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Abstract: Despite recent advancements in prosthetic technology, lower-limb amputees often remain
limited to passive prostheses, which leads to an asymmetric gait and increased energy expenditure.
Developing active prostheses with effective control systems is important to improve mobility for
these individuals. This study presents a machine-learning-based approach to classify five distinct
locomotion tasks: ground-level walking (GWL), ramp ascent (RPA), ramp descent (RPD), stairs
ascent (SSA), and stairs descent (SSD). The dataset comprises fused electromyographic (EMG) and
inertial measurement unit (IMU) signals from twenty non-amputated and five transtibial amputated
participants. EMG sensors were strategically positioned on the thigh muscles, while IMU sensors
were placed on various leg segments. The performance of two classification algorithms, support
vector machine (SVM) and long short-term memory (LSTM), were evaluated on segmented data.
The results indicate that SVM models outperform LSTM models in accuracy, precision, and F1
score in the individual evaluation of amputee and non-amputee datasets for 80–20 and 50–50 data
distributions. In the 80–20 distribution, an accuracy of 95.46% and 95.35% was obtained with SVM
for non-amputees and amputees, respectively. An accuracy of 93.33% and 93.30% was obtained for
non-amputees and amputees by using LSTM, respectively. LSTM models show more robustness and
inter-population generalizability than SVM models when applying domain-adaptation techniques.
Furthermore, the average classification latency for SVM and LSTM models was 19.84 ms and 37.07 ms,
respectively, within acceptable limits for real-time applications. This study contributes to the field by
comprehensively comparing SVM and LSTM classifiers for locomotion tasks, laying the foundation
for the future development of real-time control systems for active transtibial prostheses.

Keywords: electromyography; inertial sensor; long short-term memory; support vector machine;
transtibial prosthesis

1. Introduction

The number of patients undergoing amputations is increasing annually in the Western
world, with 90% of these cases related to lower-limb amputations [1] (p. 5). In the United
States, it is estimated that over 185,000 individuals experience some form of amputation
each year [2], with more than 150,000 of these cases involving lower-limb amputations [3].
Lower-limb amputations are a significant cause of locomotor [4] and functional difficulty
for the individual, leading to physical, psychological, family, and personal impacts [5].
Additionally, it has been observed that in transtibial amputees, the loss of ankle power
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generation increases metabolic energy costs by 20–30% [6]. This situation raises the risk of
musculoskeletal problems and falls [7].

Despite advances in prosthetic technology in recent years, many people with lower-
limb amputations are limited to passive prostheses that result in asymmetric gait and
require more significant energy expenditure from the user [6,8]. The incapacity of passive
prostheses to generate energy limits the abilities of both transfemoral and transtibial
amputees to move appropriately during daily activities [9]. Tasks such as ascending ramps
or climbing stairs require net-positive power outputs that are not entirely achievable with
passive prostheses [10].

In order to address these challenges, the development of active prosthetics has be-
come one of the primary objectives [8,10]. These prosthetics must be able to deliver the
appropriate power and mechanical torque, potentially assisting amputees in various lo-
comotion activities, not limited exclusively to level walking [9]. Developing a control
system that allows a transtibial prosthesis to replicate the walking abilities of a healthy
individual and adapt naturally to different terrains remains a significant challenge [11].
For some commercially available active lower-limb prostheses, amputees need to instruct
their motion intention to the prosthesis through buttons or by executing a non-natural
movement [12]. Therefore, it is necessary to develop control systems containing algorithms
that can automatically detect a user’s movement intention during various locomotion
activities to manage an active transtibial prosthesis [13,14].

The commonly used sensors for movement intention recognition are electromyography
(EMG) sensors or inertial measurement units (IMU) [4]. EMG sensors have the potential
to achieve a high range of voluntary control over the prosthesis and represent the earliest
signal that can be extracted during motor activities [15]. On the other hand, using IMU
sensors allows for identifying the gait cycle phase in conjunction with other mechanical
sensors like contact switches or load cells [11,12,15]. Some studies have fused the data
provided by both types of sensors, as seen in the case of Barberi et al. [15], who developed
a locomotion task classification algorithm for transfemoral prosthesis comparing support
vector machine (SVM) algorithms with a linear or second-order polynomial kernel. Four
EMG sensors located in the muscles of the amputated leg, three IMU sensors, and contact
switches for data collection were used to achieve an accuracy greater than 94%. Zhou
et al. [16] fused data from three EMG signals and one IMU inertial signal to develop
an ankle-movement-recognition system on non-amputees. Different algorithms were
compared in this study, with SVM being the traditional algorithm with the best performance
and bi-directional long short-term memory (BiLSTM) being the algorithm with the overall
best performance at 99.8%. Meng et al. [17] collected EMG and inertial signals from ten
non-amputee subjects to train classification algorithms for seven locomotion activities. They
performed a fusion of EMG and IMU data and tested it on four classification algorithms:
support vector machine (SVM), K-nearest neighbor (KNN), artificial neural network (ANN),
and linear discriminant analysis (LDA). The fusion of the EMG signals improved the
accuracy of steady-state locomotion-activity recognition by using SVM from 90% (using
only acceleration data) to 98% (using the data fusion of EMG + IMU). Hu et al. [18] propose
using their dataset to develop control strategies for motion-intention recognition by using
EMG and IMU data-fusion techniques focused on machine learning classification. Given
the ongoing introduction of new sensors, the fusion of technologies for motion recognition
is a hotspot in the field of prosthetic-control research [16].

The existing literature includes studies that evaluate ankle movements in transtibial
amputees by using EMG sensors placed on muscles of the leg segment (such as the tibialis
anterior and gastrocnemius) [19,20]. However, the majority of transtibial amputees, espe-
cially in developing countries, use a socket-suspended prosthesis [21,22]. This socket type
makes it challenging to position EMG sensors and increases the risk of displacement by
constant friction [6]. Additionally, comparative studies involving SVM and LSTM have
been found, but the participants evaluated are people without any mobility impairment or
locomotion disorder [7,16,17].
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This study illustrates the influence of integrating EMG and IMU signal data on classi-
fying five locomotion tasks among individuals with and without transtibial amputations.
The evaluated locomotion activities include walking on a flat surface, an incline/decline
ramp, and ascending/descending stairs. A comparison between two classification mod-
els, support vector machine (SVM) and long short-term memory (LSTM), both of which
have shown optimal results in previous research, is presented [6,7,14–17]. The significant
contributions of this work are as follows:

• The fusion of two critical signals, EMG and IMU, significantly enhanced locomotion
task classification.

• A comprehensive comparison between two powerful classification models, SVM and
LSTM, tailored explicitly for transtibial amputees across a spectrum of locomotion
activities.

• A methodology to identify the most representative muscles on the thigh in the gait
cycle of individuals with transtibial amputations who use prosthetic sockets on the
residual limb was elaborated.

• The use of domain-adaptation techniques to enhance the developed models’ adaptabil-
ity and robustness, ensuring the models’ reliability and effectiveness across diverse
locomotion patterns.

2. Materials and Methods
2.1. Experiment Setup

This study was conducted at the Biomechanics and Applied Robotics Laboratory at
the Pontificia Universidad Católica del Perú. It was approved by the Ethics Committee
for Research in Life Sciences and Technologies of the same institution (approval number
073-2023-CEICVyT/PUCP). A total of 5 male participants with transtibial amputations
(Group A) and 24 participants without amputations (12 males and 12 females, Group B)
were recruited for this study. Group A had an average age of 38.6 ± 16.36 years, weight of
76.00 ± 11.64 kg, and height of 172.04 ± 6.24 cm. Table 1 shows more detailed background
information for this group. Group B had an average age of 22.125 ± 2.51 years, weight
of 62.56 ± 11.39 kg, and height of 164.92 ± 9.34 cm. All the participants provided written
informed consent before the experiment.

Table 1. Transtibial amputee subjects’ characteristics (age, height, weight, amputated side, years since
amputation, and current prosthesis).

Participant Age
(Years)

Height
(cm)

Weight
(kg)

Amputated
Side

Year since
Amputation Current Prosthesis

Amputee 01 58 167 66 Right 17 years/2006
Transtibial prosthesis with acrylic

sock-type socket with liner and
rigid foot

Amputee 02 50 167 79 Left 5 years/2018
Transtibial plastic socket type
prosthesis without liner and

articulated foot

Amputee 03 24 170 70 Right 1.5 years/2022
Transtibial fiberglass prosthesis

with resin, socket type with liner
and articulated foot

Amputee 04 20 174 70 Right 2 years/2021 Transtibial carbon fiber socket-type
prosthesis with liner and rigid foot

Amputee 05 41 182 95 Right 12 years/2011 Transtibial carbon fiber socket-type
prosthesis with liner and rigid foot
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Selection criteria were established to ensure that participants in both groups met the
requirements for this study. For Group A, the inclusion criteria included a minimum stump
length of 12.7 cm, possession of a well-maintained transtibial prosthesis, the ability to
walk independently, and a non-congenital amputation. For Group B, the inclusion criteria
included regular physical activity to facilitate the identification of evaluated muscles and
the absence of any motor or pathological limitation significantly affecting their gait. A
licensed occupational therapist provided support in validating the selection criteria. All
participants underwent an evaluation to confirm that they met the selection criteria. These
criteria were established to ensure that the study results were valid and reliable and that
the participants represented the target population.

EMG signals were captured from four muscles in the right thigh, as shown in Table 2
and Figure 1: rectus femoris (RF), biceps femoris (BF), tensor fascia latae (TF), and adductor
longus (AL). In addition, IMU signals were captured from the sensor placed on the rectus
femoris (RF), the tibia (TB), and the instep on the foot (FT) [15]. The sensors were placed
on the muscles through palpation while participants performed specific muscle activation
movements, as detailed in Table 2. A set of six Trigno Avanti wireless non-invasive surface
sensors from DELSYS was used for this purpose [23].

Table 2. Movements for muscle detection during EMG sensor positioning.

Muscle Movement

Rectus femoris (RF) With the hip slightly flexed, perform knee extension movements.

Biceps femoris (BF) With the hip slightly extended, perform knee flexion movements,
bringing the heel towards the gluteus.

Tensor fasciae latae (TF) Perform hip abduction movements from a natural position.

Adductor Longus (AL) With the feet at hip level, rest the inside edge of the foot against
the floor.

Figure 1. Experiment setup for data collection. The participant wore a set of sensors. EMG electrodes
were placed on four muscles—rectus femoris (RF), biceps femoris (BF), tensor fascia latae (TF), and
adductor longus (AL). Inertial sensors were placed on the rectus femoris (RF), tibia (TB), and the
foot (FT).

2.2. Experimental Protocol and Tests

Before starting data collection, the sensors were positioned and the participants were
instructed to perform short walks to verify the correct capture of the signals by the sensors.
Once the proper functioning of the sensors was confirmed, data collection proceeded. Five
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locomotion activities were addressed in this study, namely ground-level walking (GLW),
ramp ascent (RPA), ramp descent (RPD), stairs ascent (SSA), and stairs descent (SSD).
Activities were performed in three different common-use environments. A six-meter ramp
with a 7° slope was designated as the first environment for up/down walking activities. A
10 m flat surface was selected as the second environment for ground-level walking. Finally,
11 steps, each 16 cm high, were designated as the third environment for the stair ascent and
descent trials. It should be noted that the environments comply with the A.120 standard
of the Ministry of Housing, Construction and Sanitation of the Peruvian government [24].
Each activity was repeated ten times, totaling 50 tests per participant. The participants
completed each test at a walking speed that was comfortable for them. A participant
undergoing data-collection trials is shown in Figure 2.

Figure 2. Participant undergoing data-collection trials. (a) Ramp ascent; (b) ramp descent; (c) ground-
level walking; (d) stair ascent; (e) stair descent.

2.3. Data Processing

The raw EMG signals were collected at a sampling frequency of 1259 Hz, capturing
a range of ±5.5 mV and using a band-pass filter of 20–450 Hz. The inertial signals were
collected at a sampling rate of 148 Hz, with an accelerometer range of ±16 g and a gyroscope
range of ±2000 dps. All the sensors were configured as EMG+IMU in the data-acquisition
EMGWorks Acquisition software version 4.8.0, developed by Delsys, to capture both
electromyographic and inertial signals. Figure 3 shows an example of the EMG signals
captured during the stair descent of a participant with a transtibial amputation, and
Figure 4 shows an example of the EMG signals captured from the same participant during
ramp descent.

The Delsys File Utility tool converts the acquired signals from .hpf to .mat format. A
MATLAB-R2021a code was developed on a 2x Nvidia GeForce RTX 2080, Intel(R) Core(TM)
i7-9700K Processor, and a 64.0 GB RAM computer to organize the raw data from each trial
per participant in a way that allows the EMG and IMU information to be visualized by the
sensor. Also, the columns not used in the algorithm’s training were removed. Each trial per
participant contains 16 features, including the EMG signals from the sensors located in the
BF, TF, RF, and AL and the inertial signals from the sensors located in the RF, tibia, and foot.
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The features from each trial per participant were converted to .csv format for further use in
algorithm training. Simultaneously, the EMGWorks Analysis software version 4, developed
by Delsys, manually sets each trial’s start and end times, ensuring the participant performs
the evaluated activity during the segmented time interval.

Figure 3. EMG signals of the four muscles evaluated from a transtibial amputation participant while
performing the stairs descent task (SSD). (a) Raw EMG signal corresponding to the tensor fasciae
latae (TF) muscle. (b) Raw EMG signal corresponding to the adductor longus (AL) muscle. (c) Raw
EMG signal corresponding to the biceps femoris (BF) muscle. (d) Raw EMG signal corresponding to
the rectus femoris muscle (RF).

Figure 4. EMG signals of the four muscles evaluated from a participant with a transtibial amputation
while performing the task of ramp descending (RPD). (a) Raw EMG signal corresponding to the
tensor fasciae latae (TF) muscle. (b) Raw EMG signal corresponding to the adductor longus (AL)
muscle. (c) Raw EMG signal corresponding to the biceps femoris (BF) muscle. (d) Raw EMG signal
corresponding to the rectus femoris muscle (RF).
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A peak-detection algorithm in Python processes the Z-axis acceleration data from the
sensor located on the tibia to identify walking cycles within the segmented time interval.
Literature-provided data show that the average duration between gait cycles varies between
0.8 and 1.6 s [14], a time-frame set as a constraint for peak detection as shown in Figure 5.

Figure 5. Graph of the Z-axis acceleration from the sensor corresponding to the tibia after being pro-
cessed by the peak-detection algorithm. The interval between two consecutive ‘x’ marks corresponds
to one gait cycle.

Identifying the gait cycles in each trial allows for segmenting the EMG and IMU
data. The EMG and IMU datasets are segmented separately due to their different sam-
pling frequencies. Four features are extracted from the EMG signals, including the mean
absolute value (MAV), root mean square (RMS), standard deviation (SD), and waveform
length (WL) [25]. The literature review demonstrates the importance of these features
in a time-domain analysis [6,15–17,25,26]. In the case of inertial signals, only the MAV
is extracted [4,15]. The feature-extracted EMG and IMU description was quantified by
Equations (1)–(4):

Mean Absolute Value (MAV) =
1
N

N

∑
i=1

x(ti) (1)

Root Mean Square (RMS) =

√√√√ 1
N

N

∑
i=1

x(ti)2 (2)

Standard Deviation (SD) =

√
∑N

i=1(xi − x̄)2

N
(3)

Wave f orm Length (WL) =
N

∑
i=2
|x(ti)− x(ti−1)| (4)

A shorter EMG window length becomes fundamental for reducing the computational
burden overall in tasks where the interaction between the human and the machine requires
a real-time actuation [27]. Even though the EMG and IMU signals were sampled with
different frequencies, by using a fixed window length of 80 ms [17,27,28] and overlapping
of 40 ms for feature extraction, the same amount of data is finally obtained for both signals.
These new signals are a low-frequency representation of the original signals. For example,
for the RMS calculation, since a data point is obtained every 80 ms, after evaluating the
entire trial timeline, the same amount of RMS data will be accepted for both EMG and IMU
signals. Figure 6 depicts an example of sequence extractions.
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Figure 6. Example of sequence extraction. The gait cycle is represented in orange, and the blue
sequences represent data segments of ground-level walking.

2.4. System Architecture

Two algorithms were employed: support vector machine (SVM) and long short-term
memory (LSTM). SVM is a classical machine learning algorithm based on hyperplane sepa-
ration in a higher-dimensional space, which renders it effective for non-linear classification
problems. This algorithm has been employed in various studies for its low computational
cost and high efficiency [6,14–17]. In this study, an SVM with an RBF kernel is employed.
On the other hand, LSTM is a recurrent neural network algorithm whose primary concept
involves regulating cell states by using input, forget, and output gates [16]. The architecture
for LSTM in this study comprises an input layer followed by a bi-directional LSTM layer
with 144 units, succeeded by a Dropout layer with a rate of 0.4. Subsequently, a second
bi-directional LSTM layer with 72 units is implemented, followed by a Dropout layer with
a rate of 0.4. Next, a dense layer with a ReLU activation function and 16 units is included,
followed by a Softmax layer with five outputs for classification. The process followed by
the LSTM algorithm is detailed in Figure 7.

Figure 7. Architecture of the process performed by the LSTM algorithm, separated into layers.

2.5. Data Analysis: Performance Metrics

The proposed classifier model was evaluated by using accuracy, precision (P), recall
(R), and the F1 score. Accuracy represents the proportion of accurate predictions out of
the total predictions made. Precision (P) quantifies the proportion of true positives (Tp)
that were indeed correct about the total positive predictions, minimizing false positives
(Fp). Recall quantifies the proportion of true-positive (Tp) cases that the model accurately
identified. This metric ensures that any true-positive case is inadvertently overlooked.
The F1 score represents the proportion between precision (P) and recall (R). It is used for
evaluating the algorithm’s performance, and its application helps mitigate substantial
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imbalances between false positives (Fp) and false negatives (Fn). The performance metrics
were quantified by Equations (5)–(8):

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(5)

Precision =
Tp

Tp + Fp
(6)

Recall =
Tp

Tp + Fn
(7)

F1 score =
2PR

P + R
(8)

2.6. Hyperparameters

The primary hyperparameters used during the training of the SVM and LSTM models
are described in this subsection. The computer setup is a 2x Nvidia GeForce RTX 2080,
Intel(R) Core(TM) i7-9700K Processor, and 64.0 GB RAM.

2.6.1. Selection Methodology

The RandomizedSearchCV and GridSearchCV methodologies were used to acquire
the optimal values for the hyperparameters. RandomizedSearchCV randomly groups
hyperparameters from a large set and iterates them ten times for training and performance
evaluations. The optimal combination of hyperparameters is selected by using five-fold
cross-validation. A more specific range of values for the hyperparameters can be chosen
due to the outputs of this methodology.

The GridSearchCV methodology exhaustively explores all possible combinations of
the reduced set of hyperparameters. Three-fold cross-validation systematically examines
each combination for training and validation, ultimately identifying the combination with
the best performance.

2.6.2. Hyperparameters Selected for SVM

The kernel in SVM is a mathematical function that transforms data from their original
domain to a higher-dimensional feature space. Three prominent kernel types were eval-
uated: linear, polynomial, and RBF. Among them, the radial basis function (RBF) kernel
demonstrated superior performance within the algorithm. Another critical component
of the SVM model is the C-SVM, a regularization parameter that dictates the permissible
extent of training errors. In this implementation, the C-SVM was set to a value of 10.

2.6.3. Hyperparameters Selected for LSTM

For the LSTM model, several hyperparameters were meticulously selected to optimize
its performance. The learning rate was set at 0.001 to ensure efficient convergence towards
the global minimum and to prevent the model from getting stuck in local minima. The
Adaptive Moment Estimation (Adam) optimizer was employed to adapt the model’s
weights during training. The loss function used was categorical cross-entropy, which
quantifies the difference between the model’s predictions and the actual training values,
thereby serving as a performance metric during training. Regarding training epochs, the
data were presented 200 times to the model. Early stopping criteria were also implemented;
training would cease if the loss function in the validation data did not improve by a
margin of 0.001 over ten consecutive epochs. The ModelCheckpoint feature was also
used to preserve the model states that demonstrated superior performance throughout the
training process.
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2.7. Domain-Adaptation Techniques

In locomotion classification tasks, domain adaptation is vital to ensure robust models
for cross-subject generalization. The core objective is to minimize performance gaps when
applying a model to new subjects not encountered during training. This necessity arises
from the inherent variability in human biomechanics, where individuals exhibit unique
movement patterns and characteristics. Consequently, the challenge lies in ensuring that
the trained model, which has learned from a specific dataset, can seamlessly extend its
predictive capabilities to individuals not encountered during the training phase. Therefore,
domain adaptation enhances the model’s adaptability and minimizes performance dispari-
ties when confronted with diverse subjects. This is essential for the practical deployment of
locomotion classification systems in real-world scenarios where encountering new subjects
is inevitable.

Several domain-adaptation techniques are employed to address the challenges of cross-
subject variability in locomotion classification. One prominent approach is transfer learning,
where models are initially pre-trained on data from multiple subjects and subsequently
fine tuned on a smaller dataset from a subject not included in the initial training set. This
enables the model to leverage knowledge from diverse subjects while refining its predictive
capabilities for the target subject. Another effective strategy involves feature-alignment
techniques like correlation alignment (CORAL). This method aligns feature distributions
across subjects, ensuring a harmonized representation of locomotion characteristics and
minimizing discrepancies in the model’s performance when applied to new individuals.

2.8. Statistical Analysis

Statistical analysis was performed by using an analysis of variance (ANOVA) to
contrast the metrics obtained, such as the accuracy, precision, and F1 score, on the results.
Performing this analysis is crucial to determine whether there is a significant difference
when comparing the performance of the classification models used (SVM and LSTM)
and the different groups of participants (amputees and non-amputees). However, the
drawback lies in the fact that an ANOVA only indicates the presence of at least one distinct
group when it detects a significant difference without specifying which one. Tukey’s
honest significant difference (HSD) post hoc methodology was applied after the ANOVA to
identify the most significant mean differences between the groups to obtain a more detailed
comparison.

The statistical analysis was carried out in several steps. In the data-preparation phase,
separate groups were created for the SVM and LSTM models according to their performance
metrics. Before the ANOVA application, assumption checks, including normality and the
homogeneity of variances, were performed by using the Shapiro–Wilk test for normality
and Levene’s test for the homogeneity of variances in the assumption-verification stage.
The ANOVA test was implemented for each performance metric (accuracy, precision, and F1
score) to identify the possible statistically significant differences between the two models. If
the ANOVA detected significant differences, Tukey’s honest significant difference (Tukey’s
HSD) post hoc test for paired comparisons was performed to determine which specific
pairs of models showed significant differences.

2.9. Experimental Steps

An exhaustive set of experiments tailored to each dataset was conducted to evaluate
the efficacy of the proposed classification models. The experiments were designed to
address various aspects of model generalization and performance. Below are the specific
experimental configurations:

1. Train and test the algorithm on each subject within the non-amputee dataset, meaning
the model is trained on 80% of the data from each non-amputee subject and then
validated on the remaining 20% of the data from the same subject.

2. Train and test on each subject within the amputee data set, using the 80–20 data
distribution, similar to the previous item.
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3. Train and test the algorithm on each subject within the non-amputee dataset, meaning
the model is trained on 50% of the data from each non-amputee subject and then
validated on the remaining 50% of the data from the same subject.

4. Train and test on each subject within the amputee data set, using the 50–50 data distribution,
similar to the previous item.

5. Train and test on the non-amputee dataset on a subject-independent basis, meaning
the models are trained by using the data from all subjects except one in the non-
amputee dataset.

6. Train and test on the amputee dataset with a subject-independent basis following the
same paradigm as the previous step.

7. Test the effect of training with non-amputee data and testing on a single amputee subject.
8. Test the effect of training with non-amputee data and testing on the entire am-

putee dataset.
9. Evaluate the classification latency assessment of the system.

3. Results

This section systematically presents the findings from the experimental configurations
delineated in Section 2. A granular analysis was performed, segregating the results based on
two primary criteria: the source of the data—either from the non-amputee or the amputee
cohorts—and the type of classification model employed—support vector machine (SVM)
or long short-term memory (LSTM). This nuanced approach facilitates a comprehensive
understanding of the relative performance and adaptability of the proposed models.

3.1. Within-Subject Evaluation for Non-Amputee and Amputee Datasets

Each model—SVM and LSTM—was trained and tested intra-subject in two experi-
mental scenarios. In the first scenario, for each subject, 80% of the available data were
devoted to model training, while the remaining 20% were reserved for evaluation. In the
second scenario, for each subject, 50% of the available data were allocated to model training,
while the other 50% were reserved for evaluation. This experiment was conducted for both
amputee and non-amputee datasets, with twenty non-amputee subjects and five amputee
subjects. Four of the twenty-four non-amputee subjects initially evaluated were excluded
due to irregularities identified during the data-review process.

The accuracy, precision, and F1 score were calculated for each model by five-fold cross-
validation to ensure robustness and reliability. Table 3 shows the summary corresponding to
the first distribution, 80–20. On the other hand, Table 4 shows the summary corresponding
to the second distribution, 50–50.

The results corroborate that the SVM model tends to outperform the LSTM model
across all the evaluated metrics—accuracy, precision, and F1 score—for both the amputee
and non-amputee datasets. Likewise, the SVM is still shown to be superior at first glance
in all the metrics evaluated in both the 80–20 and 50–50 distributions. Specifically, in
the 80–20 distribution, the average accuracy of the SVM model on the amputee dataset
was approximately 96.68%, compared to 93.39% for the LSTM model. Similar trends
were observed with the non-amputee dataset, where the SVM model yielded an average
accuracy of approximately 98.84%, in contrast to 93.36% for the LSTM model. Similarly,
in the 50–50 distribution, the mean accuracy of the SVM model in the amputee dataset
was approximately 95.35%, as opposed to 93.30% for the LSTM model. The mean accuracy
of the SVM model on the non-amputee dataset was 95.46%, in contrast to 93.33% for the
LSTM model. However, it was observed that the mean of the SVM metrics decreased
and the standard deviation increased in the 50–50 distribution compared to the 80–20
distribution. This did not happen with the LSTM metrics, maintaining similar values in
both distributions.

To enhance comprehension, Figure 8 illustrates bar plots representing the average
performance metrics—accuracy, precision, and F1 score—across the two datasets, following
the first 80–20 distribution. Figure 8a is dedicated to the non-amputee group, while
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Figure 8b presents the results for the amputee group. Similarly, Figure 9 illustrates bar
charts similar to those in Figure 8 but corresponding to the second 50–50 distribution.

Table 3. Summary of performance metrics for within-subject evaluation on amputee and non-amputee
datasets using SVM and LSTM models and using the 80–20 data distribution.

Subject Support Vector Machine Long Short-Term Memory

Accuracy (%) Precision (%) F1 Score (%) Accuracy (%) Precision (%) F1 Score (%)

Non-Amputee 01 99.20 ± 0.252 99.21 ± 0.240 99.21 ± 0.244 98.48 ± 0.202 98.39 ± 0.259 98.38 ± 0.187
Non-Amputee 02 97.70 ± 0.837 97.60 ± 0.760 97.22 ± 1.036 93.73 ± 0.518 92.91 ± 0.690 92.43 ± 0.587
Non-Amputee 03 97.94 ± 0.813 97.92 ± 0.898 97.92 ± 0.850 95.41 ± 0.538 95.48 ± 0.503 95.41 ± 0.524
Non-Amputee 04 96.82 ± 0.815 96.56 ± 0.919 96.46 ± 0.934 91.40 ± 0.732 91.11 ± 0.715 90.89 ± 0.791
Non-Amputee 05 97.02 ± 1.078 97.09 ± 1.018 97.00 ± 1.037 92.18 ± 0.911 92.31 ± 1.155 92.13 ± 0.916
Non-Amputee 06 94.63 ± 0.253 94.57 ± 0.282 94.34 ± 0.265 90.47 ± 0.945 90.50 ± 0.879 90.15 ± 1.010
Non-Amputee 07 97.69 ± 0.606 97.87 ± 0.501 97.70 ± 0.639 97.03 ± 0.279 96.94 ± 0.356 96.96 ± 0.278
Non-Amputee 08 96.76 ± 0.799 96.67 ± 0.863 96.11 ± 1.016 89.67 ± 0.493 88.00 ± 0.944 87.62 ± 0.719
Non-Amputee 09 96.40 ± 0.741 96.27 ± 0.782 96.18 ± 0.785 94.72 ± 0.482 94.40 ± 0.476 94.29 ± 0.529
Non-Amputee 10 96.41 ± 0.730 96.28 ± 0.719 95.94 ± 0.833 93.14 ± 0.676 93.10 ± 0.420 92.10 ± 0.821
Non-Amputee 11 96.01 ± 0.427 95.55 ± 0.512 95.34 ± 0.415 90.79 ± 0.520 90.37 ± 0.849 89.62 ± 0.480
Non-Amputee 12 97.90 ± 0.914 97.86 ± 0.869 97.51 ± 1.184 94.36 ± 0.660 93.35 ± 0.828 93.33 ± 0.889
Non-Amputee 13 95.97 ± 0.759 96.00 ± 0.743 95.73 ± 0.766 92.34 ± 0.463 91.63 ± 0.466 91.35 ± 0.609
Non-Amputee 14 97.51 ± 0.309 97.49 ± 0.325 97.37 ± 0.351 95.71 ± 0.696 95.27 ± 0.725 95.09 ± 0.795
Non-Amputee 15 96.62 ± 0.684 96.46 ± 0.745 96.40 ± 0.757 92.05 ± 0.588 91.94 ± 0.802 91.70 ± 0.585
Non-Amputee 16 96.77 ± 1.206 97.00 ± 1.156 96.68 ± 1.285 93.00 ± 0.846 93.30 ± 0.719 92.82 ± 0.930
Non-Amputee 17 95.11 ± 0.883 94.82 ± 0.843 94.66 ± 0.939 91.64 ± 0.605 90.49 ± 0.844 90.72 ± 0.719
Non-Amputee 18 96.17 ± 0.605 96.09 ± 0.627 95.65 ± 0.721 93.30 ± 0.470 93.41 ± 0.474 92.15 ± 0.629
Non-Amputee 19 97.34 ± 0.538 97.23 ± 0.578 96.79 ± 0.709 92.91 ± 0.358 92.36 ± 0.481 91.42 ± 0.401
Non-Amputee 20 96.90 ± 0.340 96.80 ± 0.388 96.71 ± 0.352 94.80 ± 0.434 94.87 ± 0.517 94.47 ± 0.454

Non-Amputee
Average 98.84 ± 0.679 96.77 ± 0.688 96.55 ± 0.756 93.36 ± 0.571 93.01 ± 0.655 92.65 ± 0.643

Amputee 01 95.47 ± 0.869 95.46 ± 0.901 95.19 ± 0.985 91.38 ± 0.301 91.16 ± 0.445 90.87 ± 0.367
Amputee 02 95.31 ± 0.722 95.39 ± 0.700 95.31 ± 0.662 91.31 ± 0.494 91.25 ± 0.485 91.03 ± 0.436
Amputee 03 96.83 ± 0.532 97.18 ± 0.559 96.70 ± 0.591 94.33 ± 0.470 94.03 ± 0.629 93.96 ± 0.512
Amputee 04 97.05 ± 0.465 97.13 ± 0.506 96.98 ± 0.479 94.22 ± 0.299 94.36 ± 0.286 94.03 ± 0.315
Amputee 05 98.72 ± 0.447 98.67 ± 0.429 98.57 ± 0.436 95.69 ± 0.418 95.51 ± 0.414 95.47 ± 0.463

Amputee
Average 96.68 ± 0.607 96.77 ± 0.619 96.55 ± 0.631 93.39 ± 0.396 93.26 ± 0.452 93.07 ± 0.419

(a) (b)
Figure 8. Bar plots for the average of performance metrics by using SVM and LSTM models in the
80–20 data distribution: (a) within-subject evaluation on non-amputee dataset, (b) within-subject
evaluation on amputee dataset.
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Table 4. Summary of performance metrics for within-subject evaluation on amputee and non-amputee
datasets using SVM and LSTM models and using the 50–50 data distribution.

Subject Support Vector Machine Long Short-Term Memory

Accuracy (%) Precision (%) F1 Score (%) Accuracy (%) Precision (%) F1 Score (%)

Non-Amputee 01 98.93 ± 0.423 98.96 ± 0.419 98.93 ± 0.433 98.17 ± 0.319 98.03 ± 0.336 98.04 ± 0.342
Non-Amputee 02 96.88 ± 0.673 96.64 ± 0.671 96.18 ± 0.733 93.66 ± 0.462 93.21 ± 0.478 92.32 ± 0.610
Non-Amputee 03 97.48 ± 1.428 97.49 ± 1.386 97.42 ± 1.459 95.37 ± 0.702 95.44 ± 0.640 95.36 ± 0.683
Non-Amputee 04 94.70 ± 1.371 94.24 ± 1.503 94.07 ± 1.493 91.91 ± 0.178 91.70 ± 0.258 91.41 ± 0.188
Non-Amputee 05 96.04 ± 0.781 96.20 ± 0.714 95.90 ± 0.818 91.94 ± 0.285 92.16 ± 0.370 91.91 ± 0.285
Non-Amputee 06 91.69 ± 1.379 91.69 ± 1.481 91.21 ± 1.364 89.93 ± 0.470 89.94 ± 0.647 89.57 ± 0.481
Non-Amputee 07 96.48 ± 0.812 96.78 ± 0.894 96.42 ± 0.928 96.63 ± 0.398 96.53 ± 0.400 96.56 ± 0.399
Non-Amputee 08 94.44 ± 1.223 94.20 ± 1.164 93.13 ± 1.640 88.57 ± 0.612 87.52 ± 0.664 85.99 ± 0.961
Non-Amputee 09 95.32 ± 0.935 95.17 ± 0.892 94.97 ± 1.025 94.91 ± 0.161 94.68 ± 0.117 94.47 ± 0.190
Non-Amputee 10 95.24 ± 0.734 95.05 ± 0.632 94.53 ± 0.799 93.83 ± 0.783 93.58 ± 0.660 92.95 ± 0.919
Non-Amputee 11 93.48 ± 1.463 92.90 ± 2.043 92.34 ± 1.828 91.31 ± 0.752 90.61 ± 0.744 90.20 ± 0.876
Non-Amputee 12 97.25 ± 1.248 97.09 ± 1.317 96.65 ± 1.567 95.40 ± 0.744 94.89 ± 0.762 94.72 ± 0.933
Non-Amputee 13 94.36 ± 1.058 94.14 ± 1.294 93.76 ± 1.266 92.52 ± 0.421 91.99 ± 0.320 91.70 ± 0.498
Non-Amputee 14 95.93 ± 0.683 95.90 ± 0.694 95.62 ± 0.765 95.65 ± 0.528 95.21 ± 0.500 95.11 ± 0.512
Non-Amputee 15 95.73 ± 0.861 95.47 ± 0.890 95.42 ± 0.920 91.89 ± 0.774 91.69 ± 0.951 91.60 ± 0.868
Non-Amputee 16 94.65 ± 1.318 94.87 ± 1.256 94.30 ± 1.510 92.98 ± 0.969 92.98 ± 1.183 92.86 ± 0.950
Non-Amputee 17 94.19 ± 1.239 94.20 ± 1.291 93.56 ± 1.493 91.01 ± 0.542 89.75 ± 0.701 89.92 ± 0.604
Non-Amputee 18 94.82 ± 0.712 94.72 ± 0.865 94.05 ± 0.757 93.39 ± 0.321 93.03 ± 0.430 92.11 ± 0.271
Non-Amputee 19 95.88 ± 0.579 95.74 ± 0.659 95.00 ± 0.688 92.63 ± 0.725 91.75 ± 0.752 91.23 ± 0.757
Non-Amputee 20 95.80 ± 0.967 95.60 ± 1.025 95.42 ± 1.049 94.94 ± 0.641 94.98 ± 0.596 94.61 ± 0.702

Non-Amputee
Average 95.46 ± 0.994 95.35 ± 1.055 94.94 ± 1.127 93.33 ± 0.539 92.98 ± 0.575 92.63 ± 0.601

Amputee 01 93.85 ± 2.275 94.07 ± 2.150 93.50 ± 2.489 91.41 ± 0.929 91.21 ± 1.024 90.98 ± 1.010
Amputee 02 93.58 ± 1.121 93.77 ± 1.228 93.70 ± 1.048 90.82 ± 0.618 90.89 ± 0.687 90.59 ± 0.632
Amputee 03 95.84 ± 1.300 96.34 ± 1.016 95.52 ± 1.486 94.47 ± 0.249 94.17 ± 0.326 94.06 ± 0.278
Amputee 04 95.82 ± 0.264 95.96 ± 0.346 95.72 ± 0.265 94.18 ± 0.641 94.25 ± 0.789 94.04 ± 0.689
Amputee 05 97.67 ± 1.058 97.61 ± 1.075 97.45 ± 1.107 95.63 ± 0.530 95.48 ± 0.543 95.37 ± 0.531

Amputee
Average 95.35 ± 1.204 95.55 ± 1.163 95.18 ± 1.279 93.30 ± 0.593 93.20 ± 0.674 93.01 ± 0.628

(a) (b)

Figure 9. Bar plots for the average of performance metrics by using SVM and LSTM models in the
50–50 data distribution: (a) within-subject evaluation on non-amputee dataset, (b) within-subject
evaluation on amputee dataset.

Before conducting the principal analysis, the normality of the data and the homo-
geneity of variances, which are crucial prerequisites for ANOVAs, were assessed. The
Shapiro–Wilk test confirmed the normality of the performance metrics (accuracy, precision,
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and F1 score) for both the SVM and LSTM models across different scenarios (p > 0.05 in
all cases), suggesting that the data were normally distributed. Additionally, Levene’s test
for the homogeneity of variances showed no significant differences between the groups
(p > 0.05 for all metrics), satisfying the assumption of the homogeneity of variances.

A two-way ANOVA was conducted to investigate the effects of the ‘Model Type’
(SVM vs. LSTM) and ‘Training/Testing Split’ (80–20 vs. 50–50) on the performance
metrics. The analysis revealed that the ‘Model Type’ significantly affected the accu-
racy (F(1, 116) = 54.61, p < 0.0001), precision (F(1, 116) = 62.55, p < 0.0001), and F1 score
(F(1, 116) = 54.14, p < 0.0001). However, the ‘Training/Testing Split’ and the interaction
between the ‘Model Type’ and ‘Training/Testing Split’ did not significantly affect these
metrics (p > 0.05 for all).

Following the significant findings from the ANOVA, Tukey’s HSD post hoc test
was conducted to determine specific pairwise differences between the SVM and LSTM
models. The results indicated significant differences in all the performance metrics, further
substantiating the superior performance of the SVM model over the LSTM model in this
context.

3.2. Cross-Subject Evaluation on Non-Amputee Dataset and Amputee Dataset

To evaluate the generalizability of the support vector machine (SVM) and long short-
term memory (LSTM) models, a leave-one-out cross-validation (LOOCV) methodology
was utilized. Each iteration of this approach’s model training and testing cycle excludes
one subject. The training set contains the remaining subjects, with 20% of the data used as a
validation set. Figure 10 offers a schematic representation of this data-partitioning strategy.

Figure 10. Schematic representation of data partitioning in LOOCV strategy.

After the initial evaluation, the model is subjected to domain-adaptation techniques.
The correlation alignment (CORAL) method was used for models involving SVM. The
transfer learning technique was used for LSTM models. This iterative procedure was
carried out until each subject was singularly excluded from the training set and used for
testing. Performance metrics were calculated before and after applying domain-adaptation
techniques for the amputee and non-amputee datasets. Notably, domain-adaptation tech-
niques led to significant enhancements, particularly in the LSTM model. For example,
while the accuracy of the SVM model improved from 49.52% to 53.22%, the accuracy of the
LSTM model improved from 46.16% to 71.86% with the amputee dataset.

Figure 11 further illustrates the comparative performance of the models before and af-
ter the application of domain-adaptation techniques. These metrics and other performance
measures are comprehensively detailed in Table 5.
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Table 5. Average performance metrics of SVM and LSTM models before and after applying domain-
adaptation techniques on amputee and non-amputee datasets.

Group Subject Support Vector Machine Long Short-Term Memory

Accuracy(%) Precision (%) F1 Score (%) Accuracy(%) Precision (%) F1 Score (%)

Amputee Group Before 49.52 ± 6.06 47.33 ± 6.75 48.61 ± 5.48 46.16 ± 7.69 44.21 ± 7.92 47.22 ± 6.63
After 53.22 ± 6.22 48.84 ± 6.65 49.68 ± 5.02 71.86 ± 0.67 69.83 ± 1.61 72.00 ± 2.19

Non-amputee Group Before 68.45 ± 7.59 64.13 ± 8.33 66.57 ± 6.26 67.22 ± 8.16 63.67 ± 7.90 65.52 ± 6.64
After 70.37 ± 7.38 64.83 ± 8.10 68.52 ± 5.94 90.37 ± 0.18 89.45 ± 0.75 90.36 ± 1.03

(a) (b)

(c) (d)

Figure 11. Comparative performance metrics of SVM and LSTM models before and after applying
domain-adaptation techniques across non-amputee and amputee datasets. (a) SVM performance
on non-amputee dataset. (b) SVM performance on amputee dataset. (c) LSTM performance on
non-amputee dataset. (d) LSTM performance on amputee dataset.

After the comparative performance analysis, Figure 12 provides confusion matrices
for the SVM and LSTM models after applying their corresponding domain-adaptation
technique. These matrices are shown for both the non-amputee and amputee datasets.
Including the confusion matrices allows for a more nuanced interpretation of the classifica-
tion performance, specifically detailing true positives, true negatives, false positives, and
false negatives.
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(a) (b)

(c) (d)

Figure 12. Confusion matrices of SVM and LSTM models with domain-adaptation techniques across
non-amputee and amputee datasets. (a) SVM model on the non-amputee dataset, (b) SVM model
on the amputee dataset, (c) LSTM model on the non-amputee dataset, and (d) LSTM model on the
amputee dataset.

A repeated-measures ANOVA was employed to analyze the effects of the model type
(SVM vs. LSTM), domain-adaptation status (before vs. after), and subject type (amputee
vs. healthy) on the performance metrics: accuracy, precision, and F1 score. The analysis
revealed several key findings. For accuracy, the effects of the model type were significant
(F(1, 16) = 6.51, p = 0.0214), as well as the effects of domain adaptation (F(1, 16) = 13.96,
p = 0.0018) and subject type (F(1, 16) = 41.35, p < 0.0001). There was also a significant
interaction between model type and domain adaptation (F(1, 16) = 14.69, p = 0.0015). Similar
patterns were observed for the precision and F1 score, with significant effects for model
type (precision: F(1, 16) = 14.10, p = 0.0017; F1 score: F(1, 16) = 8.46, p = 0.0103), domain
adaptation (precision: F(1, 16) = 23.56, p < 0.0002; F1 score: F(1, 16) = 14.89, p = 0.0014), and
subject type (precision: F(1, 16) = 60.02, p < 0.0001; F1 score: F(1, 16) = 37.41, p < 0.0001).
The interaction effects between model type and domain adaptation were also significant
across these metrics.

From this experiment, it can be concluded that the LSTM model emerged as partic-
ularly robust, displaying superior performance metrics with lower variability after the
application of domain-adaptation techniques. The results underscore the potential of LSTM
models in this application and indicate avenues for future research, especially concerning
the amputee dataset.
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3.3. Inter-Population Generalizability

The objective of this experiment is to assess the ability of the classifiers to generalize
across populations. The 20 non-amputee subjects were divided into two subgroups: 15 for
model training and 5 for testing. Two different test scenarios were considered, one with a
single amputee subject and the other test with all five amputee subjects.

After the initial testing phase, each model was subjected to domain-adaptation tech-
niques. The correlation alignment (CORAL) technique was used for the SVM models, and
the transfer learning technique was used for the LSTM models. These techniques were
applied to explore their effects on generalizability across populations.

In the first scenario summarized in Table 6, the initial F1 scores of the SVM and
LSTM models were 42.73% and 45.86%, respectively. After applying domain-adaptation
techniques, the SVM model obtained a slight performance improvement, raising its F1 score
to 45.32%. However, the LSTM model obtained a substantial performance improvement,
raising its F1 score to 72.75%.

Table 6. Performance metrics of SVM and LSTM models using a 15-subject non-amputee training set,
with and without domain-adaptation techniques on a single amputee subject.

Support Vector Machine Long Short-Term Memory

Accuracy (%) Precision (%) F1 Score (%) Accuracy (%) Precision (%) F1 Score (%)

Before 43.14 43.04 42.73 45.86 45.81 45.68
After 45.71 45.83 45.32 73.07 76.16 72.75

As summarized in Table 7, the initial F1 scores of the SVM and LSTM models in the
second scenario were 43.07% and 44.30%, respectively. After applying domain-adaptation
techniques, the SVM model obtained a slight performance improvement, raising its F1
score to 44.02%. However, the LSTM model improved substantially, raising its F1 score
to 69.30%.

Table 7. Performance metrics of SVM and LSTM models using a 15-subject non-amputee training set,
with and without domain-adaptation techniques on multiple amputee subjects.

Support Vector Machine Long Short-Term Memory

Accuracy (%) Precision (%) F1 Score (%) Accuracy (%) Precision (%) F1 Score (%)

Before 43.60 43.82 43.07 45.21 46.38 44.30
After 44.23 43.94 44.02 70.57 71.81 69.30

After applying domain-adaptation techniques, the results obtained in the second
scenario, in general, showed that the techniques slightly decreased their performance on
all metrics compared to the results for the first scenario. The LSTM models consistently
demonstrated a higher accuracy than the SVM models, with a relatively high difference
of at least 25 points. These results suggest that the LSTM model is more robust and has a
higher capacity for inter-population generalizability.

Although both models experienced improvements in their performance after the ap-
plication of domain-adaptation techniques, the metrics obtained did not reach the expected
level. This limitation could be attributed to the complexity of the dataset, which incorpo-
rates approximately 50 features per sample. These numerous and diverse features imply
that the signals are inherently different, making it difficult for a preset algorithm to adapt
efficiently to a new individual or amputee. In this context, the intrinsic complexity of the
dataset emerges as a significant challenge, hindering the ability of models to achieve an
optimal performance in adapting to specific situations.
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3.4. Classification Latency Assessment

One of the critical factors in real-time classification tasks is the system’s response
time, often called the “classification latency”. The latency was evaluated for both the
SVM and LSTM models, encompassing the amputee and healthy-subject datasets. Table 8
summarizes the average classification latency for the SVM and LSTM models. The average
latency for the SVM model was 19.84 ms, while it was 37.07 ms for the LSTM model. These
latency times are well within the overlapping window time of 40 ms and acceptable limits
for real-time applications of 300 ms [14], thereby demonstrating the practicality of the
proposed models for real-world implementations.

Table 8. Classification running time of SVM and LSTM models.

Model Average Latency (ms)

Support Vector Machine 19.84
Long Short-Term Memory 37.07

4. Discussion
4.1. Locomotion Modes

Undertaking a chronological exploration of the presented studies, several salient
points emerge, as shown in Table 9.

Table 9. Comparison between this research and previous research regarding classification of locomo-
tion modes acquired with EMG and IMU signals.

Author/Year Muscle Locomotion Modes Participants Accuracy

Miller et al., 2013 [6]
Tibialis anterior, medial
gastrocnemius, vastus

lateralis, biceps femoris

Ground-level walking,
ramp ascent, ramp descent,
stairs ascent, stairs descent

5 non-amputees,
5 transtibial amputees 94.7%, 97.9%

Meng et al., 2021 [17]

Rectus femoris, vastus
lateralis, biceps femoris,
semitendinosus, tibialis

anterior, medial
gastrocnemius, lateral

gastrocnemius

Ground-level walking,
ramp ascent, ramp descent,
stairs ascent, stairs descent,

standing, sitting

10 non-amputees 98.0%

Barberi et al., 2023 [15]
Adductor longus, rectus
femoris, biceps femoris,

tensor fasciae latae

Ground-level walking,
ramp ascent, ramp descent,
stairs ascent, stairs descent

13 transfemoral amputees 94.0%

Present study
Adductor longus, rectus
femoris, biceps femoris,

tensor fasciae latae

Ground-level walking,
ramp ascent, ramp descent,
stairs ascent, stairs descent

20 non-amputees,
5 transtibial amputees 98.8%, 96.7%

Commencing with Miller et al.’s research in 2013 [6], there is an evident reliance on
a blend of muscles from the upper and lower extremities for electromyography (EMG)
data acquisition. Predominantly, the tibialis anterior and the medial gastrocnemius were
pivotal muscles in their investigation. Notably, their cohort included an amalgamation of
non-amputees and transtibial amputees, and the range of locomotion modes spanned from
rudimentary ground-level walking to the more complex tasks of stair navigation. Yet, in
the face of this heterogeneity, the research yielded substantial accuracy rates of 94.7% for
non-amputees and 97.9% for transtibial amputees.

The subsequent year, 2021, saw Meng et al. [17] embark on an extensive muscle-
selection protocol, garnering data from seven muscles. Their inclusion criteria for muscles
ensured representation from both the upper- and lower-leg regions. What distinguished
their study was the incorporation of static postures, notably standing and sitting, alongside
other locomotion modes. With this exhaustive approach, they secured an accuracy pinnacle
of 98% among the non-amputee cohort.
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Transitioning to Barberi et al.’s 2023 study [15], there was a palpable shift towards an
emphasis on proximal muscles of the thigh, incorporating muscles such as the adductor
longus and the rectus femoris. Solely focusing on transfemoral amputees, their endeavors
culminated in a respectable accuracy rate of 94%. Our current study, however, echoing a
similar muscle preference, cast a broader net regarding participant inclusion, embracing
both non-amputees and transtibial amputees. The accuracy metrics remain commendable,
standing at 98.8% for non-amputees and 96.7% for transtibial amputees.

4.2. Relevance of Electromyography (EMG), Inertial Measurement Units (IMU), and Data Fusion

Electromyography (EMG) can detect the intention of movement even before the
physical action occurs. EMG signals have demonstrated their significance in predicting
human movement intent [29], offering valuable insight into pre-action planning. In parallel,
inertial measurement units (IMU) provide the ability to segment data; identify gait cycles;
and potentially, in future work, identify specific phases within the gait cycle [30]. IMU
data segmentation and analysis contribute to a more complete understanding of motion
patterns and gait dynamics. Notably, given the individual variations in gait patterns among
participants, a typical pattern was discovered in the Z acceleration of the tibia and foot.
This specific pattern enabled us to identify the gait cycles and played a pivotal role in
effectively segmenting the data.

The combination of the EMG and IMU signals approach leverages the strengths of each
sensor, leading to the more appropriate and precise classification of locomotion tasks. Data
fusion enhances the overall performance of locomotion task classification [31], offering a
comprehensive perspective on human movement intent and gait dynamics. This integrated
approach allows for a deeper understanding of the complexities of locomotion, potentially
advancing research and practical applications. A noteworthy aspect is that the fusion of
EMG and IMU data in this study enhanced the model’s performance and contributed to its
robustness across different locomotion tasks. Combining these two data types captures a
broader spectrum of biomechanical and physiological characteristics, thereby improving
the classifier’s ability to distinguish between complex locomotion tasks. This is especially
evident in the results, where enhanced performance metrics were observed compared to
studies that utilized either EMG or IMU data in isolation.

4.3. Sensors Positioning

Four thigh muscles were selected for data collection—rectus femoris, biceps femoris,
adductor, and tensor fasciae latae—for the strategic placement of EMG sensors. The
experimental positioning identified critical factors impacting the quality of EMG signals.
The presence of vellus hair on the thigh posed a challenge by impeding sensor adherence to
the skin, inducing relative movement between the sensor and the user’s muscle. Another
factor that positively influenced the signal quality was the alignment of the sensors with
the orientation of muscle fibers, resulting in a notably sharper signal and better tolerance to
noise [32].

Muscle selection was guided by the practicality of the sensor application, considering
that in developing countries, most individuals with transtibial amputations use sockets
that cover a significant portion of the stump, including the knee region. The raw EMG data
analysis revealed myoelectric variations among muscles during locomotion tasks, high-
lighting the rectus femoris as a critical flexor muscle with greater amplitude. Furthermore,
depending on the intended locomotion activity, the signals acquired by EMG exhibited
variations in amplitude and latency attributed to the effort and duration required for each
activity. For instance, the activity of stairs descent displayed greater amplitude in its EMG
signals than ramp descent, serving as a distinguishing factor between these two activities.

4.4. Architectures of the Algorithms

The growing development of machine learning has encouraged various studies to take
the opportunity to develop more suitable algorithms for the lower-limb prosthesis control
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system. The studies presented in Table 10 used machine learning to classify aspects related
to the control of lower-limb prosthesis.

Table 10. Comparison between this research and previous research regarding the architecture of
algorithms using different machine learning methods.

Author/Year Dataset Data
Acquisition

Architectures of the
Algorithms

Machine Learning
Method Accuracy

Bruinsma et al.,
2021 [33]

Transfemoral
amputee IMU RNNs + 4× GRU + 2× dense

layers LDA 93.0%

RNNs + 4× LSTM + 2× dense
layers LDA 90.0%

BiLSTM 99.8%

SVM 90.4%

Zhou et al.,
2021 [16]

Ankle–foot
motion EMG + IMU BiLSTM layer + dense layer +

Softmax ANN 94.7%

Decision tree (DT) 74.5%

Naive Bayes (NB) 82.5%

Mazon et al.,
2022 [14]

Transfemoral
amputee IMU 2× ReLU + Dropout + 2× dense

layer + Softmax LSTM 95.0%

Putri et al.,
2023 [34]

Transtibial
amputee EMG Hidden ANN 96.0%

Present study Transtibial
amputees EMG + IMU Lineal kernel, 2nd order poly

kernel SVM 98.8%

BiLSTM + Dropout + BiLSTM +
Dropout + ReLU + Softmax LSTM 93.4%

The research by Bruinsma et al. [33] in 2021 encompasses a dataset from one os-
seointegrated transfemoral amputee for the acquisition of only inertial data (IMU). What
distinguished their study was the use of the machine learning method LDA with three
deep neural network architectures in their research (CNNs, RNNs, and CRNNs). The
analysis showed an accuracy rate of 90% for LSTM and 93% for the GRU. Among the
multiple architectures analyzed, the best performance was the GRU (Gated Recurrent Unit)
in combination with RNNs (recurrent neural networks).

Zhou et al. [16], months later, conducted tests with different machine learning algo-
rithms to classify ankle movements. The algorithms used included Naive Bayes (NB),
decision tree (DT), artificial neural networks (ANNs), support vector machine (SVM), and
bi-directional long short-term memory (BiLSTM). Their dataset consisted of EMG and
inertial signals from three non-amputee subjects. Their study confirmed the effectiveness
of the SVM and BiLSTM algorithms, achieving accuracies of 90.8% and 99.8%, respectively.

In the following year, 2022, Mazon et al. [14] focused on classifying locomotion modes,
obtaining data from one osseointegrated transfemoral amputee by using only inertial data.
They focused on using two types of architecture: a convolutional neural network and
convolutional recurrent neural network CNN-(LSTM/GRU). Noteworthy, they achieved
a peak accuracy of 95% with a system composed of CNN-LSTM networks, which can
correctly classify data for the transfemoral amputee subject.

Moving on to Putri et al.’s [34] study in 2023, there was a palpable shift, solely
focusing on using an ANN (artificial neural network) as a machine learning method.
They used EMGs for data acquisition with a respectable precision rate of 96%. However,
the architecture used for development was still being determined.

The studies presented above used different algorithms, among which SVM and LSTM
stand out. However, these algorithms have been used to classify ankle movements, gait
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cycle phases, or locomotion activities in non-amputees. In contrast to past studies, in
this research, the two most prominent algorithms, SVM and LSTM, are used to classify
locomotion activities in both non-amputees and transtibial amputees by using EMG and
IMU data fusion. In addition, the generalizability of both algorithms was explored to
evaluate the ability to classify amputee locomotion tasks with algorithms trained on non-
amputee data.

4.5. Dataset Composition and Its Implications

One of the significant strengths of this study lies in the composition of the dataset,
which includes data from twenty non-amputated individuals and five transtibial am-
putees. This diverse dataset enabled a multi-faceted evaluation in three critical dimen-
sions: a within-subject evaluation, cross-subject evaluation within each dataset, and
inter-dataset evaluation.

The inclusion of a reasonable number of subjects in both the amputee and non-amputee
cohorts allowed for a rigorous assessment of the performance of the models on an intra-
subject basis, in addition to facilitating a cross-subject analysis, thereby addressing the
generalizability of the classifiers within the same population. The juxtaposition of the
amputee and non-amputee data made it feasible to conduct experiments scrutinizing the
model’s adaptability across different populations. This is critical in real-world applications
where a model trained on one demographic must often be generalized to another. Such a
comprehensive analysis was only possible with a more diverse or smaller dataset.

A significant focal point of this study was to assess the generalizability of models
trained on non-amputee data when applied to amputee subjects. The results affirm that
while the models can adapt to new data types through retraining, the performance remains
suboptimal compared to that achieved on non-amputee subjects. This draws attention to
the need to develop specialized algorithms or incorporate additional features to enhance
model adaptability across heterogeneous populations.

4.6. Domain-Adaptation in SVM and LSTM Models

Domain-adaptation techniques were implemented for SVM and LSTM models to
enhance the classification of locomotion tasks in transtibial amputees by using EMG and
IMU data. For the SVM models, the CORAL method was applied to align the feature
distributions of the source and target domains by matching their covariances. This ap-
proach, however, yielded mixed results in terms of performance metrics, prompting the
consideration of alternative methods like coupled SVMs for a more nuanced approach to
non-linear discrepancies in the data. On the other hand, transfer learning was applied
with LSTM models, demonstrating a significant increase in the performance metrics and a
reduction in their standard deviation. This highlights the effectiveness of transfer learning
in capturing the temporal and complex patterns in the data, which may need to be fully
addressed by the CORAL method in SVM models.

Incorporating transfer learning with LSTM models in this study was instrumental in
addressing the challenges posed by the locomotion data’s high-dimensional and non-linear
nature. Unlike CORAL’s relatively modest impact on SVM model performance, transfer
learning in LSTMs showed a robust improvement in classification accuracy and consis-
tency, underscoring its suitability for complex data types. This comparative effectiveness
emphasizes the need for a multifaceted approach to domain adaptation, where different
techniques are optimized for specific model architectures and data characteristics. The
findings suggest that while methods like CORAL can offer computational efficiency in
SVM models, integrating transfer learning with LSTM models provides a more comprehen-
sive solution for enhancing the classification of locomotion tasks in transtibial amputees,
warranting further exploration in future studies.
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4.7. Limitations and Future Outlook

This study has made noteworthy contributions to the classification of locomotion tasks
for both transtibial amputees and non-amputees. However, addressing the computational
aspects associated with the LSTM and SVM models is crucial. While the SVM model
showed a better generalization performance, the computational expenses of extracting
features from EMG and IMU signals for real-time operation in embedded systems should
be addressed. Although both models achieved classification times under 40 ms—matching
the overlapping window duration—this does not account for the time required for fea-
ture extraction. Optimizing feature extraction and classification algorithms for a lower
computational overhead will be essential for real-world deployments.

Likewise, concerning hardware aspects, it was observed that four EMG sensors and
three IMU sensors were sufficient to collect representative data, enabling the differentiation
of five locomotion tasks. Noteworthy, the sensors used in data collection, DELSYS Trigno
Avanti, are high-end. For future research, exploring the possibility of using low-cost sensors
for prosthetic control could make them more accessible, especially in developing countries.

Regarding prosthetic sensor placement, the need for expert intervention and the
potential user discomfort associated with locating and attaching sensors for each use present
practical challenges. Future endeavors should explore cost-effective sensor solutions with
an efficient and user-friendly configuration.

Moreover, prospective research should focus on integrating EMG sensors into cus-
tomized prosthetic sockets in predetermined positions. This integrated sensor design
implemented with the classification algorithm in the control system of a lower-limb pros-
thesis based on data fusion (EMG + IMU) would have the potential to detect movement
intentions more swiftly and accurately without requiring sensor adaptations by experts
or causing discomfort for users. This approach enhances the user experience and offers a
promising avenue for future investigations in prosthetic technology.

From a clinical standpoint, the utility of the proposed models hinges on their ability to
generalize well to real-world, diverse patient populations. Future work should focus on
clinically validating these models in various settings and possibly integrating them into
prosthetic devices to assess their utility in real-time, dynamic environments.

5. Conclusions

This paper presents a methodology for data acquisition through EMG and IMU
sensors, testing both non-amputees and transtibial amputees. A marked differentiator
was identified in the raw EMG data from the four thigh muscles tested, allowing for the
successful classification of five locomotion tasks. A comparative analysis between the SVM
and LSTM models for task classification revealed that the fusion of EMG and IMU signals
substantially improved the classification accuracy, supporting the efficacy of multimodal
data in locomotion task recognition.

The results of the first comparison highlighted a superior performance of the SVM
model in task classification in individual assessments of transtibial amputee and non-
amputee subjects. However, after implementing domain-adaptation techniques, subse-
quent comparisons revealed that the LSTM model exhibits greater robustness and a better
intra-population and inter-population generalization ability. Both models demonstrated
acceptable latency times, meeting the established real-time requirements, thus highlighting
their potential application in embedded systems and real-time environments.

For future research, it is suggested to focus efforts towards integrating EMG and
IMU sensors directly into the prosthetic socket, thus enabling their functionality in a more
integrated manner. The effective generalization of classification models becomes crucial
in this context as it facilitates successfully incorporating these devices in dynamic and
real-time environments, thus enhancing their practical utility and clinical applicability.
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ANOVA Analysis of variance
AL Adductor longus
BF Biceps femoris
Bi-LSTM Bi-directional long short-term memory
CORAL Correlation alignment
EMG Electromyographic
FT Foot
GLW Ground-level walking
HSD Honest significant difference
IMU Inertial measurement unit
LOOCV Leave-one-out cross-validation
LSTM Long short-term memory
RBF Radial basis function
RPA Ramp ascent
RPD Ramp descent
RF Rectus femoris
SSA Stairs ascent
SSD Stairs descent
SVM Support vector machine
TF Tensor fasciae latae
TB Tibia
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