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Abstract: Ambient Assisted Living (AAL) technologies are being developed which could assist
elderly people to live healthy and active lives. These technologies have been used to monitor people’s
daily exercises, consumption of calories and sleep patterns, and to provide coaching interventions
to foster positive behaviour. Speech and audio processing can be used to complement such AAL
technologies to inform interventions for healthy ageing by analyzing speech data captured in the
user’s home. However, collection of data in home settings presents challenges. One of the most
pressing challenges concerns how to manage privacy and data protection. To address this issue, we
proposed a low cost system for recording disguised speech signals which can protect user identity
by using pitch shifting. The disguised speech so recorded can then be used for training machine
learning models for affective behaviour monitoring. Affective behaviour could provide an indicator
of the onset of mental health issues such as depression and cognitive impairment, and help develop
clinical tools for automatically detecting and monitoring disease progression. In this article, acoustic
features extracted from the non-disguised and disguised speech are evaluated in an affect recognition
task using six different machine learning classification methods. The results of transfer learning from
non-disguised to disguised speech are also demonstrated. We have identified sets of acoustic features
which are not affected by the pitch shifting algorithm and also evaluated them in affect recognition.
We found that, while the non-disguised speech signal gives the best Unweighted Average Recall
(UAR) of 80.01%, the disguised speech signal only causes a slight degradation of performance,
reaching 76.29%. The transfer learning from non-disguised to disguised speech results in a reduction
of UAR (65.13%). However, feature selection improves the UAR (68.32%). This approach forms part
of a large project which includes health and wellbeing monitoring and coaching.

Keywords: privacy preservation; affect recognition; health technologies; emotion recognition;
Ambient Assisted Living; social signal processing

1. Introduction

Health and wellbeing monitoring using Ambient Assisted Living (AAL) technologies
involves developing systems for automatically detecting and tracking a number of events
that might require attention or coaching. In the SAAM project [1], we are employing
AAL technologies to analyse activities and health status of older people living on their
own or in assisted care settings, and to provide them with personalised multimodal
coaching. Such activities and status include mobility, sleep, social activity, air quality,
cardiovascular health, diet [2], emotions [3] and cognitive status [4]. While most of these
signals are tracked through specialized hardware, audio and speech are ubiquitous sources
of data which could also be explored in these contexts. Speech quality and activity, in
particular, closely reflect health and wellbeing. We have explored the potential of speech
analysis for automatically recognizing emotions [3], cognitive difficulties [4] and eating-
related events [2] in the SAAM AAL environment [5]. AAL technologies and coaching
systems such as SAAM, which focus on monitoring of everyday activities, can benefit from
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recognition of these audio events in characterizing contextual information against which
other monitoring signals can be interpreted. However, user privacy remains one of the
major challenges in collecting audio data in home environments for the development of
health monitoring technology.

1.1. Mental Health and Affective Speech

The literature suggests that older people with cognitive impairment have difficulty
accessing semantic information when they intend to do so [6]. Since successful commu-
nication is essential for meaningful social interaction, this takes a toll on patients’ and
their carers’ wellbeing. This has an impact on the emotional life of these people. Speech
monitoring for mood and cognitive changes may help inform interventions targeted at
alleviating such impacts.

In addition to their role in cognition [7], the expression of emotions and their recog-
nition are key aspects of communication [8]. Emotional information can be conveyed in
different ways, from explicit facial and verbal expression (e.g., smile, pout, happy state-
ment) to more subtle non-verbal cues, such as intonation, modulation of vocal pitch and
loudness of emotional expression. These non-verbal cues are generally referred to as
emotional prosody.

In a previous study [9], we found that there are differences in automatically inferred
affective behaviours regarding expressions of sadness,anger and disgust among people
with and without cognitive impairment (Alzheimer’s Disease, AD). Although these results
need further study, they suggest, in agreement with the incipient literature on this topic that
speakers with AD exhibit a deficit in the expression of those emotions, reflected on voice
volume, speech rate and pitch. The proposed Affective Behaviour Representation (ABR)
and emotion classification scores are able to predict cognitive deficit in such situations
with an accuracy of 63.42%. However, in that study, there was a mismatch between the
dataset used to generate the features for recognition (emoDB [10]) and the data on which
these features were used (Pitt Corpus [11]). Thus, prediction accuracy is likely to have been
hindered by the facts that (1) the Pitt Corpus was not explicitly designed to elicit emotions,
(2) that the two datasets were recorded under different acoustic conditions, (3) that the
speakers were selected from different demographics, and (4) that they are in different
languages [9].

1.2. Privacy-Concerns Related to Speech

Privacy concerns constitute a major obstacle in developing and deploying digital
technologies for monitoring cognitive health. Individual and societal concerns about
privacy and data security have been translated in regulations. In the European Union,
the GDPR [12] has set new standards for the collection and management of personal
information. Speech data are classified as personal data (as defined in Art. 4(14) of the
GDPR and Article 3(13) Directive 2016/680): it can be used to identify age, gender, subject
identity and health status [13]. Sensitive data also encompass additional data such as
content-free features which could potentially be used for the identification of a person.
The potential of such features as biometric markers further widens the importance of their
protection. Concern about privacy is shared by users, who are reluctant to consent to being
constantly recorded at their homes and/or while speaking through phones or computers.
The balance between the benefits from an analysis of spoken interaction is often offset by
the associated threat to privacy.

Ethical requirements for health-studies have reflected these changes in regulation.
They have raised awareness on the need for careful risk analysis for studies involving the
collection and use of speech-related data. In the context of AAL and in-situ studies, speech
analysis usually requires sending data over networks with different levels of security
and associated risks, setting the additional possibility of a data breach if intercepted and
compromised. While the security of the network can be improved by reducing the transit
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and exposure of sensitive data through a local pre-processing [14,15], the risk posed by the
presence of sensitive data remains.

A solution to these problems is to obfuscate the identity of a person while the data are
collected, for instance through changing the pitch of their speech [16]. However, changing
the signal can also degrade its analysis: pitch shifting disturbs the acoustic patterns of
speech which could be indicative of cognitive impairment.

Hence, developing a digital technology using acoustic information should take these
issues into account. In this study, we also propose a framework using feature engineering to
address the disturbance of acoustic features caused by pith alteration for affect recognition
as described in Section 4.4.

1.3. Speech Disguising

Speech Disguising is a way to alter speech to hide someone’s identity [16]. Zheng et al. [17]
subjectively analyse the automatic speech disguise technologies i.e., pitch shifting, vocal
tract length normalization (VTLN) and voice conversion (VC) using 30 trials. It is found
that the speech disguise technologies greatly confuse the humans evaluators, with an equal
error rate around random guess (i.e., 50.00 % for pitch shifting, 46.67% for VTLN and
46.67% for VC).

1.4. Contribution

We have previously developed a low-cost system [15,18] which records content-free,
anonymised audio features for automatic analysis. In particular, we extract features such
as the eGeMAPS set [19] which we have used to detect specific behaviours in the above-
mentioned applications [2–4]. However, one of the limitations was that the previous
system [15] deletes the audio file after extracting the acoustic features from user’s speech.
It could work if the emotion is self-reported by user, and we do not have a plan to evaluate
the new features (i.e., going to be proposed in future), but not for situations where other
humans needs to annotate the audio files with emotions to generate data for machine
learning model training. Thus, that preserving audio file is also important while preserving
privacy. The disguised speech technologies could help us in preserving user’s privacy
to some extent, but a question arises: “is there any benefit of acoustic information in
disguised speech for emotion recognition”? In this study, we extend our previous work
and propose to collect the disguised speech by altering the pitch of the speech signal to
protect the identity of a user for development and deployment of machine learning based
application. For testing (i.e., deployment), this approach also guarantees the user’s spoken
content privacy in addition to identity protection. This is because the acoustic features are
computed using different statistical functionals at the utterance level rather than at frame
level, which makes it impossible to extract or re-build content information through, for
instance, synthesis of speech from the extracted features or automatic transcription [20].

To the authors’ best knowledge, this is the first study and evaluation of disguised
speech for the development and deployment of affect recognition technologies based on
acoustic features. Hence, the contributions of this article are as follows:

• Identification of acoustic features which are not affected by disguising speech;
• Evaluation of acoustic features extracted from the disguised speech for affect recogni-

tion, and comparison with features extracted from non-disguised speech;
• Demonstration of transfer-learning of acoustic features from non-disguised speech to

disguised speech for affect recognition, and analysis of their generalisability.

2. Materials and Methods

This section describes the system and algorithms which have been used for proposing
emotion recognition using disguised speech.
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2.1. Emotion Recognition System

This section describes hardware and software components of the system used to
extract acoustic features and collect disguised speech. The collected disguised speech could
be presented to human annotators (e.g., crowd-sourced annotation i.e., labelling stage)
for annotation of emotions. The system’s architecture is shown in Figure 1 where voice
activity detection module detects audio segments based on the energy of audio signals.
After that, we use pitch shifting algorithm [21] for speech disguising and saves the audio
segments. Later, we extract acoustic features using openSMILE [19] and train machine
learning models (i.e., Development module) for emotion recognition. At the end, we test
the machine learning model (i.e., affective and emotional processing module).

2.1.1. Hardware Components

The hardware consists of a Matrix Creator board, constituted of a microphone array,
an inertial measurement unit, and several other sensors, mounted on a Raspberry Pi 3 B+,
as shown in Figure 2. This setup is meant to be installed in a room where social activity
and dialogue interaction occur frequently, such as a dining room or a sitting room.
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Saving 

Audio Clips

Live Audio Stream
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emotional 
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Figure 1. Proposed approach: the affective and emotional processing module will provide input to
the cognitive decline recognition module. The ‘labelling’ and ‘cognitive decline detection’ are not
part of this study. The pitch shifting parameters are only known to and set by the data collection
technician and/or user. The Human annotator does not have that information.

Figure 2. Matrix Creator and Raspberry Pi 3 B+.

2.1.2. Software Components

For voice activity detection, we employed the Auditok (https://pypi.org/project/
auditok/—accessed 21 November 2021) Python binding. Based on watchdog https://github.

https://pypi.org/project/auditok/
https://pypi.org/project/auditok/
https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog
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com/gorakhargosh/watchdog—accessed 21 November 2021 input, the OpenSMILE [22]
toolkit processes the audio file of disguised speech and saves the speech features in the
attribute-relation file format (ARFF). The extracted acoustic features are then processed by
a machine learning model to identify the emotion(s).

2.2. Data Sets

The Berlin Database of Emotional Speech (EmoDB) corpus [10] is a data set commonly
used in the automatic emotion recognition literature. It features 535 acted emotions in
German (5 male and 5 females), based on utterances carrying no emotional bias. The corpus
was recorded in a controlled environment resulting in high quality recordings. Actors were
allowed to move freely around the microphones, which affected absolute signal intensity.
In addition to the emotion, each recording was labelled with phonetic transcription using
the SAMPA phonetic alphabet, emotional characteristics of the voice, segmentation of the
syllables, and stress. The quality of the data set was evaluated by perception tests carried
out by 20 human participants. In a first recognition test, subjects listened to a recording
once before assigning one of the available categories, achieving an average recognition rate
of 86%. A second naturalness test was performed. Documents achieving a recognition rate
lower than 80% or a naturalness rate lower than 60% were discarded from the main corpus,
reducing the corpus to 535 recordings from the original 800. The data sets are annotated
for 6+1 emotions: anger, disgust, fear, joy (happiness), sadness, and boredom + neutral.

2.3. Identity Protection

To disguise the identify of the subjects, we apply pitch shifting algorithm while
maintaining the duration of speech signal using Praat [21]. The audio data with identity
protection along with script for pitch shifting are made available through our git repository
(https://git.ecdf.ed.ac.uk/fhaider/pitchshifting4affectrecogntion—accessed 21 November
2021 ). We have used a factor of 2 for pitch shifting with time step of 0.01 s, minimum pitch
of 75 Hz, and maximum pitch of 600 Hz. The pitch shifting parameters are only known
to and set by the data collection technician and/or user. The Human annotator does not
have that information. An example of non-disguised and disguised audio segment (i.e.,
spectrogram representation) is shown in Figures 3 and 4, respectively, where the duration
of non-disguised and disguised speech is the same.
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Figure 3. An example of a speech utterance’s spectrogram from the EmoDB dataset of a male subject.
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Figure 4. An example of a speech utterance’s spectrogram from the EmoDB dataset of a male subject
after applying pitch shifting algorithm for identity protection.

2.4. Acoustic Features

Acoustic feature extraction was performed on the non-disguised and disguised speech
segments using the openSMILE v2.1 toolkit, which is a “source-available” software suite
for automatic extraction of features from speech, widely used for emotion and affect

https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog
https://git.ecdf.ed.ac.uk/fhaider/pitchshifting4affectrecogntion 
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recognition in speech [23]. The extracted features are also made available through git-
repository. The following is a brief description of the acoustic feature sets used in the
experiments described in this paper:

2.4.1. Emobase

This feature set contains the mel-frequency cepstral coefficients (MFCC), voice quality,
fundamental frequency (F0), F0 envelope, line spectral pairs (LSP) and intensity features
with their first and second order derivatives. Several statistical functions are applied to
these features, resulting in a total of 988 features for every speech segment [23].

2.4.2. ComParE

The ComParE 2013 [22] feature set includes energy, spectral, MFCC, and voicing related
low-level descriptors (LLDs). LLDs include logarithmic harmonic-to-noise ratio, voice
quality features, Viterbi smoothing for F0, spectral harmonicity and psychoacoustic spectral
sharpness. Statistical functionals are also computed, bringing the total to 6373 features.

2.4.3. eGeMAPS

The eGeMAPS [19] feature set resulted from an attempt to reduce the somewhat
unwieldy feature sets above to a reduced set of acoustic features based on their potential
to detect physiological changes in voice production, as well as theoretical significance
and proven usefulness in previous studies [19]. It contains the F0 semitone, loudness,
spectral flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio, Hammarberg index and slope
V0 features, as well as their most common statistical functionals, for a total of 88 features
per speech segment.

2.5. Statistical Analysis

To investigate the possible differences in acoustic characteristics between the non-
disguised and disguised speech signals, we first performed a normality test using the
one-sample Kolmogorov–Smirnov procedure. This test showed that the data (i.e., acoustic
features) follow a normal distribution (p < 0.001). We then performed a t-test between the
acoustic features extracted from the non-disguised speech signals and the acoustic features
extracted from the disguised speech signal. We observed the following:

1. for the emobase feature set, there are 257 features out of 988 for which no statistically
significant differences (p > 0.05) between the non-disguised and disguised speech sig-
nals were found. Parts of different functional of Mfcc, fftMag, ZCR, energy, loudness
and intensity are not affected by the speech alteration.

2. For the ComParE feature set, we found that 2491 features out of 6373 show no
statistically significant differences (p > 0.05) between non-disguised and disguised
speech signals. Some mfcc, fftMag, audiospec, HNR, ZCR, energy, RASTA, jitter and
shimmer functionals are not affected by the speech alteration procedure. The full lists
of emobase and ComParE features tested are available through the above-mentioned
git repository.

3. For the eGeMAPS feature set, we have noted that there are 24 features out of 88 which
have no statistically significant differences (p > 0.05). The full list of those features is
shown below:

• F0semitoneFrom27.5Hz_sma3nz_pctlrange0 − 2
• F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope
• F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope
• F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope
• loudness_sma3_meanRisingSlope
• spectralFlux_sma3_stddevNorm
• m f cc1_sma3_stddevNorm
• m f cc2_sma3_stddevNorm
• m f cc3_sma3_stddevNorm
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• logRelF0 − H1 − H2_sma3nz_stddevNorm
• logRelF0 − H1 − A3_sma3nz_stddevNorm
• alphaRatioV_sma3nz_amean
• alphaRatioV_sma3nz_stddevNorm
• hammarbergIndexV_sma3nz_amean
• slopeV0 − 500_sma3nz_stddevNorm
• slopeV500 − 1500_sma3nz_stddevNorm
• spectralFluxV_sma3nz_stddevNorm
• m f cc1Vsma3nz_stddevNorm
• m f cc2Vsma3nz_stddevNorm
• m f cc3Vsma3nz_stddevNorm
• m f cc4Vsma3nz_stddevNorm
• loudnessPeaksPerSec
• MeanUnvoicedSegmentLength
• StddevUnvoicedSegmentLength.

2.6. Classification Methods

The classification experiments were performed using six different methods, namely
decision trees (DT, where the leaf size is optimized through a grid search within a range
of 1 to 20), nearest neighbour (KNN, where K parameter is optimized through a grid
search within a range of 1 to 10), linear discriminant analysis (LDA), random forest (RF,
with 1500 trees, where leaf size is optimized through a grid search within a range of 1
to 20), Naive Bayes (NB, with kernel distribution assumption optimized through a grid
search for kernel smoothing density estimate, Multinomial distribution, Multivariate
multinomial distribution and Normal distribution) and support vector machines: SVM,
with a linear kernel (optimized by trying different kernel function i.e., linear, Gaussian,
RBF and polynomial) with box constraint optimized by trying a grid search between 0.1 to
1.0, and sequential minimal optimization solver (optimized by trying different solvers i.e.,
iterative single data algorithm, L1 soft-margin minimization by quadratic programming
and sequential minimal optimization). The prior-probabilities of the classifiers are set
according to the class distributions.

The classification methods are implemented in MATLAB (http://uk.mathworks.com/
products/matlab/ (accessed 21 November 2021)) using the statistics and machine-learning
toolbox. The classifier hyper-parameters maximum ranges (such as K = 10) are set through
trial and error. A leave-one-subject-out (LOSO) cross-validation setting was adopted,
where the training data do not contain any information of the validation subjects. To assess
the classification results, we used the Unweighted Average Recall (UAR) instead of overall
accuracy as the dataset is imbalanced. The Unweighted Average Recall is the arithmetic
mean of recall for all seven classes.

3. Experimentation

This section describes the experiments and data partition to evaluate the proposed
frameworks as shown in Figure 5.

3.1. Experiment 1

In this experiment, we extracted acoustic features over the non-disguised audio data.
Later, we trained the machine learning models for classification purpose. The validation is
performed in leave-one subject out cross-validation setting as shown in Figure 5a.

3.2. Experiment 2

In this experiment, we extracted acoustic features over the transformed audio data
where we hid the identity of a subject using pitch shifting algorithm. Later, we trained
the machine learning models for classification purpose. The validation is performed in
leave-one subject out cross-validation setting as shown in Figure 5b.

http://uk.mathworks.com/products/matlab/
http://uk.mathworks.com/products/matlab/
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Figure 5. Affect recognition system: Machine learning model training and testing where testing is
performed in leave one subject out cross-validation settings.

3.3. Experiment 3

In this experiment, we trained the machine learning models using non-disguised
speech and the validation is performed using disguised speech in leave-one subject out
cross-validation setting as shown in Figure 5c.

3.4. Experiment 4

This experiment uses the selected acoustic features as described in Section 2.5, we
trained the machine learning models using non-disguised speech and the validation is
performed using disguised speech in leave-one subject out cross-validation setting as
shown in Figure 5d.

4. Results

This section reports the results for the four experiments.

4.1. Experiment 1

The UAR for all feature sets and classification methods is shown in Table 1. These
results indicate that the ComParE feature set (80.01%) provides the best UAR, with the
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LDA classifier for emotion recognition. The confusion matrix is shown in Figure 6 for
further insight (i.e., precision and recall for all 6+1 emotions) into the best result. The
results indicate that the SVM provides the best averaged UAR of 73.42% across all the
feature sets, and the ComParE feature set (57.76%) provides the best average UAR across
the all classifiers.

Table 1. Experiment 1: Affect recognition results without identity protection where training and
validation is performed on the non-disguised audio data. The Unweighted Average Recall (UAR%)
is reported. The bold figures indicate the highest UARs.

Features RF DT KNN NB SVM LDA Avg.

emobase. 0.6835 0.5052 0.2460 0.6051 0.7308 0.5574 0.5547
ComParE 0.7059 0.5368 0.2281 0.3953 0.7949 0.8001 0.5768
eGeMAPS 0.7063 0.4918 0.3885 0.4854 0.6858 0.6616 0.5699

avg 0.6986 0.5113 0.2875 0.4953 0.7372 0.6730 -
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Figure 6. Confusion matrix of the best result for experiment 1 using LDA and Compare Feature set.

4.2. Experiment 2

The UAR for all feature sets and classification methods is shown in Table 2. These
results indicate that the combination of the ComParE feature set and LDA again provides
the best UAR score (76.29%). The confusion matrix for this is shown in Figure 7 where
precision and recall for all 6+1 emotions are listed. In addition, SVM provides the best
averaged UAR of 71.68% across all the feature sets, and the eGeMAPS feature set (54.78%)
provides the best average UAR across the all classifiers.

Table 2. Experiment 2: Affect recognition results with identity protection for training and valida-
tion subjects where training and validation are performed on the pitch-shifted audio data. The
Unweighted Average Recall (UAR%) is reported. The bold figures indicate the highest UARs.

Features RF DT KNN NB SVM LDA Avg.

emobase. 0.6657 0.4588 0.2759 0.5865 0.7358 0.5417 0.5441
ComParE 0.7063 0.5211 0.2016 0.2440 0.7388 0.7629 0.5291
eGeMAPS 0.6335 0.4529 0.3705 0.4818 0.6759 0.6720 0.5478

avg 0.6685 0.4776 0.2827 0.4374 0.7168 0.6589 -
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4.3. Experiment 3

The results for this experiment are shown in Table 3. These results indicate that the
ComParE feature set again provides the best UAR (65.13%), but this time the RF classifier
proves to be the most effective. The confusion matrix is shown in Figure 8 where precision
and recall for all 6+1 emotions are listed. RF provides the best averaged UAR of 57.33%
across all feature sets, and the emobase feature set yields the best average UAR across all
classifiers (45.95%).

Table 3. Experiment 3: Affect recognition results with identity protection for validation subjects,
where training is performed on the non-disguised audio data and validation is performed on the
pitch-shifted audio data. The Unweighted Average Recall (UAR%) is reported. The bold figures
indicate the highest UARs.

Features RF DT KNN NB SVM LDA Avg.

emobase. 0.5624 0.4172 0.2162 0.4838 0.6103 0.4673 0.4595
ComParE 0.6513 0.4479 0.2161 0.1429 0.1435 0.1344 0.2893
eGeMAPS 0.5062 0.3698 0.2623 0.3470 0.5391 0.1339 0.3597

avg 0.5733 0.4116 0.2315 0.3246 0.4310 0.2452 -
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Figure 8. Confusion matrix of the best result for experiment 3 using RF and Compare Feature set.

4.4. Experiment 4

The resulting UAR scores for all feature sets and classification methods used in this
experiment are shown in Table 4. As before, the ComParE/RF combination achieves
the best result (68.32%). The confusion matrix is shown in Figure 9 where precision and
recall for all 6+1 emotions are listed. As in the previous experiment, RF provided the best
averaged UAR (60.34%) across all the feature sets, and the emobase feature set yielded the
best average UAR across classifiers (48.62%).
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Table 4. Experiment 4: Affect recognition results with identity protection, where training and
validation are performed on selected acoustic features of the non-disguised audio data and validation
is performed on the pitch-shifted audio data. The Unweighted Average Recall (UAR%) is reported.
The bold figures indicate the highest UARs.

Features RF DT KNN NB SVM LDA Avg.

emobase. 0.5731 0.4121 0.2665 0.5331 0.6250 0.5075 0.4862
ComParE 0.6832 0.4793 0.2541 0.1429 0.1839 0.1231 0.3111
eGeMAPS 0.5540 0.4467 0.2623 0.3305 0.4988 0.4375 0.4216

avg 0.6034 0.4460 0.2610 0.3355 0.4359 0.3560 -
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Figure 9. Confusion matrix of the best result for experiment 4 using RF and Compare Feature set.

5. Discussion

The summary of results is shown in Table 5. We note that the non-disguised speech
(i.e., Experiment 1) provides the best UAR and accuracy, but experiments 4 and 3 provide
the best recall for Anger (98.43%) and Sad (83.87%) as shown in bold in Table 5. The
‘Happy’ emotion is miss-classified as ‘Anger’ and the miss-classification rate increases
for disguised speech experiments, with the worst miss-classification rate occurring when
feature selection is performed (Experiment 4). However, feature selection provides better
overall UAR (68.32%) than the full feature set (65.13%). Experiment 2 provides better UAR
(76.29%) than experiments 3 and 4. One of the advantages of the architecture employed in
experiment 2 is that the training and testing are both performed on the disguised speech,
with the pitch shifted by the same factor (i.e., 2) for all speech utterances. A variable pitch
factor may result in a different outcome.

Table 5. Results Summary: Accuracy (Accu.), Unweighted Average Recall (UAR) and recall of each
emotion for the best results of each experiment. The bold figures indicate the highest UARs.

Experiment Accu. UAR Anger Bore. Disgust Fear Happy Sad Neutral

EXP.1 81.31 80.01 90.55 88.89 82.61 71.01 57.75 80.65 88.61
EXP.2 77.01 76.29 81.10 83.95 76.09 69.57 52.11 83.87 87.34
EXP.3 69.91 65.13 98.43 76.54 36.96 57.97 43.66 79.03 63.29
EXP.4 72.71 68.32 98.43 86.42 50.00 63.77 18.31 79.03 82.28

To better understand the relationship between the experiments, we also plotted the
Venn diagram shown in Figure 10. In this diagram, the brown area (labelled “Target”)
represents the annotated labels, the blue area represents the predicted labels of Experiment
1, the red area represents the predicted labels of Experiment 2, the green area represents
the prediction obtained with the experiment 3 and finally the yellow area represents labels
predicted with the experiment 4. The Venn diagrams suggest the information captured by
different pitch profiles is not similar, as only 289 out of 535 instances are detected by all
the experiments.
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While previous studies have proposed affect recognition systems [3,19,24–26], this
study presents an analysis of affect recognition on data that have been transformed to
protect the identity of users.

Limitations

Some limitations of this study which we intend to address in future work include:

• the use of an off-the-shelf pitch shifting method which could have an influence on the
performance of affect recognition system;

• the fact that pitch is shifted using a constant factor of 2, whereas a different factor or a
variable factor could result in different results;

• feature selection is performed though a statistical approach, and more sophisticated
feature selection methods [25] might improve the results further;

• the disguised speech for affect recognition system is evaluated using data which are
collected in lab-settings instead of real-world settings;

• the hardware used for the proposed system is a combination of matrix creator and
Raspberry Pi 3 B+ with a 1.4 GHz 64-bit quad-core processor.

6. Conclusions

AAL can benefit from unobtrusive, privacy-preserving systems for gathering and
processing of speech at home. This paper describes a framework for capturing disguised
speech and training machine learning models while protecting the identity of users for
automatic wellbeing monitoring tasks, in the context of an AAL-based coaching system for
healthy ageing. This study also demonstrates that the acoustic information of disguised
speech can be used for emotion recognition. We found that, while the non-disguised
speech signal gives the best Unweighted Average Recall (UAR) of 80.01%, the disguised
speech signal only causes a slight degradation of performance, reaching 76.29%. The
transfer learning from non-disguised to disguised speech results in a reduction of UAR
(65.13%). However, feature selection improves the UAR (68.32%). Privacy protection and
preservation in audio and speech can be regarded from different perspectives, including
the protection of a person’s identity, protection of the content spoken, and protection from
inferences one may be able to draw from the characteristics of a person’s voice (such as
cognitive or emotional status) [27]. A current limitation of the pitch shifting approach is
that it addresses the first (using pitch shifting for identity protection) and second aspects
(using statistical functionals of acoustic features instead of content). In the future, we aim to
address inference protection within a general framework. We also plan to evaluate humans’
annotation performance on disguised speech.
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