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Abstract: We present a deep learning-based generative model for the enhancement of partially coher-
ent diffractive images. In lensless coherent diffractive imaging, a highly coherent X-ray illumination
is required to image an object at high resolution. Non-ideal experimental conditions result in a
partially coherent X-ray illumination, lead to imperfections of coherent diffractive images recorded on
a detector, and ultimately limit the capability of lensless coherent diffractive imaging. The previous
approaches, relying on the coherence property of illumination, require preliminary experiments or
expensive computations. In this article, we propose a generative adversarial network (GAN) model to
enhance the visibility of fringes in partially coherent diffractive images. Unlike previous approaches,
the model is trained to restore the latent sharp features from blurred input images without finding
coherence properties of illumination. We demonstrate that the GAN model performs well with
both coherent diffractive imaging and ptychography. It can be applied to a wide range of imaging
techniques relying on phase retrieval of coherent diffraction patterns.

Keywords: partial coherence; coherent diffractive imaging; GAN (generative adversarial network);
phase retrieval; ptychography

1. Introduction

Phase retrieval, which is a reconstruction of phase distribution from measured inten-
sity alone, is essential to lensless coherent diffractive imaging techniques such as coherent
diffractive imaging [1–5] and ptychography [6,7]. In coherent diffractive imaging, a diffrac-
tion pattern is recorded on a detector by illuminating coherent wavefields toward a sample
of interest. The missing phase of the diffracted wave can be retrieved by the iterative
phase retrieval algorithm [8,9]. It enables us to image an object in two or three dimen-
sions at high resolution [10,11]. Ptychography is a scanning type of coherent diffractive
imaging (CDI) technique [12]. It measures a series of far-field diffraction patterns from
partly overlapping areas of an object. The neighboring diffraction patterns play the role
of the constraints in an iterative phase retrieval algorithm to reconstruct both the object
and the illumination function (i.e., probe) [13]. In both CDI and ptychography, the iterative
phase retrieval algorithms have a tacit assumption that the incoming X-ray beam is fully
coherent. It allows for a Fourier transformation relationship between an object and its
diffracted intensity. If the illumination is partially coherent, the reconstructed object image
results in a degradation such as a low resolution, incorrect shape, an inclusion of defects,
etc. Under the experimental environments at third-generation synchrotron or free-electron
laser sources, X-ray beam illumination is not fully coherent but is highly coherent [14–17].
Furthermore, various uncertainties can contribute to even less coherent illuminations.

In order to overcome the negative effects of partial coherence, there have been two
different approaches. (1) A priori knowledge of the illumination’s coherence property
is implemented in the phase retrieval algorithm [18]. (2) A coherence property of the
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illumination is recovered during the iterative algorithm [19,20]. Both methods ultimately
find the coherence property, which varies with the X-ray source environments. The former
requires preliminary experiments to reveal the coherence property, and it has a limited
applicability [21]. The latter works when the illumination is sufficiently coherent because it
needs to solve a deconvolution problem [19].

Unlike previous studies, our approach is to restore the latent fully coherent diffrac-
tive images from partially coherent diffractive input images based on the generative
adversarial network. It requires neither additional experiments nor high degrees of
coherence. The framework treats the improvement in the partial coherence as deblurring
diffractive images via image-to-image translation. Generative Adversarial Networks
(GANs) have revolutionized deep learning research and shown promise in the area of
image enhancement such as image inpainting, denoising, style transformation, super
high-resolution images, etc. [22–25]. A particular type of GAN has been proven to be
suitable for deblurring images, which is an ill-posed image problem [26]. GANs train
both the generator and discriminator in such a way that they compete with each other.
In our proposed architectures, the generator produces coherence-enhanced diffractive
images and the discriminator tries to distinguish them from fully coherent diffractive
images. While it is being trained, the model increases its ability to restore the visibility
and contrast of fringes in the diffractive images.

It has been shown that the diffractive images in the presence of partial coherence can
be expressed as the following equation [18,19,27].

Ipc(q) = Ic(q)⊗ ĝ(q) (1)

where Ipc(q) and Ic(q) are partially coherent diffractive image and fully coherent diffractive
image, respectively; ⊗ represents a convolution operator; and ĝ(q) is the Fourier trans-
formation of the mutual coherence function (MCF), which is related to the properties of
coherence. In a similar fashion, the formulation for a blurred image can be expressed as the
convolution of a sharp image with a blur kernel.

IB = IS ⊗ KB (2)

where IB and IS are blurred and sharp images, respectively, and KB is a blur kernel. A
partially coherent diffractive image and a blurred image can be interpreted as degraded
images from a fully coherent diffractive image and a sharp image with the convolution
of a kernel, respectively. In our study, the images for training and testing are synthesized.
The sharp images, corresponding to the fully coherent diffractive images, are created
by Fourier transformation of the image dataset. Subsequently, the blurred images are
generated by the convolution of fully coherent diffractive images with a Gaussian blur
kernel to mimic partially coherent diffractive images. After training, the model generates
the coherence-enhanced diffractive images from partially coherent diffractive images.

2. Proposed Approach
2.1. Conditional GAN

GAN was first proposed by Goodfellow et al. [28] to train a generative network in an
adversarial process. As described above, it consists of two neural networks. The generator
generates a fake image from input noise z, while the discriminator estimates the probability
that a fake image is from the training data rather than generated by the generator. These
two networks are simultaneously trained until the discriminator cannot distinguish if the
image is real or fake. This process can be summarized as a two-player min–max game with
the following function:

min
G

max
D

Ex∼Pdata(x) [log(D(x))] + Ez∼Pz(z)[log(1− D(G(z)))] (3)
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where Pdata denotes a distribution over training data x and Pz is a distribution of input
noise z. In the original GAN, there is no control over the data to be generated. However,
the conditional GAN [29] can increase the flexibility in the output of generative models.
The conditional GAN architecture has shown the general image-to-image translation [30].
In the network, a conditional variable c is added to the generator and discriminator to
guide the data generation process. Therefore, conditional GANs provide an approach to
synthesizing images with user-specified content. It is suitable for the image generation
of diffraction patterns because, typically, there is a peak intensity in the center of the
image and the intensity decays as it goes far from the center. The conditional GAN
generates images from the domain of diffraction patterns. The new objective function
becomes the following:

min
G

max
D

Ex∼Pdata(x) [log(D(x, c))] + Ez∼Pz(z)[log(1− D(G(z, c)))] (4)

Kupyn et al. [26] utilized Wasserstein loss with gradient penalty [31,32] and perceptual
loss [33] to train a conditional GAN for the deblurring image problem. We adopted both
loss functions because the former helps to achieve effective and reliable adversarial training
and the latter provides accurate results regarding style transfer.

2.2. Coherence-Enhanced GAN

In the network of our GAN, the generator uses partially coherent diffractive images as
input to generate the coherence-enhanced diffractive images. Figure 1a shows the details
of the convolutional neural network in the generator. There are three convolutional layers
in the initial part of the generator to extract the features of partially coherent diffractive
images, and the last part of the generator consists of two deconvolutional layers and a
convolutional layer to reconstruct the restored image. In the middle, there are nine residual
blocks (ResBlocks) [34], which consist of two convolution layers. The first convolution layer
is followed by batch normalization and ReLU activation. The output is passed through a
second convolution layer followed by batch normalization. The output obtained from this
is then added to the original input. It makes the generator more efficient and faster in the
extraction of image features. In addition, the global skip connection is employed [35,36],
which adds the input of the network directly to the output so that the generator can learn
the residual between the partially and fully coherent diffractive images. Since the partially
and fully coherent diffractive images have many similar features, it is computationally
efficient to allow the generator to learn only the residual during the training process. The
architecture of the generator is similar to DeblurGAN [26]. In the network, the discriminator
is responsible for discriminating coherence-enhanced images from fully coherent diffractive
images. During the training, the discriminator also helps the generator’s learning by
feeding the adversarial loss. The architecture of the discriminator network shown in
Figure 1b is similar to PatchGAN [37,38], which is more suitable for learning deblurring
than the ordinary discriminators [39].

2.3. Loss Functions

The loss function consists of two terms: (a) the adversarial loss LGAN , which drives
the generator network to achieve the desired transformation, and (b) the content loss LX to
preserve the image contents.

L = LGAN + λLX (5)

where λ is a balancing factor, 100. The adversarial loss ensures the network generates fully
coherent diffractive images to fool the discriminator network.

LGAN =
N

∑
n=1
−DθD

(
GθG

(
IB
))

(6)
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The perceptual loss is more suitable for preserving image texture compared with the
pixel-wise difference-based loss such as L1 (mean absolute error) or L2 (mean squared error).

LX =
1

Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

[
∅i,j(IS)x,y −∅i,j

(
GθG (IB)

)
x,y

]2

(7)
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Figure 1. The conceptual architecture of the (a) generator and (b) discriminator with the correspond-
ing number of kernel size (k), feature maps (n), and stride (s) indicated for each convolutional layer.

Equation (7) is the L2 difference between the feature maps of the ground truth and
the deblurred image of a specific layer in the VGG-19 [40] network, where ∅i,j represents
the feature map acquired by the j-th convolution before the i-th max-pooling layer in the
VGG-19 network, pretrained on ImageNet [41]. IS and IB are the ground truth and the
predicted frame, respectively. Wi,j and Hi,j are the width and height dimensions of the
feature maps, respectively. In our study, we use the VGG3,3 convolutional layer [39] and
duplicate the gray-scaled diffractive images to make RGB channels because the input of the
network is a color image.

3. Image Synthesis for Computational Experiments
3.1. Synthesis of Partially Coherent Diffractive Images

We consider the diffraction phenomenon in the kinetic regime, which can be analyt-
ically described using the classical formulation of the kinetic scattering of X-rays from
crystalline materials [42]. Therefore, fully coherent diffractive images can be simulated
using Fourier transformation of image dataset and partially coherent diffractive images
are generated by the convolution of the Gaussian blur kernel [43]. The diffractive images
are converted to logarithmic scale before being used in the model and converted back to
linear scale for phase retrieval. We employ a publicly available image dataset, which is
English alphabet letters [44]: 13,920 pairs of gray-scale images are selected for training,
and the test set consists of 310 sample images uniformly distributed across the 26 letters.
The 28 × 28 pixel sizes of the original images are interpolated to 64 × 64 pixel sizes
using a bicubic method and enlarged to 256 × 256 pixel-size images by padding zero
matrices. The ratio of the entire image to the portion occupied by the object determines
the oversampling ratio as 4. It allows us to invert the diffraction pattern to the object
image via phase retrieval because the oversampling ratio meets the lowest number of
requirements, two, for the image reconstruction of CDI [1].

Equation (1) can be rewritten with 2D coordinates as follows:

Ipc
(
qx, qy

)
= Ic

(
qx, qy

)
⊗ ĝ
(
qx, qy

)
(8)
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We define the mutual coherence function (MCF) in reciprocal space as follows because
it is well approximated with a Gaussian function [42]:

ĝ
(
qx, qy

)
= A·exp

(
− (qx − qo)

2

2σ̂x2 −
(
qy − qo

)2

2σ̂y2

)
(9)

where the coefficient A is the amplitude, and σ̂x and σ̂y are the standard deviations along
the qx and qy directions, respectively. The standard deviations determine the degree of
blurriness. Figure 2a–c show a fully coherent diffractive image, the blur kernel ĝ

(
qx, qy

)
with the standard deviation 2 along both the qx and qy directions, and the resultant image,
respectively. Figure 2d shows the line-outs that pass through the center of the diffraction
images along the qy direction. The blur kernel in Figure 2b was applied to all input images
for training.
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Figure 2. The method used to generate partially coherent diffractive images. (a) A fully coherent
diffractive image created by Fourier transformation of one alphabet. (b) A Gaussian blur kernel with
the standard deviation 2 along both the qx and qy directions, which is applied to all input images for
training the model. (c) A partially coherent diffractive image results from the convolution between
the fully coherent diffractive image (a) and the Gaussian blur kernel in (b). (d) Line-outs through the
center of the diffraction images in (a,c), denoted by red and blue lines, respectively.

3.2. Degree of Coherence

We can estimate the standard deviation σ of MCF in real space, which is associated
with the degree of coherence. It turns out to be approximately 20 based on the formula σ

= N/(2πσ̂), with N as the number of pixels in a given direction, which is 256, and σ̂ being
the standard deviation of the blur kernel, which is 2. The traditional methods based on the
correction of coherence property work with a limited degree of coherence. It is required
that the normalized MCF must be non-zero across a width twice the size of the object [19].
The normalized MCF with the standard deviation 20 has the value 0.007 at ±64, which is
twice the size of the object. Since it barely meets the condition, the blurriness defined as the
standard deviation 2 for the partially coherent diffractive images is challenging for traditional
methods relying on the refinement of coherence property [19].

4. Model Validation and Discussion
4.1. Model Details and Parameters

Our model is implemented using the PyTorch framework, and the numerical experi-
ments have been performed on the NVIDIA Tesla K80 GPU. The learning rate was set to
10−4 for both the generator and the discriminator. We evaluate the performance of our
GAN model in reciprocal space, which is an original domain, and further in real space by
reconstruction using CDI and ptychography. In reciprocal space, we employ the structural
similarity index measure (SSIM) [45] and the peak signal-to-noise ratio (PSNR) to measure
the quality of coherence-enhanced diffractive images with respect to the fully coherent
diffractive images. The SSIM index ranges from 0 to 1, where 1 corresponds to identical
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images and 0 is interpreted as a loss of all similarity. The training was stopped at the epoch
80, where the SSIM and PSNR index were stabilized, as shown in Figure 3a.
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Figure 3. The performance evaluation of the model with the SSIM and PSNR index. (a) Both indices
are stabilized at epoch 80. (b) The GAN model trained with the images blurred by the Gaussian blur
kernel of the standard deviation 2 is evaluated when it is applied to the different levels of blurriness.
(c) The comparison of model performance when the perceptual loss is included and not considered.
In addition, both indices decrease when the model is applied to the ptychographic imaging. The
SSIM and PSNR index for CDIs and ptychography are averaged over 310 test images and 6 images,
that are used in our study on ptychography, respectively.

4.2. Comparison of Performance

The model trained with partially coherent diffractive images blurred by the convo-
lution of fully coherent diffractive images and a Gaussian blur kernel with the standard
deviation 2 was applied to the different degree of coherent diffractive images. Figure 3b
shows that our model can robustly handle the various degrees of coherence. Even though
the degree of coherence deviates from the one for training, the PSNR and SSIM index
still remain at high levels. We applied our GAN model created for CDI to ptychography,
although there are two differences in the image texture. First, the oversampling ratio
in ptychography is less than the one in CDI because, by definition, the entire object is
not isolated by X-ray illumination in ptychography. Second, in our study, the diffraction
images in ptychography are from multiple letters, whereas the diffraction images in the
training dataset come from single letters. They can lead to a different input image style
than the images used in training and, consequently, lower the SSIM and PSNR, as shown in
Figure 3c. In addition, it turns out that the perceptual loss that aims to restore finer texture
details via an external perception network [41] increases the capability of the model.

4.3. Performance of Coherent Diffractive Imaging

We performed phase retrieval with the three different diffraction patterns, which are
fully coherent, partially coherent, and coherence-enhanced diffractive images, as shown
in Figure 4a. The performance of reconstruction with the coherence-enhanced diffractive
images is significantly improved. Figure 4b shows that the image reconstructed from
the coherence-enhanced diffractive image is almost identical to the result from the fully
coherent diffractive image, whereas the reconstruction of partially coherent diffractive
image failed. It indicates that our GAN model can restore the original fringes from partially
coherent diffractive images so accurately that the phase retrieval produces a true object im-
age, which otherwise would be impossible. We used alternating projection-based methods,
which are widely used for phase retrieval. The classical Gerchberg–Saxton error reduction
(ER) [46] and Fienup’s hybrid input–output (HIO) [47] methods impose constraints on the
amplitudes in real space.

ρ(n+1) = PsPmρ(n) (10)

where ρ(n) is the object density at n-th iterations, and Ps and Pm are the projectors in real
space and reciprocal space, respectively. The support projector Ps acts on the object ρ when
set to 0 at the density of the object outside a given region, which is called a support. The
modulus projector Pm acts on the Fourier transformation of the density in reciprocal space.
The magnitude of Fourier transformation of the object is replaced with the square root of
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the intensity. During the phase retrieval process, a total of 500 iterations are performed
with periodically updating object support using a ‘shrink-wrap’ algorithm [48].
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4.4. Performance of Ptychography

Ptychographic imaging is performed by the inversion of multiple diffraction images
simultaneously. During the data acquisition process, a localized illumination probe scans
the object while recording diffraction images in the far field. We specifically adopted the
extended Ptychographic Iterative Engine (ePIE) algorithm [49]. The ePIE starts with initial
guess of object O0(r) and probe P0(r). The diffraction patterns are addressed in a sequence
and a guess of the exit wave is formed by multiplication of the current object guess with a
shifted probe guess.

ψi(r) = Oi(r)Pi

(
r− rs(i)

)
(11)

where the i-th exit wave is termed ψi(r) and r is real space coordinate vectors. The probe
and object wavefronts are denoted as P(r) and O(r), respectively. The vector rs(i) presents
the relative shift between the object and probe. The modulus of the Fourier transform of
this exit wave is then replaced with the square root of the s(i)-th intensity. It is similar to
the modulus projector Pm in Equation (10).

Ψi(u) =
√

Is(i)(u)
F[ψi(r)]
|F[ψi(r)]|

(12)

An updated exit wave is then calculated via an inverse Fourier transform,

ψ′i(u) = F−1dΨi(r)e (13)

and updated object and probe guesses are extracted from the above results using
two update functions as follows.

Oi+1(r) = Oi(r) + α
P∗i
(

r− rs(i)

)
∣∣∣Pi

(
r− rs(i)

)∣∣∣2
max

(
ψ′i(r)− ψi(r)

)
(14)
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Pi+1(r) = Pi(r) + β
O∗i
(

r + rs(i)

)
∣∣∣Oi

(
r + rs(i)

)∣∣∣2
max

(
ψ′i(r)− ψi(r)

)
(15)

where α and β are the adjustable step parameters for convergence, and α = β = 1 is
used in our study. During the above iterative process, the object and probe functions
are repeatedly updated. Successful inversion of ptychographic imaging data requires
fully coherent illuminations and a proper ratio of overlap between two adjacent illumi-
nating areas. Figure 5a shows the schematic setup of ptychography. As the object shifts,
six coherent diffractive images are obtained with the overlapping ratio 73%. The probe is
defined as an ellipse with a major and minor axes of 140 and 100 pixels, respectively. The
oversampling ratios estimated by the ratio of the probe size to the object size illuminated
by the probe are 2.2 and 1 along the longitudinal and transverse directions, respectively.
They are different from those of the images for CDI, which are four along both directions.
Figure 5b–d show fully coherent, partially coherent, and coherence-enhanced diffractive
images, respectively. The diffractive images in Figure 5c are generated by the convolution
of fully coherent diffractive images in Figure 5b with the Gaussian blur kernel in Figure 2b.
The images in Figure 5c are enhanced by the coherence-enhanced GAN model, as shown
in Figure 5d. Figure 5e shows three enlarged images of the first images in Figure 5b–d.
Figure 5f shows three image reconstructions from fully coherent, partially coherent, and
coherence-enhanced diffractive images. Despite the fact that this GAN model is trained for
CDI, it produces high-quality solutions in ptychography so that the final reconstruction
image is reasonably accurate.
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4.5. Discussion

We have shown that the coherence-enhanced GAN model improves the partially
coherent diffractive images significantly based on the indices of SSIM and PSNR in
diffraction patterns and the image reconstructions by CDI and ptychography in real
space. The degree of partial coherence used throughout this study is challenging for the
previous approaches. It is revealed that if the model is trained with a certain degree of
coherence, it also performs well with a higher degree of partially coherent diffractive
images. It implies that once the model is trained with a worst case of partially coherent
diffractive images, the model would deal with any images of qualities. In addition, it
turns out that our GAN model is insensitive to the oversampling ratio of diffractive
images. Therefore, the coherence-enhanced GAN model can provide a clear input
solution for the phase retrieval of both CDI and ptychography.

5. Conclusions

In summary, we presented a generative adversarial network model for the enhance-
ment of partially coherent diffractive images. Lensless coherent diffractive imaging tech-
niques relying on the phase retrieval require fully coherent diffractive images. In reality,
however, there are uncertainties in experiments that can prevent the wavefronts of X-ray
beams from being fully coherent. Since the partial coherence limits the accuracy of the
imaging techniques, the efforts that mitigate the adverse effect of partial coherence have
been made rigorously. Unlike the previous approaches, our generative adversarial network
model is trained to restore the visibility and contrast of fringes in diffraction patterns
directly. Because the coherence-enhanced GAN model robustly deals with various degrees
of partially coherent diffractive images, it can be used for a wide range of lensless coherent
diffractive imaging techniques.
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