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Abstract: Controlling complex systems by traditional control systems can sometimes lead to sub-
optimal results since mathematical models do often not completely describe physical processes.
An alternative approach is the use of a neural network based control algorithm. Neural Networks
can approximate any function and as such are able to control even the most complex system. One
challenge of this approach is the necessity of a high speed training loop to facilitate enough training
rounds in a reasonable time frame to generate a viable control network. This paper overcomes this
problem by employing a second neural network to approximate the output of a relatively slow
3D-FE-Pultrusion-Model. This approximation is by orders of magnitude faster than the original
model with only minor deviations from the original models behaviour. This new model is then
employed in a training loop to successfully train a NEAT based genetic control algorithm.

Keywords: neural network; Genetic Programming; Finite Element Modelling; pultrusion; reinforce-
ment learning

1. Introduction—Neural Networks in Engineering. Just a Modern Buzzword?

Artificial Neural Networks (ANN) are increasingly used in a wide range of engineering
applications [1–7]. ANN have proven their excellent pattern recognition capability [8],
whether optical [9], acoustical [10] or in other multi-feature datasets [11]. Even though they
require high computational power and large high-speed memory for effective training,
as well as a lot of, often counter-intuitive, hyperparameters adjustments, they can fit any
function if they have a reasonable network complexity. The classic use case as a high-level
classification algorithm is but one of their many uses.

The still rapidly increasing computing power enables the use of ANN tremendously.
ANNs are already present in smart phones and are considered capable of managing highly
complex environments such as modern computer games [12] with their complex control
schemes in real time. This capability opens up an extremely wide range of applications.

One application is the control of real engineering systems. The authors of [13] show
that neural networks can be used to implement near-optimal control algorithms for difficult-
to-control systems with constraints.

One approach for such a control model is the use of reinforcement learning with a
genetic algorithm such as the NeuroEvolution of Augmenting Topologies (NEAT) algo-
rithm [14]. The NEAT algorithm enables genetic evolution of a neural network to optimize
the behavior for a given problem. The authors of [15] describe such an implementation for
a nonholonomic wheeled robot.

This paper takes the same approach and describes the successful implementation of a
two-step approach to generate a control neural network using the NEAT algorithm for a
pultrusion system like the one displayed in Figures 1 and 2.
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Figure 1. Small experimental pultrusion system.
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Figure 2. Schematic of a pultrusion line with an example tool.

The pultrusion system is represented by a Finite Element, short FE, model, but it is
too slow to complete enough training rounds in a reasonable time. Therefor, an ANN
is first trained to approximate the output of the FE model of a pultrusion process. This
approximation deviates in accuracy and stability, but is significantly faster than the original
model. The time gained by the increased speed is used to train a control algorithm based
on NEAT. This evolutionary based algorithm benefits strongly from high-speed simulation
due to its high parallelizability and the many training rounds required.

This is an alternative approach to the previously presented method [16], a more
traditional control algorithm for a pultrusion based on data received on the resonant
ultrasonic spectroscopy [17].

2. Pultrusion Model and Neural Network Training

Training a reinforcement learning based neural network for controlling real engineer-
ing systems requires a large amount of training cycles. Using an FE model for this purpose
can lead to unreasonably long training times, especially if the task is not yet reasonably
defined as is briefly explained later. An alternative to using the FE model directly is to
train an ANN so that it behaves like the FE Model. The ANN is much faster than the FE
model with comparable accuracy. Both the model and the process used to train the ANN
FE model are described in Figure 3. A total of 196,620 samples with a 32 samples per batch
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are fed to the network during training. The input and output temperature is normalized in
the following way

TANN =
TFE
255

. (1)

The degree of cure does not have to normalizes as it is already in range of 0 and 1. The
corresponding FE model is described in more detail in [18].

It consists of two intertwined partial differential equation models shown in the upper
half of Figure 3.

Figure 3. Setup for ANN-FEM-Training.

The ANN based on an FE model is faster than the original FE-Model by a factor
of 1000. This allows incredibly fast training cycles in a very complex environment even
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without the use of high performance computing (HPC). However, the ANN itself has to be
trained on an HPC, especially because hyper-parameter tuning is necessary to maximize
accuracy. The ANN later runs in a loop and feeds its own output into the input for the next
iteration. This exponentially increases any instability and degradation between FE-model
and neural network. Hyperparameter tuning minimizes this divergence. Figure 4 compares
the accuracy of the ANN with the original model by calculating the mean square error
(MSE) during a series of random speed changes of the pultrusion.
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Figure 4. Mean square error between FE model and the ANN during a 16 min initial period and a
series of random speed changes between 0.005 m/min and 0.2 m/min every 5 min.

The MSE of the temperature is about 2 °C and the curing error is around 1.5%,
showing very good process mapping by the ANN. This is further emphasised by watching
the presentation of results in Supplementary Video S1. The training loop is quite simple.
A number of slices are continuously moved through the virtual mold. The change in
temperature and degree of curing of each slice is calculated by the ANN. The ANN-
FE model can handle multiple slices at once without increasing the computation time.
The training loop is displayed in Figure 5.

The control ANN is built by applying reinforcement learning techniques. While these
techniques can produce very satisfactory results through back-propagation, they require a
fixed network structure. While it is feasible to use a fixed network structure together with
back-propagation a different approach is chosen. An alternative to back-propagation is the
use of genetic algorithms. Genetic algorithms are a good alternative especially when the
network structure is not fixed. As shown in [19–21] genetical algorithms are not inferior
to other methods especially for simple networks. For ease of implementation, the NEAT-
algorithm [14] with the PYTHON implementation [22] is chosen. This algorithm is simple
and quick to implement and highly scalable.

The chosen task of creating a control algorithm for the given system is similar to the
game Flappybird. In this game, a player has to pass through a number of small-width gates
while moving forward. If he fails to pass a gate, the game is over. A number of healing
value “gates” is defined. If the healing value α is not within a certain range of the healing
target αtarget after a predefined period of time, the task ends and the accumulated points are
stored as that person’s fitness. The task itself is executed in several sub-processes, which
are connected to the main process via input and output queues. A major advantage of the
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queue system is its excellent scalability. The number of sub-processes is only limited by the
system resources and the speed increase is linear as long as the system can keep up.

Figure 5. ANN-Training Loop.

One of the most important steps is the implementation of a reward function. This
function defines the optimization plane and should have a non-zero gradient at any given
point except the global optimum. For this particular task there are three things that should
be accomplished:

• The further an individual gets, the higher the fitness function result should be
• If a gate is missed, the fitness function should reflect the distance from the respec-

tive gate
• The fitness function should output the highest value when the curing target is reached

Those items can be accomplished by the following fitness function P

P =
∞

∑
t=0

Pr(t) (2)

with

Pr(t) =


|1 + α− αTarget| t 6= tChange(
1− |α− αTarget|

)
· 1000 t = tChange ∩ |α− αTarget| ≥ 1%

1000 t = tChange ∩ |α− αTarget| < 1%

(3)

This fitness function in combination with the selected scoring function allows the algorithm
to determine the fitness of each individual. The next generation of individuals is then
generated by mutation and heredity of the fittest individuals.

The NEAT-algorithm itself is very powerful, but requires the adjustment of a number
of hyperparameters to converge in a reasonable manner and time. In particular, the mu-
tation power and the mutation rate are of high importance. These parameter determine
the convergence ability and the convergence speed. In the present case, a slower mutation
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rate is necessary for convergence. A valid pair of hyperparameters is contained in the
Appendix A.

Figure 6 shows the results of this optimization strategy with the aforementioned
parameters over several generations. All nodes use the sigmoid activation function. It is
very interesting to note that despite the specification of the last 19 time steps as well as
the target value for curing as input, not all inputs are used in the control ANN. Looking
closely at the generated ANN, it is apparent that the ANN is emulating some kind of PD
controller. The integrator is omitted because there is no memory cell. This in turn is a
strong indication of the use of a memory cell or memory variable to optimize the behavior.
While this is not directly provided by the NEAT Python algorithm, an implementation is
possible by adding an additional output that is fed back at the next iteration.
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Figure 6. Structure of the best genome found; Line thickness represents weight strength; VOUT , 1, 2,
3 are different Neurons; Inactive Links and some inactive Inputs omitted.

Figure 7 represents the solution of the evaluation problem for the best individual after
270 Generations. The speed is limited between 0.05 m/min and 0.2 m/min, which is typical for
pultrusion. The black horizontal lines in the upper figure represent the target curing value
while the orange curve shows the simulated curing by the ANN-Model. The lower figure
shows the speed in the pultrusion system. The figure clearly shows that the algorithm is
capable of controlling the FE-ANN to stay within 1% of the target cure value by adjusting
the pultrusion speed. The 1% distance is the result of the chosen fitness function. There
seems to be a constant deviation of around 1%, which could be reduced by further training
or a change in the fitness function. However, a 1% deviation is within an acceptable range
and the deviation has to be confirmed first on the FE model.
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Figure 7. Best run after 270 Generations with curing α in orange, the target curing black in the top
figure and Speed set by the ANN in the figure at the bottom.

3. Discussion

As Section 2 shows, a two-step approach can lead to a significant gain in computation
time, which directly affects the training time of the control algorithm. While there is a
difference in the real FE model and the fitted ANN, the difference is relatively insignificant
with respect to the difference in the optimized control algorithm. To demonstrate the ability
of the control ANN, the system is compared to the FE model. Figure 8 clearly shows that
there is only a minor difference in behaviour for the control-ANN applied to the original
FE-Model of around +1%. This is a systematic error in the control algorithm.
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Figure 8. Comparison between the results received by the ANN model and the FE-Model for the
NEAT-control algorithm.
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A fast and easy fix for this systematic error is a change in the target curing value
αTargetM which is fed to the model like,

αTargetM = αTarget − 1.6% (4)

This small change nearly fully negates the systematic error and leads to a very good
deviation of below 0.5% for most curing targets as displayed in Figure 9.
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Figure 9. Corrected ANN-Control model tested on the original FE-Model.

The two-step approach of first training an ANN to approximate a FE model and then
training a control algorithm on this much faster ANN model yields a significant speed
advantage of several orders of magnitude. This approach can be applied to a variety of
scientific problems. It works especially well for complex numerical or real world systems
without a deterministic scientific model as long as a reasonable amount of training data
is available.

The first part, in particular, is responsible for the high speed-up. The second part,
i.e., the NEAT algorithm, is easily applicable to any problem where a clear evaluation
and fitness function can be created. Especially the fitness function is crucial for a success-
ful implementation. Local minima are particularly problematic, so a well-thought-out
implementation is important. The algorithm will find and exploit any loopholes in the
formulation. For example, an implementation such as

Pr(t) =
1

n +
(
αtarget − α

) (5)

for small values of n might lead to oscillation since it might be more valuable to obtain a
few values α extremely close to the αtarget, rather than a large number of values slightly
further from αtarget.

4. Conclusions

This paper shows that a two-step approach, in which the system under study is first
approximated by an artificial neural network. In the sense of preprocessing, this step
provides a training system that can be quickly examined and used to train an ANN-based
control algorithm at a reasonable speed. The speed increase in this case is more than 52×.

The control-model generated is based on the NEAT-algorithm and is implemented
with an appropriate evaluation and fitness function. The evaluation function observes and
evaluates whether a certain range, e.g., 1% of the target cure value, is reached after a certain
period of time. Failing to do so results in an instant loss and stop all further gain in the
fitness function.
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This algorithm results in a usable control that emulates some kind of PD control based
on the observed final structure. Applying the control algorithm on the original FE model
results in a viable behavior.

In future research, both the control ANN as well as the FE-ANN, can be further
enhanced to not only react to a single set of epoxy curing parameters, but rather to obtain a
universal epoxy behaviour with variable parameters. This can be archived by training the
FE-ANN on different epoxy parameters and even different geometries. Memory cells need
to be added to the control algorithm to explore and store the system behavior of a random
epoxy system.

A next step will be the implementation of an auto-encoder algorithm to obtain the
degree of curing directly from the sensor signal of the real pultrusion system.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1:
FEM_ANN_DIFF.
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Appendix A. Hyperparamter NEAT-Model

[NEAT]
f i t n e s s _ c r i t e r i o n = max
f i t n e s s _ t h r e s h o l d = 2 0 , 0 0 0 . 0
pop_size = 250
r e s e t _ o n _ e x t i n c t i o n = 1

[ DefaultGenome ]
num_hidden = 1
num_inputs = 20
num_outputs = 1
i n i t i a l _ c o n n e c t i o n = p a r t i a l _ d i r e c t 0 . 5
feed_forward = True
c o m p a t i b i l i t y _ d i s j o i n t _ c o e f f i c i e n t = 1 . 0
c o m p a t i b i l i t y _ w e i g h t _ c o e f f i c i e n t = 0 . 6
conn_add_prob = 0 . 0 5
conn_delete_prob = 0 . 0 5
node_add_prob = 0 . 0 5
node_delete_prob = 0 . 0 5

www.mdpi.com/xxx/s1
https://github.com/IMA-ChristianPommer/Pultrususion-FEM-NEAT
https://github.com/IMA-ChristianPommer/Pultrususion-FEM-NEAT
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a c t i v a t i o n _ d e f a u l t = sigmoid
a c t i v a t i o n _ o p t i o n s = sigmoid
a c t i v a t i o n _ m u t a t e _ r a t e = 0 . 0
aggregat ion_defau l t = sum
aggregat ion_opt ions = sum
aggregat ion_mutate_rate = 0 . 0
bias_ini t_mean = 0 . 0
b i a s _ i n i t _ s t d e v = 1 . 0
b i a s _ r e p l a c e _ r a t e = 0 . 0 1
bias_mutate_rate = 0 . 7
bias_mutate_power = 0 .005
bias_max_value = 3 0 . 0
bias_min_value = −30.0
response_init_mean = 1 . 0
r e s p o n s e _ i n i t _ s t d e v = 0 . 0
r e s p o n s e _ r e p l a c e _ r a t e = 0 . 0
response_mutate_rate = 0 . 0
response_mutate_power = 0 . 0
response_max_value = 3 0 . 0
response_min_value = −30.0

weight_max_value = 30
weight_min_value = −30
weight_init_mean = 0 . 0
weight_ in i t_s tdev = 1 . 0
weight_mutate_rate = 0 . 8
weight_rep lace_ra te = 0 . 0 1
weight_mutate_power = 0 .005
enabled_defaul t = True
enabled_mutate_rate = 0 . 0 1

[ D e f a u l t S p e c i e s S e t ]
c o m p a t i b i l i t y _ t h r e s h o l d = 3 . 0

[ Defaul tS tagnat ion ]
s p e c i e s _ f i t n e s s _ f u n c = max
max_stagnation = 40
s p e c i e s _ e l i t i s m = 2

[ DefaultReproduction ]
e l i t i s m = 3
s u r v i v a l _ t h r e s h o l d = 0 . 2
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