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Abstract: Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem
or a component. Such techniques often use sensor data which are periodically measured and
recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-
dependencies through recorded time steps and between sensors. Many current existing algorithms
for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the
field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the
networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series
(MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network
(CNN) with attention mechanism. The convolution filters work to extract the abstract temporal
patterns from the multiple time series, while the attention mechanisms review the information
across the time axis and select the relevant information. The results suggest that the proposed
method not only produces a superior accuracy of RUL estimation but it also trains many folds
faster than the reported works. The superiority of deploying the network is also demonstrated on
a lightweight hardware platform by not just being much compact, but also more efficient for the
resource restricted environment.

Keywords: attention; deep learning; convolution neural network; multivariate time series; prognos-
tics; remaining useful life

1. Introduction

The field of prognostics is centered around attempting to accurately predict the amount
of time left before an equipment of component fouls. The RUL of a subsystem or compo-
nent is commonly estimated for prognostics and prediction. Such methods of estimation
usually make use of a series of sensors constantly monitoring machine conditions for faults.
These sensor readings are very important to engineering maintenance procedures in many
different industries such as aerospace, manufacturing and automotive and they initially
serve as the foundation of corrective or preventive maintenance [1]. Prognostics and RUL
prediction on the other hand may be key to maximizing operational and system reliability.
If trustworthy RUL is obtained, a strong and fixed maintenance strategy may be developed
around it that would ultimately reduce maintenance costs by offering industries that rely
heavily on their equipment optimized operating efficiency, reduced sudden downtime and
hence maximum cost savings.

Generally prognostics techniques requires a more hand engineered [2] modeling
approach or utilizing a data driven learning method such as Artificial Neural Network
(ANN) [3] where labelled data might be required. A strong know how and deep knowl-
edge of the system is required to ultimately make a reliable model in hand engineered
approaches. Machine Learning (ML) methods on the other hand, due to its bank of data,
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allows such models to reliably learn inter dependencies much more quickly to acceptable
degrees of accuracy. ANN in particular have shown that it is capable of learning highly non
linear and complicated relations from multidimensional inputs without requiring strong
prior knowledge to the system or its physical activity. Unfiltered and unprocessed inputs
might even be able to produce high levels of accuracy.

In DNNs, forecasting is no new phenomena. The model predicts a future time series
based on their historical data. Some examples of this exists in stock forecasting, generative
audio networks [4], clinical time series analysis from recorded databases [5] or even
influenza epidemic prevalence prediction [6] using past observed data such as climate or
virological surveillance. Prognostics and health management problems such as predicting
the RUL using the sensor monitoring data can also be modelled as a forecasting problem
of a MTS.

When it comes to MTS, Recurrent Neural Network (RNN) are often used. Amongst
other types of ANN, RNN provide a good level of effectiveness and robustness to sequential
and even multi series models. In prognostics, RNNs and ANN are not new to the game.
However, while RNNs provide promising results in prognostics applications [3], RNNs
tend to be large and heavy consisting of many parameters to train on top of long gradient
paths that result in lengthy training times. RNNs intrinsically sequential computation
prevents effective parallelization across the time axis of the input data while potentially
creating a vanishing gradient problem [7]. Recurrent networks are no stranger to forecasting
and they also exists in general applications such as trajectory prediction for cars where [8]
used robust recurrent networks called Long Short-Term Memory (LSTM)s to complete the
estimated movement of a car on top of object detection. An LSTM was also applied to pick
out anomaly in three-shaft gas turbines using skewed data that had rare occurrence of fault
data [9]. The LSTM network had shown to outperform traditional classifier methods such
as Support Vector Machine (SVM).

Attention mechanisms [10] are getting a lot of attention as provide promising results.
The use of the self-attention [11] in seq2seq encoder decoder based transformer models [12]
not only shows a great success in Natural Language Processing (NLP) applications, but
becomes significantly more appealing than RNNs in many aspects. The attention mecha-
nisms also find its way into MTS applications such as in [5,6] and even hybrid applications
with RNNs [13,14]. In this paper, a temporal convolutions and a non-standard attention
mechanism are proposed across the output of the stacked convolutions.

Related Work

As the problem of prognostics can be extremely variational in terms of the environment
and conditions, a data set can be vastly differing. This leads to a large field of possible
solutions for different applications. One of the earlier methods of applying ANN to RUL
prediction and prognostics, reference [15] applies Multi Layer Perceptron (MLP) to estimate
the ball bearings RUL. Reference [16] used ANN to estimate RUL of condition monitoring
equipment. Some earlier studies also made use of RNNs to predict RUL [3]. A Kalman
filter was used on top of an RNN to attain satisfactory results. CNN implementations also
produce promising results [17]. An Extreme Learning Machine (ELM) was also used to
predict the failure of the machinery without assuming homogeneous pattern [18].

As ML methods attempt to capture highly complex and multi dimensional inputs,
some attempted to use multiobjective evolutionary algorithms together with Deep Belief
Network (DBN)s to estimate RUL of a system. Multiobjective Deep Belief Networks
Ensemble (MODBNE) was employed by [19] that achieved good results. However as
longer dependencies comes into the play, other types of networks are required. LSTM
units were used to learn temporal data and predict RUL [20]. A vanilla LSTM performed
well against standard RNNs and simpler alternatives of the LSTM on the same C-MAPSS
data set that are used for this study. More research on using LSTM for the prognostics
were also done in [21]. This shows that LSTM is more capable in estimating RULs for
complex engineering systems. References [22,23] also used a bi-directional LSTM on a
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health index computation of the raw data, showing significant improvements to RUL
prediction accuracy. An improved CNN model was also proposed in [24] that uses an
even deeper convolution model than in [17]. This method contained more convolutions
and filters per layer, thus retaining more information per depth, giving more focus on
the finer details which as a result performed exceptionally well. The more successful
models [22,24] were not as shallow, thus suffers from high computational load which
meant longer training times and slower deployment. Reference [25], like us, proposed
temporal convolutions, however on top of recurrent LSTM cells. Other neural network
methods may include using a sparse auto-encoder with logistic regression to predict the
RUL [26] while [27] used a Directed Acyclic Graph (DAG) containing parallel LSTM and
CNN architectures to solve their prediction problem. This former displayed satisfactory
performance, however it uses multiple steps and optimisations on top of a neural network.
The latter however has shown very promising performance. Exceeding the deep neural
network proposed in [24]. A Deep Survival Model (DSM) based on regression and discrete
Weibull distribution was also used on top of a combined LSTM and CNN model [28].
This method also uses temporal convolutions and resulted in an encouraging results on
all the data subsets. It also provides an alternative approach to just neural networks.
Semi-supervised methods [29] have also been used to tune the starting weights which
had shown further improvements in performance which shows viable methods outside of
supervised neural network training. Finally a deep convolution Generative Adversarial
network was integrated with an auto encoder that produced outstanding results on the
same data sets [30].

Other works on time series data sets makes use of different architectures of CNNs,
RNNs and attention. Chiller fault data sets have shown that one dimensional temporal
convolutions have achieved good results [31]. While using two layers, LSTMs have also
outperformed other forms of RNNs in detecting faulty conditions in chillers as well. Some
literature specifically use a hybrid architecture of LSTM, CNN and attention to get very
promising results in MTS data sets [13,14]. While they differ in some areas, reference [14]
specifically demonstrates through its detailed examples how each part of the architecture
is key to the success of the network. Temporal Convolution Network (TCN) are also seen
to be used on time series data sets. TCNs consists primarily of one dimensional causal and
dilated convolutions and perform comparably to bulky RNNs whilst remaining largely
simple [32]. These literatures provide alternative approaches to MTS data sets and offer
not only improved performance but also lighter networks.

2. Materials

In this section, the data set and the relevant methods that are used to arrive at the
results are discussed in detailed. The C-MAPSS is an engine performance degradation
data set that consists of simulated turbofan engines run to failure. It consists of four main
data subsets and its details will be presented before going into details of the proposed
architecture. The proposed architecture if not explicitly stated is also referred to as ‘CNN +
ATT’ model. More information about the model will also be presented in the later section
Methods. The performance of the model will be bench marked against other neural network
models in the related work described above within all data subsets. The effectiveness of
the different parts of the model will also be investigated to understand the strengths of the
proposed method. Experimental results are taken from a mean of 5 tries. All experiments
are trained and deployed on a single core hyper threaded Processor @2.3 GHz, 13 GB RAM
and a Tesla K80 GPU is used. Some results will be carried out on a lightweight System on
Chip (SoC) hardware platform, Raspberry Pi 3B to assess the models capability on such
devices [33].
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2.1. Data Set

The data set used for the proposed method is the NASA’s C-MAPSS for engine
performance degradation tracking and RUL prediction. The data set is generated from a
C-MAPSS commercial turbofan engine simulator [34,35].

NASA C-MAPSS

The C-MAPSS data set is divided into four subsets shown in Table 1. Each subset is
again further divided into training and test sets of multiple MTS. The data set is generated
from an aircraft gas turbine engine and each of the subsets use a different engine that each
start with its own degrees of initial wear and manufacturing variation. These variations
are not made known to us. What is established however is that each data set is measured
under known operating conditions as shown in Table 1. Data set 001 and 003 both have
1 operating condition while 002 and 004 have 6 conditions that makes them much more
complex which also explains its much larger training sample size as compared to the sets
with only 1 operating condition. The fault conditions of the data sets also vary from 1
to 2, having an increased complexity with more faults introduced. The maximum and
minimum cycle sequence length for each data subsets’ test and train sets are also detailed
for reference.

Table 1. Subsets of C-MAPSS data set.

Data Set
NASA C-MAPSS

FD001 FD002 FD003 FD004

Train sets 100 260 100 249
Test sets 100 259 100 248

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2
Train Samples 17,731 48,819 21,820 57,522

Min/Max cycles for Train set 128/362 128/378 145/525 128/543
Min/Max cycles for Test set 31/303 21/367 38/475 19/486

The data sets includes 26 columns that include engine ID, time cycle, three operational
sensor settings, and 21 on-board sensor measurements. The sensors are used to monitor
the engine performance through measurements of speed, temperature, and pressure at
different locations [34]. All sensors also possess non trivial noise, characteristic to its own
measurement technique, manufacturing assembly variation and health.

All engines operate in normal condition at the beginning of the simulations. Fouling
and corrosion is introduced at some point and hence start to degrade the engine randomly
in the time series. The degradation will continue in the training sets and will end each
cycle of an engine with complete failure. The degradation in the test sets however may not
end in failure so that the robustness and accuracy of the model can be tested. The true RUL
of the test sets are given for the final time step of each engine cycle. Hence the goal of the
model is to estimated the RUL of the test set as close to the given true values as possible.
More information about the turbofan engine data set may be found in Appendix B.

2.2. RUL Estimation

The training data subsets do not come with a given RUL. To tackle this problem
and estimate the RUL of the test set from a supervised learning approach, the RUL of the
train set must be modelled well. Prognostics algorithms can essentially be modelled as
regression problems. However, in practical prognostics setting, this problem is far from
regular regression. The RUL of the training set is not known and an inherent obstacle in
prognostics problems itself is to estimate the RUL of each data point.

It is very challenging to accurately model the health of a component without a well
transcribed physics model of the entire system. While a method would be to simply assign
the desired output as the actual time left before functional failure [36]. This however
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suggests that the health of a system degrades linearly with time which can be unrealistic
and detrimental to learning accuracy of a trained model. A model would hence not be able
to perform well on a test set if its training data RUL is badly represented. An alternative
would be to estimate the RUL based on a suitable model. Reference [3] had shown using a
MLP that it might be acceptable to use a constant RUL value in normal operation.

A Piece-wise linear degradation model with a constant Rc value was proposed, seen
in Figure 1. This meant that as [3,37] had suggested and tested, the estimated value of
RUL for the training set remains constant at an upper limit of Rc < 125. Many related
literature that have achieved good performance have used this approach and the range
of Rc commonly span from 120 to 135 [3,17,20,22,24,27,30]. Offering quick and reliable
test performance, it would seem estimating the RUL of the train set with this model will
be favourable. A limitation due to the training set’s implemented piece-wise constant
RUL estimation is that the model’s output predictions would not estimate larger than the
constant Rc. To normalize this deficiency in the training model, test RULs are rectified
to match the maximum values so that a fair analysis of the model may be made in the
experiments. This estimation of RUL is crucial to success of the network.

Figure 1. Piece-wise linear RUL estimation of the train set.

2.3. Metric

A couple of metrics were used in the experiments. Of which, an asymmetric scoring
function was used to measure model success. This function is common to many other
literature and was also suggested by [34]. This scoring function si for error is shown
in Equation (1) and the total sum s in Equation (2). Where di = ŷi − yi (RULPredicted −
RULTrue)

Score = Si =

e−
di
13 − 1, for di < 0.

e
di
10 − 1, otherwise.

(1)
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N

∑
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√
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∑
i=1

d2
i (3)

MAE =
1
n

n

∑
i=1
|di| (4)

R2 = 1− ∑n
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i=1(yi − ymean)2 (5)
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This function penalizes late predictions more than early ones. In practical prognostics
applications, a late results would mean that maintenance procedure is scheduled late.
This risk in the industry could lead to very costly results. Early predictions however
pose less problems as it would mean that the machine had not failed yet. Overall, one
would attempt to minimize this score as a large number would indicate low accuracy.
This would be a significant equation in the prognostics problem and most literature will
present its metric as a measure of model validation. Two more functions, Root Mean Square
Error (RMSE) in Equation (3) and the Mean Absolute Error (MAE) at Equation (4) are used
to measure accuracy of the resulting RUL. The use of these two functions will give us a
better insight into the model’s performance. Having a root of the average squared errors
will have different outcomes for RMSE as to MAE. Since the errors are squared before
they are averaged, the RMSE gives a stronger emphasis to larger errors. Hence the RMSE
should be more useful when large errors are particularly undesirable, which is consistent
to prognostics. This is definitely undesirable when predicting RUL. The MAE however
is a more universal function and gives equal penalty to both early and late predictions,
it might still provide valuable information to include this. The R-square correlation (R2)
Equation (5) is also used to benchmark model performance. This allows us to measure the
strength of the relationship of the model estimations to the true values.

2.4. Proposed Architecture

The proposed DL architecture for estimating RUL on the data set will be presented
in the following subsection. On a broad level, the architecture consists of four stacks of
1 dimensional convolutions across the time axis only. At the end, the features are fed into
a non standard attention mechanism that would later output the RUL prediction. The
preliminaries of main components that consist of the CNN and the attention mechanism
are discussed before going deep into the architecture itself.

2.4.1. Convolution Neural Network

CNNs have displayed a strong ability to learn salient patterns in input data. Deeper
layers are able to pick out the local salience of the signals and earlier layers are able to
learn higher level representations of the inputs. CNNs were first proposed by Lecun for
image processing and had showed good promise [38]. It was largely re-popularized by
Krizhevsky’s AlexNet many years later in its overwhelming success in the
ImageNet challenge.

The two main components of CNNs are the shared weights and the pooling. The
convolution filters run through the input data to extract and learn local features that are
significant to the output. It is because it is able to learn spatial relations so well that, two
dimensional convolutions do so well with images. CNNs have however also achieved
great success in other areas such as language processing, sentence classification [39] or
even larger CNN architectures used for time series classification [40].

Convolution in the time domain is not so different as well. Temporal convolutions
often refer to filters run across the time axis. The TCN is a deliberately kept simple
architecture that combines some of the more successful practices in recent research [32].
Reference [17] also used convolution in a similar manner on the C-MAPSS data set that
is used for the experiments as well and outperformed many older algorithms and even
a MLP.

Temporal convolutions were also used in [24] on the C-MAPSS data set and achieved
great success. They however used the convolution in a fundamentally different way. While
seemingly using two dimensional convolutions across the input data, the filters were in
fact one dimensional down each time series. This means is that each filter only convolves
down one time series and does not overlap with the others. Each filter generates a two
dimensional output thus ultimately stacking all filters into a three dimensional output per
convolution. This is a rather interesting method that had outperformed even the related
works that used LSTM.
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2.4.2. Proposed Convolution

The convolution used in this paper are one dimensional temporal convolutions in the
time axis. Given an input MTS sequence X = {x1, x2, . . . , xw}, where xi ∈ Rs represents
the observed set of multi variable values at time i and xw is the last input in the sequence
length. Should there be an s number of input sensor sequences, total input would be
X ∈ Rw×s. The one dimensional convolutions will have k number of filters, each C ∈ R1×w.
The filter only convolves over one time series at each instance. Hence it gets shielded from
noise between variables during the same time step and it also learns temporal information
within the sequence length that is extremely valuable to prognostics applications. This
part, while sounding trivial plays a key role in the network success as related works with
temporal convolutions often convolve across the MTS data.

2.4.3. Attention Mechanism

The attention mechanism enables a model to focus in on important pieces of the select
feature space. It works off paying greater attention to subsets the data to get more optimal
results. Attention has shown success in NLP, image processing and even MTS applications.
The general mechanisms of attention may be roughly summed up into 3 parts.

• Calculating alignment scores;
• Calculating weighted average attention vector;
• Calculating the context vector.

In earlier mechanisms, Luong had proposed three methods of calculating the scor-
ing function [10]. The functions are the dot, general and the concatenation alignment
scoring. The scoring function, Equation (7), also used in [41,42] for document word and
sentence classification is rather similar to both Luong’s concat and Bahdanau’s proposed
one in [10,43]. hi is the input vector at the attention input. As the scoring function (7), ui is
essentially a MLP to extract hidden representations of hi. The scoring function is multiplied
by trainable va to measure its similarity. va can be viewed as a high level representation of
a fixed query. Initialized and learned together with the rest of the model. Ultimately, the at-
tention weight vector αi are normalized with a softmax of the scores (6). The context vector
is the weighted sum of input vector of each time step based on the attention weights (9).

αi =
exp (ui · va)

∑t exp (ui · va)
(6)

2.4.4. Proposed Attention

The proposed attention makes some alterations to how the attention weights are cal-
culated. Unlike the traditional attention mechanisms, the sigmoid activation function (8) is
used instead of the softmax. As the softmax function normalizes the weights, it diminishes
the probability that more than one variable could be useful for prediction which might
often be the case in a multivariate time series. This step allows the attention mechanism in
the model to pick out the features better.

ui = tanh(wahi + bw) (7)

αi = sigmoid(va · ui) (8)

vj =
i=k

∑
i=1

hi · αi (9)

2.4.5. Proposed Network Structure

The structure of ANN consists of the proposed convolution layers followed by the
proposed attention. The general summary of the network can be seen in Figure 2. Given
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input data of sequence length w with s number of sensor variables, X ∈ Rw×s. The one
dimensional temporal convolution layer has k filters of size Ci ∈ R1×w. Each filter only
strides 1 which means that the filters will only learn about each individual time series at a
time. The convolution ends with a tanh activation after every layer and will generate an
output Hc ∈ Rs×k where c corresponds to the depth of convolution layer.

Figure 2. Proposed architecture. This architecture consists of a multivariate time series input
into 4 convolution layers with tanh activation. The attention layer follows the output of the final
convolution with a dropout. Finally one fully connected layer leads to an end node with linear
activation for the RUL prediction.

The attention layer will attend to the columns hi of H4 output where Hc = {h1, h2, . . . , hk}.
hi will be multiplied with weight matrix wa and bias bw. After which it will be multiplied
and summed with weight vector va to get attention weighted probabilities for each kernel
i in k. Finally the attention weight αi is weighted summed with input rows to generate
output per sensor variable vj where j ∈ [1, s]. The output context vector V ∈ Rs×1 goes
into a fully connected layer and after that 1 node with a linear activation to estimate RUL.

The model is made up of four stacks of the proposed convolution with an altered
attention mechanism at the end. The permutation of the network structure would lead
to its performance on the data subsets in the next section and its significance would be
reiterated during investigations of the network.

3. Results and Discussion

In this section, the prognostics performance of the proposed architecture in estimating
RUL on the C-MAPSS data set is presented. The proposed architecture which consists
of one dimensional temporal convolutions with attention mechanism is used to predict
the RUL values of the unseen test sets of all the four data subsets. In similar practice, the
prediction methods validated on the C-MAPSS data set from the related works can be
found in Table 2. The best three performing models for each sections are highlighted with
bold text.

As summarized in Table 2, one would notice the general trend of improving metric
towards the more recent few architectures that were in the literature toward the bottom
of the table. The proposed convolution with attention network architecture displays
encouraging results. While not the top in all subsets, it does do best in some and would
appear to be performing better in all subsets. The proposed model is also much lighter than
some of the related works. Performance generally decreases on the complex six operating
conditioned data subsets 002 and 004 with 003 and 004 generally fairing slightly worse
than its paired counterpart due to its additional fault condition. In order to create a fair
comparison with other methods in the literature, similar metrics were used. A lower
RMSE would indicate a higher RUL prediction accuracy as it implies a smaller average
difference between actual and predicted RUL. The score is the total sum of errors following
the asymmetrical score function mentioned in metric section Equation (1). It penalizes
late predictions more than early ones so that a good model would prefer to predict early
such that maintenance may be enacted, at worst, earlier to avoid catastrophic failures.
Using these methods, the proposed model is benchmarked with these results from the
related works.
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Table 2. Performance comparison with related work.

Method
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

MLP [17] 37.56 18,000 80.03 7,800,000 37.39 17,400 77.37 5,620,000
SVR [17] 20.96 1380 42.0 590,000 21.05 1600 45.35 371,000
RVR [17] 23.80 1500 31.30 17,400 22.37 1430 34.34 26,500
CNN [17] 18.45 1290 30.29 13,600 19.82 1600 29.16 7890
ELM [18] 17.27 523 37.28 498,000 18.47 574 30.96 121,000

LSTM [21] 16.14 338 24.49 4450 16.18 852 28.17 5550
DBN [19] 15.21 418 27.12 9030 14.71 442 29.88 7950

MODBNE [19] 15.04 334 25.05 5590 12.51 422 28.66 6560
RNN [24] 13.44 339 24.03 14,300 13.36 347 24.02 14,300

DCNN [24] 12.61 274 22.36 10,400 12.64 284 23.31 12,500
BiLSTM [23] 13.65 295 23.18 4130 13.74 317 24.86 5430

DAG [27] 11.96 229 20.34 2730 12.46 535 22.43 3370
DSM (Regression) [28] 14.04 310 15.15 1080 14.62 325 21.92 2260
Semi-Supervised [29] 12.56 231 22.73 3366 12.10 251 22.66 2840

DCGAN + AE [30] 10.71 174 19.49 2982 11.48 273 19.71 3874
Proposed Model (CNN+ATT) 11.48 198 17.25 1144 12.31 251 20.58 2072

3.1. Analysis

The different intricacies of the parameters in the proposed model (CNN + ATT) are
also discussed in this section.

3.1.1. Optimal Model

While deploying the proposed network, two chosen parameters seemed to play a role
in performance of the network. They are the RUL constant Rc and the input sequence length
w. It is found that RUL constant Rc of 125 gives the best performance for the model. This
value, which is adopted by some of the related works was not always the value of choice
for other. 125 was used in training the proposed model and provided the performance
seen in Table 2. These same results use a w that correspond to each specific test data subset
and the minimum sequence length that may be found in Table 1. The w values for the
benchmarked results obtained above, wb, are 30, 20, 30 and 15 respective to each of the four
data subsets. These values of w would include all test points and is necessary for fair bench
marking against other literature. However investigations with w had shown that longer
sequences seemed to provide better predictions [28]. Reference [27] had also explored these
differences and had come to similar conclusions. A w length of 50 had been found to be
optimal for the proposed model where longer sequences had no significant improvements.
As such investigations with these parameters are conducted and three networks from the
literature were recreated and adapted with the same parameters to benchmark together
with the experiments for better understanding of network performance.

These models are chosen due to its similar nature to the network and ease of re-
training and deploying. They are trained via supervised learning and deploys neural
network ML unlike more traditional methods such as gradient boosting or support vector
machines. These related works also pre-processed the input training data with the piece-
wise linear model.

1. Adapted CNN [17]
A simple two layer convolution network that is adopted from [17]. This network,
similar to the proposed model, uses one dimensional convolutions. They also use
pooling layers that drastically reduce the data after every layer. It is trained with
stochastic gradient descent. It should be noted that the convolutions for this model
span across each time step and crosses multiple time steps at once, thus learning
relations between close proximity time steps. This model is chosen as it out performed
many of the traditional methods like Support Vector Regressor (SVR) and the MLP. It
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also shared some similarity to the proposed model that would make it a more relevant
comparison. Reference [17] achieves its performance using a sequence length of 15
and a piece-wise cut off limit of 130. The deployment of the network attempts to follow
the literature as closely as possible, using same number of layers and convolution
parameters.

2. LSTM
The LSTM RNN model used to benchmark is a vanilla 2 stack LSTM. Each LSTM
layer has a 0.2 dropout rate and hidden nodes of 100 and 50 for each respective layer.
LSTMs are a rather reliable variant of the traditional RNN. They are more capable
of learning long term dependencies and suffer less from the well known issues in
RNN like vanishing gradients. Not only have LSTMs proven themselves to possess
a strong aptitude in learning temporal patterns, it is for this very reason that they
are often compared to models with attention applied. There are also many literature
that uses some form of the LSTM. Hence, a simplified version of it was deployed,
the size of the model was specifically chosen to be more similar in size to the Deep
Convolutional Neural Network (DCNN) model next, however they tend to be very
large due to its recursive nature.

3. Adapted DCNN [24]
This model adapted from [24] was one of the first to achieve very good performance
on the data set, close to the recent works metrics. It performs a two dimensional
convolution on the data set. There are five layers of convolution, each of 10 filters
producing a three dimensional output every time. As a result, it extracts more detail
and as such learns better than its predecessors. The literature uses varying w for each
subset of data and a fixed Rc of 125. The model was deployed with only 14 sensors
that were deemed useful. This model shows reliable success on this prognostics data
set and would be a good benchmark to the proposed model. This was recreated as
closely as possible to the literature aside from choice of some parameters such as Rc.

These works are trained deployed as closely as possible with Rc fixed at 125 and w at
50. The prognostic tests are then carried out with the all the models and its comparative
results recorded and discussed below. The benchmark against other networks are collated
in two tables below. The models are 10 fold cross validated on the training subsets. The
resulting RMSE and MAE along with their standard deviations are recorded in Table 3. Its
later results on the testing subsets are recorded in Table 4 along with an added metric R2.

The proposed model’s effectiveness may be observed from the good performance it
exhibits over other networks. The metrics are used as an indicator of the models’ ability
to estimate the RUL well. Table 3 shows the model performance against adapted related
works in the 50 cycle input sequence range and 125 Rc. The RMSE and MAE for the
proposed model is low on all subsets and its standard deviation amongst the 10 splits
is low as well. This indicates that the model is consistent and produces a good score on
different cuts of the training data subset.

When looking at Table 4, The proposed model scored a lower RMSE and MAE over
all data subsets. The best scores are bolded for ease of viewing. An R2 score that is closer to
1 exhibits stronger correlation and hence suggests that the predicted values follow the true
values more closely. The proposed model had a higher R2 showing that RUL estimates
have a stronger relationship to the true values. The performance of the models on the
4 subset data from both train and test sets correspond to the increasing levels of operating
and fault complexity as mentioned in Table 1. FD001 generally has best performance over
all models while FD004 scores are not as comparable due to its increased complexity.

These results indicate that the proposed model has strong capability to learn intricate
relationships in this prognostic application, in both its 10 fold validation on the train set
and the test set. It reflects good results from the model. Not only is its metric better than the
other three models but a quick glance back at Table 2 would indicate that it has very good
performance. However, its comparative success is limited. While the comparison models
have served as a reasonable benchmark, it should be pointed out that these parameters are
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not optimally found within the literature and that they are optimal for the proposed model.
Using a fixed input sequence at 50 also discards small test inputs which would render its
direct comparison with related works insufficient. Nevertheless this study into its potential
in longer sequences, or a more optimal network hence indicates positive results. A more
detailed look at the experimental results that would supplement your understanding of
the data presented may be found in Appendix A.

Table 3. Performance comparison with other ANN models, 10 fold validation on training subsets.

Data Metric
Model

CNN 1 LSTM DCNN 2 CNN + ATT

FD001 RMSE 21.61 ± 8.33 12.10 ± 0.69 12.64 ± 1.00 9.19 ± 0.31
MAE 16.51 ± 7.11 8.76 ± 0.58 9.84 ± 0.92 6.52 ± 0.25

FD002 RMSE 30.58 ± 7.79 16.88 ± 2.53 16.92 ± 0.32 15.41 ± 0.44
MAE 24.50 ± 8.19 12.78 ± 2.28 13.10 ± 0.24 11.98 ± 0.41

FD003 RMSE 22.80 ± 0.95 10.64 ± 1.30 13.96 ± 0.88 9.13 ± 0.43
MAE 17.39 ± 0.61 6.98 ± 1.06 10.78 ± 0.72 6.50 ± 0.33

FD004 RMSE 34.48 ± 7.63 17.00 ± 2.18 17.02 ± 0.33 16.89 ± 0.55
MAE 28.51 ± 9.20 12.25 ± 1.94 13.15 ± 0.32 12.31 ± 0.38

1 Adapted CNN from [17]. 2 Adapted DCNN from [24].

Table 4. Performance comparison with other ANN models on testing subsets.

Data Metric
Model

CNN 1 LSTM DCNN 2 CNN + ATT

FD001 RMSE 18.86 14.28 12.24 10.60
MAE 14.73 10.04 9.39 7.55

R2 0.78 0.87 0.90 0.93

FD002 RMSE 23.02 18.37 21.02 14.55
MAE 16.54 13.93 17.32 12.45

R2 0.70 0.80 0.75 0.88

FD003 RMSE 21.16 12.79 13.71 11.71
MAE 15.99 9.60 11.03 8.88

R2 0.70 0.89 0.87 0.91

FD004 RMSE 25.69 19.65 26.77 17.23
MAE 22.32 14.13 22.28 12.83

R2 0.63 0.79 0.60 0.83
1 Adapted CNN from [17]. 2 Adapted DCNN from [24].

3.1.2. Impact of Proposed Structures

The contributions of the temporal convolutions and then the non-standard attention
mechanism used in the proposed model are discussed in this section. All the testing are
based on FD001 data subset. To get a fair understanding of how well the convolutions
are applied, the performance of the first experiment with three models is summarized in
Table 5.

• Model 1 removes the proposed attention mechanism from the model and attempts to
measure the aptitude of the convolution layers only.

• Model 2 experiments with the convolution by changing the axis of the filters. While
Model 1 convolves over each time series, Model 2 takes a more popular approach by
convolving over time steps and learning relations between sensor inputs per time step
similar to [17].

• Model 3 introduces the attention mechanism back into the alternative convolution
Model 2. This is to observe the effects of the attention in the different setting and
might provide insight into the model.
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• The last entry is the proposed model and it is used as a reference for the other models
that are under review.

Table 5. Model investigations.

Metric
Model

Model 1 a Model 2 a Model 3 a Model 4 b Model 5 b Model 6 b Proposed Model

RMSE 12.39 13.49 12.15 13.51 11.91 11.36 10.60
MAE 9.70 9.95 8.50 10.12 8.60 8.29 7.55

R2 0.90 0.88 0.90 0.88 0.91 0.92 0.93
Score 205.50 256.30 263.75 313.50 272.45 183.50 183.20

a Convolution investigation. b Attention investigation.

Comparing Model 1 with the proposed model, it shows that the attention mechanism
of the proposed model provides a good level of accuracy improvement.

Model 1 and 2 results show us that convolving on the time step outputs does reduce
the accuracy of the model. This suggests that for this prognostic application, learning
filters that span the length of the time series is more useful to the output of the mode than
learning the immediate relations between sensors of each time step.

Model 3 introduces the attention mechanism back into the alternative convolution
Model 2. It is obvious that a good level of improvement in the model accuracy which
highly suggests with two experiments that the added attention benefits the model.

Figure 3 shows a visualization of the True RUL labels provided from the test set
sorted and plotted against the three Models proposed above together with the proposed
architecture. One can see that all results tend to fair better as the RUL approaches 0. The
points that are further away contain more error. This is appropriate for prognostic setting
as accuracy at the time closer to failure is more valuable than the latter. This plot allows us
to visualize the impact of the different mechanisms in the three models.

Figure 3. Sorted true labels of FD001 test data subset.

To next get a better understanding of the value of the attention mechanism, a second
experiment is conducted with some tweaks centered to the attention mechanism and three
more variants are proposed.

• Model 4 sees the attention mechanism attending to the rows of the convolution output
instead of the columns. It would thus be focusing between the sensor series instead of
amongst the convolution filters.
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• Model 5 uses the original Softmax function to generate the attention weights instead
of the Sigmoid that is used on top of the alternate attention axis used in Model 4.

• Model 6 uses the proposed model and changes only the Sigmoid to the original
Softmax to visualize the difference that the Sigmoid makes.

Table 5 also includes the results of this testing. Model 4 switches the axis of the
proposed attention mechanism, attempting to observe the the effectiveness of the mecha-
nism on its chosen vectors. A distinct drop in model accuracy tells us that the attention
mechanism is not as capable of capturing important relations amongst the filters between
each series. It appears that the original decision of applying the mechanism to the filter
outputs was much more effective in this architecture at learning more useful features from
the data.

Model 6 is similar to the proposed model except that it uses the Softmax function
to calculate the attention weights like in normal attention mechanisms. Model 6 did not
fair as well as the proposed model as well. The drop in accuracy is not too significant,
but nevertheless present. Hence it is obvious that the Sigmoid function plays a role in
improving the the model.

Model 5 gave the most interesting results. Model 5 used the alternate axis for the
attention mechanism with the Softmax function. While the two changes added to this
model individually decreased accuracy of their models from the proposed method, as
can be seen when comparing Model 4 and Model 6 to the proposed method; this model
however, did better than Model 4. This suggests that the Softmax function was able to pick
out more relevant information from the alternative axis than the Sigmoid that is used in
the proposed method. Thus, there are many permutations of different methods that might
work especially well with each other.

Figure 4 shows us a visualization of the predicted values of Model 4 to 6 against the
proposed model and the true values. The True values and the proposed method are kept
the same colour as in Figure 3. Similar observations may be made where RUL predictions
for all models closer to 0 are less variant.

Figure 4. Sorted true labels of FD001 test data subset.

3.2. Hardware Performance

The deployment of all the models and some differences between them are discussed
here. Figure 5 shows the parameter differences between the 3 bench-marking models and
the proposed models. The proposed model has the second lowest number of parameters at
6299. It is worth noting that the majority of the DCNN parameters are dominated by its
dense layer. While the LSTM is large rightfully due to sheer number hidden nodes.
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Figure 5. Model parameters and training time for each model.

The training times for the models are also shown in Figure 5. It is obvious that the
proposed model here trains faster than the larger models and has comparable training time
to the two layer CNN. The LSTM takes the longest to train even though the DCNN has
a larger total trainable parameter size. The models are evaluated on a lightweight SoC
platform to do a simple benchmark on the models’ capabilities in a resource restricted
environment. A vanilla Raspberry Pi 3b is used to deploy the models on the same test sets.
In the setting of a 1 GB memory constrained platform without a dedicated GPU and only
a 1.4 GHz 64 bit quad-core ARM Cortex SoC, the time taken for a prediction is recorded
below in Table 6. The values are an average of five measurements over the entire test set.
The results are normalized for each model and the time per prediction is calculated and
recorded in milliseconds. The times between data subsets are similar for each model. As
such, only measurements for FD001 are recorded.

Without the aid of a GPU for efficient floating point matrix multiplication operations
nor with a surplus of powerful RAM, the heavier architectures here both fall behind by
a large margin. Using only the ARM SoC for deployment of the model, the LSTM was
close to 15 times slower than the proposed model and the DCNN was almost 40 times
slower. It hence shows that the system is able to handle the proposed architecture much
more efficiently.

Table 6. Prediction time on RaspberryPi 3b.

Data
Units: ms

CNN 1 LSTM DCNN 2 CNN + ATT

FD001 0.3705 9.2114 22.9548 0.5976
1 Adapted CNN from [17]. 2 Adapted DCNN from [24].

4. Methods

In this section, the details of the materials and methods used to set up, train and
deploy the proposed model are described. The parameters of the proposed model used in
this study are reported as well.
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Network Setup

The input data from the four data subsets may be clustered. Based on the fault
conditions and operating environments, normalization could be done based on those
clusters, however for this paper all sensors were normalized individually and while less
optimal, no de-noising techniques of the input data was performed and no removal of any
input sensors was carried out. The input data comes in with 21 sensor inputs, three settings
with an engine ID and time step cycle. All the data, with exception of the ‘id’, is normalized.
The engine id and cycles are used to sort out each engine data into its input sequences.

The piece-wise linear model capped at Rc = 125 is applied to the training data after
normalization and that would generate the estimated RUL for the training data subsets,
getting it ready for supervised training of the model. After this a sliding window the size of
the sequence length is propagated down each engine ‘id’ sequence and generates the data
set for training at all instances of the engine health. Sequence length used for comparison
with other works in Table 2 are 30, 20, 30, 15. These values cover all inputs from the test and
train sets and leave no data sequence out. The sequence length used for investigations is
50 and data sequences that are smaller than this are not used. The ID columns are removed
after serving its purpose which leave us with 25 columns of data. No further processing
aside from data normalization was done to the inputs.

Table 7 above shows a list of the default parameters used in the proposed architecture.
The model is trained with an Adam optimizer with mean square error as loss. The number
of epochs vary between data subsets. For FD001 and FD003 that has similar data sizes,
100 epochs are used while for FD002 and FD004 that has a much larger data set, the
proposed model is trained for 350 epochs.

Table 7. Parameters of the proposed model.

Parameter Description Value

- Batch size 200

s Input sequences 25

wb Sequence length used in benchmarking 30/20/30/15

wi Sequence length used in investigations 50

k Conv filters 25

c No. conv layers in Hc 4

- Conv layer activation tanh

- Dropout after Attention 0.2

- Nodes in dense 64

Rc RUL constant 125

5. Conclusions

With the industries becoming smarter and technology becoming smaller, the data
collection techniques will no doubt propagate within manufacturing and maintenance
sectors. As more data is made available, the DL models can provide significant value
as reliable tools to these industries. In this paper, a novel attention based lightweight
CNN is proposed for prognostics application. The experiments were carried out on the
C-MAPSS engine degradation data set to show the effectiveness of the proposed model.
The objective is to accurately predict the RUL of each engine sequence from raw input
sensor data. With the proposed method and parameters selected, the model demonstrated
that it can perform well amongst the related works remaining within the top three in
every category on this data set. This model is also much smaller and lightweight. It takes
significantly less time to train and shows that it can perform in a resource restricted SoC
hardware environment. Comparing with the other models, it can be deduced that the model
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architecture may be considered for other lightweight requirements and is undoubtedly
promising for prognostic applications.

While the competitive experimental results were attained for this method, an inves-
tigation into the different mechanisms of the architecture also shows room for greater
improvement. It also demonstrated on the cross validated train sets and test sets that an
increasing in sequence length can potentially improve the network performance. While
the proposed model is only validated on the C-MAPSS data set, a study of its capabilities
on other prognostic or MTS data sets and types can be carried out to properly validate the
robustness of the architecture. As the network is very small, it likely struggles to learn the
features of a more complex tasks or larger set of data. Future research may put more focus
into utilizing the attention mechanisms so that a complete multi headed self-attention based
architecture for prognostics application may be useful. Such types of attention models
show good success in other areas of ML and able to handle more rigorous tasks as well. A
more practical approach may also be taken by including the scoring function directly into
the training instead of merely as a post reference metric.
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DCNN Deep Convolutional Neural Network
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LSTM Long Short-Term Memory

SVM Support Vector Machine

ML Machine Learning

MAE Mean Absolute Error

MLP Multi Layer Perceptron

ELM Extreme Learning Machine

DBN Deep Belief Network

MODBNE Multiobjective Deep Belief Networks Ensemble

MTS Multi-variable Time Series

NLP Natural Language Processing

DBN Deep Belief Network

RMSE Root Mean Square Error

RNN Recurrent Neural Network
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R2 R-square correlation

RUL Remaining Useful Life

DAG Directed Acyclic Graph

DSM Deep Survival Model

SoC System on Chip

SVR Support Vector Regressor

TCN Temporal Convolution Network

Appendix A. Further Analysis on Results

While it is apparent from the experiments that our model performs well, it is still
useful to look further into the results that are presented and look deeper between the lines
for a stronger understanding of its place. The graphs for the four test data subsets may be
found below from Figures A1–A4. Each diagram shows the RUL value of each sequence of
the test set that was provided by C-MAPSS, sorted in ascending order and represented in
red. Each models’ corresponding predictions are also displayed. Being able to visualize the
data would give a stronger intuition as to how or where a model is performing better. You
may notice that Figures A1 and A3 have much less noise than Figures A2 and A4. This is
due to the added complexity of FD0002 and FD004. In all instances of this investigation,
our model reflects the best performance.

Figure A1. Comparison on FD001 Test set.

Figure A2. Comparison on FD002 Test set.
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Figure A3. Comparison on FD003 Test set.

Figure A4. Comparison on FD004 Test set.

The graphs may also be interpreted through Table A1 found below. The table summa-
rizes the metric for each data subset for all the tested models and categories them into its
values that correspond to the performance at equal to or less than 10 cycles (C10), 50 cycles
(C50) and 100 cycles (C100), respectively. This allows us to access the models performance
at different segments of the predicted RUL spectrum. While visible from the graphs, this
table quantitatively summarizes the values into its averages for us to better perceive it.

Overall, one might notice that when segmented like this, our model does not out-
perform in all areas. Specifically, it often performs slightly worse than the LSTM when at
10 cycles or less and at 50 cycles for FD004. This suggests that in some cases, when closer to
failure, the LSTM would be more accurate. While an overall score still brings the average
best to be our model, it is worth noting that should a situation require higher performance
at low cycle counts and disregard cycles larger than that, the LSTM might be the model
of choice. For prognostics where the method is largely different between industries and
amongst equipment, knowing how or where to apply the best solution would perhaps be
the most important.
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Table A1. Neural networks performance breakdown.

Cycles Metric
Model

CNN LSTM DCNN Our Model

FD001 C10 RMSE 10.80 2.59 7.72 2.83
MAE 9.41 2.29 6.29 2.26

Mean Score 1.99 0.20 0.78 0.20

C50 RMSE 13.87 4.33 7.15 3.32
MAE 10.83 3.35 5.71 2.70

Mean Score 4.31 0.37 0.73 0.28

C100 RMSE 17.32 13.31 11.40 9.84
MAE 13.49 8.86 8.53 6.52

Mean Score 7.18 4.42 2.52 2.16

FD002 C10 RMSE 15.43 11.28 22.33 11.33
MAE 12.1 8.71 17.73 8.91

Mean Score 5.85 2.25 14.46 1.55

C50 RMSE 16.87 16.54 21.12 12.50
MAE 12.83 12.19 16.94 9.85

Mean Score 8.13 10.08 15.53 2.69

C100 RMSE 21.06 19.89 21.29 14.95
MAE 16.37 15.28 17.05 11.69

Mean Score 10.36 13.36 14.77 4.38

FD003 C10 RMSE 11.75 2.31 8.40 3.48
MAE 10.11 1.70 7.42 2.78

Mean Score 2.26 0.183 1.23 0.34

C50 RMSE 17.87 4.75 11.38 4.19
MAE 13.86 3.41 8.94 3.33

Mean Score 7.31 0.41 2.39 0.35

C100 RMSE 23.41 13.15 15.19 10.31
MAE 18.90 9.16 11.68 7.07

Mean Score 23.48 4.38 6.43 2.11

FD004 C10 RMSE 23.83 7.30 30.59 5.63
MAE 20.27 5.64 26.97 4.49

Mean Score 29.91 0.97 45.01 0.53

C50 RMSE 22.76 10.98 29.28 12.12
MAE 17.52 7.56 25.70 8.84

Mean Score 27.99 2.44 36.27 3.22

C100 RMSE 24.29 17.83 24.96 16.82
MAE 19.41 12.96 20.82 12.49

Mean Score 22.16 7.49 22.91 7.13

Appendix B. Further Details about the NASA C-MAPSS Data Set

More information about this data set may be found in Figure A5 below. The main
few rotating components as annotated in the figure are the fan, low pressure compressor,
high pressure compressor, high pressure turbine and the low pressure turbine. The outputs
include various sensor response surfaces and operability margins. A total of 21 variable
sensor outputs out of 58 different outputs available from the model are used in the data set.
The outputs may be referenced from Table A2. Though not explicitly treated differently for
our use case ANN in the later section, it is useful to know the nature of our sensor outputs.
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Figure A5. A diagram of Turbofan Engine with its component system of interest and its sensors.
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Table A2. Engine sensor outputs from [26].

Symbol Description Units

T2 Total temperature at fan inlet ◦R

T24 Total temperature at LPC outlet ◦R

T30 Total temperature at HPC outlet ◦R

T50 Total temperature at LPT outlet ◦R

P2 Pressure at fan inlet psia

P15 Total pressure in bypass-duct psia

P30 Total pressure at HPC outlet psia

Nf Physical fan speed rpm

Nc Physical core speed rpm

epr Engine pressure ratio (P50/P2) –

Ps30 Static pressure at HPC outlet psia

phi Ratio of fuel flow to Ps30 pps/psi

NRf Corrected fan speed rpm

NRc Corrected core speed rpm

BPR Bypass Ratio –

farB Burner fuel-air ratio –

htBleed Bleed Enthalpy –

Nfdmd Demanded fan speed rpm

PCNFRdmd Demanded corrected fan speed rpm

W31 HPT coolant bleed lbm/s

W32 LPT coolant bleed lbm/s
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