Effect of Substratum Structural Complexity of Coral Seedlings on the Settlement and Post-Settlement Survivorship of Coral Settlers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substratum Used for the Study
- CSD (Coral Settlement Device):
- CP (Ceramic Plate):
- CN (Coral Net):
- SS (Scallop Shell):
2.2. Calculating Structural Complexity of the Substratum
2.3. Study Sites
2.4. Deployment and Sampling of the Substratum
2.5. Measurement of Coral Settlers
3. Results
3.1. Structural Complexity of the Substratum
3.2. Settlement Rate
3.3. Survivorship
4. Discussion
4.1. Effect of the Structural Complexity of the Substratum on the Settlement Rate
4.2. Effect of the Structural Complexity of the Substratum on the Survivorship
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Coral Reef Initiative. Available online: Https://www.icriforum.org/wp-content/uploads/2019/12/ICRIGM28-Resolution_C2A_FFA.pdf (accessed on 25 May 2021).
- Hughes, T.P.; Andersen, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthoropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carpenter, K.E.; Abrar, M.; Aeby, G.; Aronson, R.B.; Banks, S.; Bruckner, A.; Chiriboga, A.; Cortés, J.; Delbeek, J.C.; DeVantier, L.; et al. One-third of reef building corals face elevated extinction risk from climate change and local impacts. Science 2008, 321, 560–563. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rinkevich, B. Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress. Environ. Sci. Technol. 2005, 39, 4333–4342. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Omori, M. Restoration Technique; Coral Reefs of Japan, Japanese Coral Reef Society and Ministry of the Environment, Ed.; Ministry of the Environment: Tokyo, Japan, 2004; pp. 142–151. [Google Scholar]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef][Green Version]
- Edwards, A.J. (Ed.) Reef Rehabilitation Manual; Coral Reef Targeted Research & Capacity Building for Management Program: St. Lucia, Australia, 2010; ii+166p. [Google Scholar]
- Baker, A.C.; Starger, C.J.; McClanahan, T.R.; Glynn, P.W. Coral’s adaptive response to climate change. Nature 2004, 430, 741. [Google Scholar] [CrossRef]
- Salih, A.; Larkum, A.; Cox, G.; Kühl, M.; Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 2000, 408, 850–853. [Google Scholar] [CrossRef]
- Randall, C.J.; Negri, A.P.; Quigley, K.M.; Foster, T.; Ricardo, G.F.; Webster, N.S.; Bay, L.K.; Harrison, P.L.; Babcock, R.C.; Heyward, A.J. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 2020, 635, 203–232. [Google Scholar] [CrossRef][Green Version]
- Omori, M. Coral restoration research and technical developments: What we have learned so far. Mar. Biol. Res. 2019, 15, 377–409. [Google Scholar] [CrossRef]
- Okamoto, M.; Nojima, S.; Fujiwara, S.; Furushima, Y. Development of ceramic settlement devices for coral reef restoration using in situ sexual reproduction of corals. Fish. Sci. 2008, 74, 1245–1253. [Google Scholar] [CrossRef]
- Mullineaux, L.S.; Butman, C.A. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 1991, 110, 93–103. [Google Scholar] [CrossRef]
- Quinn, N.P.; Ackerman, J.D. The effect of bottom roughness on scalar transport in aquatic ecosystems: Implications for reproduction and recruitment in the benthos. J. Theor. Biol. 2015, 369, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Hayashibara, T.; Shimoike, K.; Kimura, T.; Hosaka, S.; Heyward, S.; Harrison, P.; Kudo, K.; Omori, M. Patterns of coral spawning at Akajima Island, Okinawa, Japan. Mar. Ecol. Prog. Ser. 1993, 101, 253–262. [Google Scholar] [CrossRef]
- Hayashibara, T.; Iwao, K.; Omori, M. Induction and control of spawning in Okinawan staghorn corals. Coral Reefs 2004, 23, 406–409. [Google Scholar] [CrossRef]
- Suzuki, G.; Arakaki, S.; Hayashibara, T. Rapid in situ settlement following spawning by Acropora corals at Ishigaki, southern Japan. Mar. Ecol. Prog. Ser. 2011, 421, 131–138. [Google Scholar] [CrossRef][Green Version]
- Vermeij, M.J.A.; Sandin, S.A. density-dependent settlement and mortality structure the earliest life phase of a coral population. Ecology 2008, 89, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.; Laterveer, M.; Schuhmacher, H. Innovative substrate tiles to spatially control larval settlement in coral culture. Mar. Biol. 2005, 146, 937–942. [Google Scholar] [CrossRef]
- Misaki, H.; (Kushimoto Marine Park Center, Wakayama, Japan). Personal communication, 2020.
- Carleton, J.H.; Sammarco, P.W. Effects of substratum irregularity on success of coral settlement: Quantification by comparative geomorphological techniques. Bull. Mar. Sci. 1987, 40, 85–98. [Google Scholar]
- Guest, J.R.; Baria, M.V.; Gomez, E.D.; Heyward, A.J.; Edwards, A.J. Closing the circle: Is it feasible to rehabilitate reefs with sexually propagated corals? Coral Reefs 2014, 33, 45–55. [Google Scholar] [CrossRef][Green Version]
- Yamazato, K.; Suwardi, E.; Sultana, S. Reproductive cycle of brooding corals at high latitude. J. Jpn. Coral Reef Soc. 2008, 10, 1–11, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Sato, M. Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 1985, 4, 27–33. [Google Scholar] [CrossRef]
- Schuhmacher, H. On the condition accompanying the first settlement of corals on artificial reefs with special reference to the influence of grazing sea urchins (Eilat, Red Sea). In Proceedings of the Second International Symposium on Coral Reefs, Brisbane, Australia, 22 June–2 July 1974; Volume 1, pp. 257–267. [Google Scholar]
- Tebben, J.; Motti, C.A.; Siboni, N.; Tapiolas, D.M.; Negri, A.P.; Schupp, P.J.; Kitamura, M.; Hatta, M.; Steinberg, P.D.; Harder, T. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 2015, 5, 10803. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.L.; Wallace, C.C. Reproduction, dispersal and recruitment of scleractinian corals, ch. 7. In Coral Reef Ecosystems, Ecosystems of the World; Dubinsky, Z., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1990; Volume 25, pp. 133–207. [Google Scholar]
- Whalan, S.; Wahab, M.A.A.; Sprungala, S.; Poole, A.; de Nys, R. Larval settlement: The role of surface topography for sessile coral reef invertebrates. PLoS ONE 2015, 10, e0117675. [Google Scholar] [CrossRef] [PubMed]
- Levenstein, M.A.; Marhaver, K.L.; Quinlan, Z.A.; Tholen, H.M.; Tichy, L.; Yus, J.; Lightcap, I.; Kelly, L.W.; Juarez, G.; Vermeij, M.J.A.; et al. Composite substrates reveal inorganic material cues for coral larval settlement. ACS Sustain. Chem. Eng. 2022, 10, 3960–3971. [Google Scholar] [CrossRef]
- Nozawa, Y.; Tanaka, K.; Reimer, J.D. Reconsideration of the surface structure of settlement plates used in coral recruitment studies. Zool. Stud. 2011, 50, 53–60. [Google Scholar]
- Wilson, J.; Harrison, P. Post-settlement mortality and growth of newly settled reef corals in a subtropical environment. Coral Reefs 2005, 24, 418–421. [Google Scholar] [CrossRef]
- Nozawa, Y.; Tokeshi, M.; Nojima, S. Reproduction and recruitment of scleractinian corals in a high-latitude coral community, Amakusa, southwestern Japan. Mar. Biol. 2006, 149, 1047–1058. [Google Scholar] [CrossRef]
- Sammarco, P.W. Diadema and its relationship to coral spat mortality: Grazing, competition, and biological disturbance. J. Exp. Mar. Biol. Ecol. 1980, 45, 245–272. [Google Scholar] [CrossRef]
- Glassom, D.; Chadwick, N.E. Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar. Ecol. Prog. Ser. 2006, 318, 111–122. [Google Scholar] [CrossRef][Green Version]
- Nozawa, Y. Micro-crevice structure enhances coral spat survivorship. J. Exp. Mar. Biol. Ecol. 2008, 367, 127–130. [Google Scholar] [CrossRef]
- Nozawa, Y. Effective size of refugia for coral spat survival. J. Exp. Mar. Biol. Ecol. 2012, 413, 145–149. [Google Scholar] [CrossRef]
- Gallagher, C.; Doropoulos, C. Spatial refugia mediate juvenile coral survival during coral-predator interactions. Coral Reefs 2017, 36, 51–61. [Google Scholar] [CrossRef]
- Babcock, R.; Mundy, C. Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 1996, 206, 179–201. [Google Scholar] [CrossRef]
- Okamoto, M.; Yap, M.; Roeroe, A.K.; Nojima, S.; Oyamada, K.; Fujiwara, S.; Iwata, I. In situ growth and mortality of juvenile Acropora over 2 years following mass spawning in Sekisei Lagoon, Okinawa (24° N). Fish. Sci. 2010, 76, 343–353. [Google Scholar] [CrossRef]
Structure | Name | Shape | Material | Size (cm) | Projected Area (cm2) | Surface Area (cm2) |
---|---|---|---|---|---|---|
Groove | Coral Settlement Device: CSD | Top | Ceramic including steel slug | 4.5φ × 2.5 h 1 | 15.9 | 60.0 |
Flat | Ceramic Plate: CP | Plate | Ceramic | 29.5 2 × 3.1 × 0.9t 3 | 91.5 | 241.6 |
Linear | Coral Net: CN | Net | Biodegradable plastic | 8.7 × 28.4 4, mesh: 1.9 | 44.9 | 89.8 |
Wrinkle | Scallop Shell: SS | Shell | Mizuhopecten yessoensis | 11.0φ 5 | 94.5 | 188.9 |
Year | Area | St. | Depth (m) | Deployment | First Sampling | Second Sampling | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | CSD | CP | CN | SS | Period | CSD | CP | CN * | SS | Period | CSD | CP | CN * | SS | ||||
2012 | Kunigami | K3 | 4.8 | May 24 to 25 | 264 | 18 | 2 | 56 | August 30 | 22 | 2 | 2 | 4 | December 14 | ND | ND | ND | ND |
K4 | 4.9 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
K5 | 5.3 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | 22 | ND | ND | ND | |||||
K7 | 5.3 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
Motobu | M1 | 4.2 | May 25 to 26 | 264 | 18 | 2 | 56 | August 15 | 22 | 2 | 2 | 4 | December 4 | ND | ND | ND | ND | |
M2 | 5.9 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
M4 | 1.1 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | 22 | ND | ND | ND | |||||
M6 | 3.9 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | 22 | ND | ND | ND | |||||
Zamami | Z1 | 5.3 | May 15 to 16 | 264 | 18 | 2 | 56 | August 13 to 14 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | ||
Z4 | 3.9 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
Z6 | 4.8 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
Z11 | 5.3 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
Z13 | 4.2 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
Z14 | 5.4 | 264 | 18 | 2 | 56 | 22 | 2 | 2 | 4 | ND | ND | ND | ND | |||||
2013 | Kunigami | K5 | 5.3 | May 17, 21 to 23 | 704 | 160 | 240 | 192 | July 26 | 88 | 20 | 30 | 24 | December 23 | 88 | 20 | 30 | 24 |
Zamami | Z6 | 4.8 | May 27, 29 to 30 | 704 | 160 | 240 | 192 | July 16 | 88 | 20 | 30 | 24 | December 3 | 88 | 20 | 30 | 24 | |
2014 | Kunigami | K7 | 5.3 | April 25 | 1760 | 360 | – | – | August 21 | 264 | 20 | 6 January2015 | ND | ND | ||||
Motobu | M4 | 1.1 | May 1 | 1760 | 360 | – | – | August 30 | 264 | 20 | December 3 | 264 | 20 |
Substratum | Complexity |
---|---|
CSD | 3.77 |
CP | 2.65 1 (2.64 in 2012, and 2.65 in 2013 and 2014) |
CN | 2.00 2 (2.00 in 2012 and 1.99 in 2013) |
SS | 2.00 |
Year | Area | Substratum | |||
---|---|---|---|---|---|
CSD | CP | CN | SS | ||
2012 | Kunigami | 13.6 | 26.3 | 8.5 | 28.3 |
Motobu | 4.6 | 13.8 | 4.3 | 17.3 | |
Zamami | 19.7 | 9.2 | 8.3 | 38.5 | |
Mean | 12.6 | 16.4 | 7.0 | 28.0 | |
2013 | Kunigami | 78.4 | 45.0 | 73.3 | 47.9 |
Zamami | 19.3 | 25.4 | 33.3 | 28.1 | |
Mean | 48.9 | 35.2 | 53.3 | 38.0 | |
2014 | Kunigami | 64.8 | 48.1 | ||
Motobu | 36.0 | 24.6 | |||
Mean | 50.4 | 36.4 | |||
2012–2014 | Mean ± sd | 37.3 ± 27.8 | 29.3 ± 14.6 | 30.2 ± 29.1 | 33.0 ± 11.6 |
Year | Area | Substratum | |||
---|---|---|---|---|---|
CSD | CP | CN | SS | ||
2012 | Kunigami | 50.0 | |||
Motobu | 116.7 | ||||
Mean | 75.0 | ||||
2013 | Kunigami | 28.3 | 32.7 | 13.9 | 10.9 |
Zamami | 18.9 | 9.0 | 0.0 | 39.8 | |
Mean | 23.6 | 20.9 | 7.0 | 25.4 | |
2014 | Motobu | 56.6 | 45.1 | ||
2012–2014 | Mean ± sd | 51.7 ± 26.0 | 33.0 ± 17.1 | 7.0 | 25.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiwara, S.; Kezuka, D.; Hagiwara, K.; Ishimori, H.; Tabata, H. Effect of Substratum Structural Complexity of Coral Seedlings on the Settlement and Post-Settlement Survivorship of Coral Settlers. Oceans 2023, 4, 1-12. https://doi.org/10.3390/oceans4010001
Fujiwara S, Kezuka D, Hagiwara K, Ishimori H, Tabata H. Effect of Substratum Structural Complexity of Coral Seedlings on the Settlement and Post-Settlement Survivorship of Coral Settlers. Oceans. 2023; 4(1):1-12. https://doi.org/10.3390/oceans4010001
Chicago/Turabian StyleFujiwara, Shuichi, Daisuke Kezuka, Kazutaka Hagiwara, Hiroo Ishimori, and Hideo Tabata. 2023. "Effect of Substratum Structural Complexity of Coral Seedlings on the Settlement and Post-Settlement Survivorship of Coral Settlers" Oceans 4, no. 1: 1-12. https://doi.org/10.3390/oceans4010001