X-ray images based on the non-iterative end-to-end
algorithm. If a noise is unavoidable and its level is known, it would be more effective
to train the model with noisy images than with noise-free images for the non-iterative
end-to-end methods.

A new model is trained with the level II noisy diffraction images, which has the
SNR 105. Figure 7a shows noise-free input images, three different levels of input images,
and corresponding predicted images. Figure 7b shows that the performance is improved
considerably, and the model performs better with noise-free images than the level II noisy
images, which are used for pre-training. Unlike the dynamic range and the degree of
coherence, the noise level is sensitive to the performance of the neural network model,
compared to the traditional phase retrieval method. However, if the model is trained with
noisy diffraction images, the noise robustness is improved significantly. A summary of the
performance is shown in Table 3.

Figure 7. The deep neural network model is trained with the level II noisy diffraction images. (a) The
first and third row are input images, and the second and fourth row are the corresponding predicted
images. (b) The histograms of X2 errors show the performances of four cases.
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Table 3. Performance of the neural network model trained with noisy diffraction images, which has
the SNR 105.

Signal-to-Noise Ratio 106 105 104

X2 0.054 0.054 0.150

5. Conclusions

In summary, we present a supervised deep neural network model for coherent X-ray
imaging and characterize the performance. The ideal diffraction patterns are simulated
based on the kinetic scattering theory and additional datasets are generated by the degra-
dation of the original dataset to mimic realistic experimental diffraction images. The
artifact-free images are used to train the deep neural network model and corrupted diffrac-
tion images are fed into the model to predict the object images. To the best of our knowledge,
the artifacts in the neural networks for coherent X-ray imaging have not been addressed
adequately. The systemic analysis shows that the model provides reliable solutions despite
the low quality of detection dynamic range and partially coherent illumination. However,
the noisy diffraction images cause poor performance in comparison to the traditional iter-
ative phase retrieval. An efficient strategy to mitigate the negative effects of noises is to
incorporate the noise to the pre-training dataset. As the conventional phase retrieval has
been improved enormously over the past decade while facing the low quality of experimen-
tal data, the deep learning model for phase retrieval in coherent X-ray imaging is expected
to be advanced continuously from the baseline capability that is suggested in this study.
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