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Abstract: Over the past few decades, confined quantum systems have emerged to be a subject of
considerable importance in physical, chemical and biological sciences. Under such stressed conditions,
they display many fascinating and notable physical and chemical properties. Here we address this
situation by using two plasma models, namely a weakly coupled plasma environment mimicked by
a Debye-Hückel potential (DHP) and an exponential cosine screened Coulomb potential (ECSCP). On
the other hand, the endohedral confinement is achieved via a Woods-Saxon (WS) potential. The critical
screening constant, dipole oscillator strength (OS) and polarizability are investigated for an arbitrary
state. A Shannon entropy-based strategy has been invoked to study the phase transition here. An
increase in Z leads to larger critical screening. Moreover, a detailed investigation reveals that there
exists at least one bound state in such plasmas. Pilot calculations are conducted for some low-lying
states (` = 1− 5) using a generalized pseudo spectral scheme, providing optimal, non-uniform
radial discretization.

Keywords: plasma environment; endohedral confinement; virial-like theorem; oscillator strength;
polarizabilities; Shannon entropy

1. Introduction

Since its inception, confined quantum systems have emerged as a subject of topical
interest. Under such stressed conditions the rearrangement in atomic orbitals leads to
significant changes in their energy spectra, causing fascinating behavior in hyper-fine split-
ting, ionization potential, static and dynamic polarizability, magnetic screening constants
etc. [1–5]. Interestingly, in this environment the inert chemical systems like N2, He, and
Ar become reactive; also, the sintering effect in organo-metallic catalysts gets reduced. It
is needless to mention that the discovery of such artificial systems has opened up several
interesting possibilities in almost all fields of science, and in technology. For example, in
the realm of quantum computers, researchers have proposed an alternative way where the
qubits are formed using the concept of confinement. This is possible because of the isolating
property of endohedral fullerenes which almost perfectly isolate the atomic properties,
particularly the spin of an atom/ion trapped inside, as it plays a vital role in carrying
the information [6–9]. More applications can be found in photo-voltaic materials [10],
semiconducting nano-crystals [11], fusions experiments [12], hydrogen storage [13] and
medicinal science [14].

Ever since the early stage of their discovery, endohedral systems like fullerene [15]
and supra-molecular structures like crown ether, graphene tubes were utilized to trap
quantum systems. The variety in size and shape of cavity (which is directly dependent
on number of carbon atoms) has helped researchers to trap systems as small as H atom
to larger ones like H2O, alkali atoms, Xe [16–18] etc. Several spectroscopic quantities like
oscillator strength (OS) [19,20], polarizability [21], photo ionization cross-section [22] and
stopping cross-sections [23] were reported in such scenarios. Apart from that, Shannon
entropy and Fisher information [24] were also studied. Interestingly, these systems can also
explain the shell-confinement model. In recent works, Gaussian well and Woods-Saxon
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(WS) model potentials are used to mimic endohedral confinement, besides the square well
potential [24–28]. It appears that, generally speaking, the WS model is a better fit when
compared with experimental observations in such confinement studies. The presence of
a smoothing parameter in the potential gives an advantage in changing the nature of the
curve from soft to sharp and vice-versa.

In a plasma environment, Coulomb and thermal energy play a pivoting role in deter-
mining the strength of coupling. Moreover, factors like electron density (n) and temperature
(T) are critical because they equilibrate the bound states of a given system. The coupling
constant is expressed as the ratio of average Coulomb energy and average thermal energy,

Γ =
ECoulomb
Ethermal

=
Q2

4πε0akbTe
, (1)

where Q signifies the charge of particle, a refers to the inner-particle separation, Kb is the
usual Boltzmann constant. This presents two different scenarios: (i) Γ < 1, when n is low
and T is high, making thermal energy larger than Coulomb energy; this is generally known
as weak coupled plasma, (ii) Γ > 1, when n is high but T is low, causing thermal energy
smaller than Coulomb energy; this is usually referred to as strongly coupled plasma.

A prototypical example of weakly coupled plasma is Debye-Hückel potential (DHP),
provided by introducing an exponential term in the Coulomb potential [29]. It has been
investigated extensively; the literature is quite vast. Energy spectra, [30–33], transition
probabilities with electron-impact excitation [34,35], OS, polarizability [36–41], inelastic
electron-ion scattering [42,43], two-photon transition [44,45], Shannon entropy and Fisher
information [46], mean-excitations energy [47] were studied with great interest. Research
was also conducted to estimate the critical screening parameter [48], λ(c), beyond which no
bound state exists.

When the Debye radius becomes comparable to the de broglie wavelength, a quan-
tum effect starts to appear. Thus, we use exponential cosine screened Coulomb potential
(ECSCP), where a cosine function is multiplied with the usual DHP; this invokes the com-
posite screening and wake effect around a slow-moving charge in a low-density quantum
plasma. This is due to the fact that statistical pressure is preponderated by the quantum
force of plasma electrons. This potential is examined intensely using the perturbation and
variational method, the shooting method, the super-symmetric perturbation method, the
Padé scheme, basis-expansion with Slater-type orbitals, the generalized pseudo-spectral
(GPS) method, the Laguerre polynomial and so on. Besides eigenvalues and eigenfunctions,
several important spectroscopic properties like OS, polarizability and the photo-ionization
cross-section were under examination [48–58].

In a recent work, astrophysicists have discovered the existence of fullerene entrapped
plasmas in interstellar space. This also includes radioactive atoms and fusion prod-
ucts [59–61]. This has triggered the investigation of such systems in both free and confined
conditions. As a consequence, properties like λ(c), OS (dipole), photo-ionization cross-
section, static dipole polarizability, mean excitation energy and electronic stopping cross-
section were investigated for different well depths, including the avoided crossing region
in endohedral H atom embedded in a Debye plasma [62]. To the best of our knowledge,
the literature is rather scarce for the current system under study. In this context, we want to
explore the trapping of an H-like plasma (modeled through DHP and ECSCP) under endo-
hedral environment. In order to proceed, at first we engage the accurate and efficient GPS
method for calculating eigenvalues and eigenfunctions of the corresponding Schrödinger
equation (SE). Then quantities like λ(c), OS and polarizability are studied. Later we also
explore the behavior of such a system under external high pressure. For this, we have
used two different models, namely, (i) DHP under WS (DHPWS) and (ii) ECSCP under WS
(ECSCPWS). Following [63], where the λ(c)s were estimated through a Shannon entropy
criterion for free DHP and ECSCP, here we employ the same procedure to report these
under a confinement environment. This is performed for ` values ranging from 0–4, while
Z remains 1 or 2. The OS and polarizability are calculated varying λ for some selective
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values of confinement radius, rc = 7.7, 8, and for some large rc = 5× 105 (≈ ∞) with
Z = 1, 2 for 1s, 2s and 2p states. The article is organized as follows: Section 2 gives a brief
introduction to the theoretical formalism, Section 3 discusses the obtained results, and
finally some concluding remarks are made in Section 4.

2. Theoretical Formalism

The time-independent radial SE for the spherically confined plasma system is ex-
pressed as (in a.u.):[

−1
2

d2

dr2 +
`(`+ 1)

2r2 + Vp(r) + Vc(r)
]

un,`(r) = En,` un,`(r). (2)

Here, the total wave function is Ψ(r) = Rnl(r)Yml(θ, φ) of which Rnl(r) = unl(r)/r is
the radial wave function and Yml(θ, φ) is the spherical harmonics. The first term of this
equation denotes the usual kinetic energy of electrons. To represent the excited states,
we need to add the angular contribution and thus the second term. The last two terms
signify the potential models characterizing the plasma through Vp(r), and the fullerene
cavity through Vc(r). To calculate energy and spectroscopic properties, we have employed
a non-uniform, optimal radial discretization scheme via GPS method. Its accuracy and
efficiency in calculating various bound-state properties have been reported in our previous
papers in the case of several central potentials in both free and confined condition. For more
detailed information, readers are referred ([64–69] and therein).

In this article, we employ three different plasma model potentials to simulate the
experimental environment. First, a DHP model, where the collective screening by plasma
electron is mapped and expressed as,

Vdh(r) =

{
= − Z

r e−λr, r ≤ rc

= 0, r > rc.
(3)

Here, the probability of finding plasma electrons inside the Debye sphere is negligible.
Moreover, the inequalities ensure that the charge cloud remains confined. The second model
used is called ECSCP, which accounts for the fact that with an increase in plasma density the
Debye radius becomes commensurable to de Broglie wavelength, which emerges in the form
of quantum effects [70]. This is accomplished by taking a potential of the following form,

Vec(r) =

{
= − Z

r e−λr cos(λr), r ≤ rc

= 0, r > rc,
(4)

The cosine function helps to achieve a stronger screening effect than the DHP. Then, we
also make use of the (WS) potential to model fullerene as an external confinement. Within
this framework, to get the desired effect of endohedral fullerene confinement, parameters
like the radius of the fullerene cavity Rc, thickness of fullerene shell ∆, as well as two fitting
parameters, namely V0 (defining well depth) and γ (a suitable smoothing parameter) are
necessary. It is mathematically expressed as,

Vc(r) =
V0

1 + e−[r−(Rc+∆)]/γ
− V0

1 + e−(r−Rc)/γ
(5)

In this work, parameters are fixed as follows: V0 = 0.302, Rc = 5.8, ∆ = 1.89 and γ = 0.1,
which are used to describe endohedral confinement in numerous references [71–76].

2.1. Oscillator Strength and Polarizability

The static multi-pole polarizability can be expressed in following form,

α
(k)
i = α

(k)
i (bound) + αk

i (continuum). (6)
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There are mainly two approaches to calculating static polarizability. The first one is direct
computation using a perturbation theory framework. The second one is a sum-over-state
method. The latter is more convenient to express and has a compact form in nature.
That is why we have used this approach. Accordingly, the 2k-pole static polarizability is
expressed as,

α
(k)
i = ∑ f

f (k)f i
(E f−Ei)2 − c

∫ |〈Ri |rkYkq(r)|Rεn〉|2
(Eεn−Ei)

dε (7)

On the right, the two terms signify the polarizability contributions from bound states and
continuum states, respectively. Moreover, f (k)f i denotes multi-pole OS where k is a positive
integer, while ∆E f i = E f − Ei is the energy difference between the transition states.

The 2k-pole OS can be expressed as:

f (k)ni =
8π

(2k + 1)
∆E f i|〈ψ f |rkYkq(r)|ψi〉|2 (8)

Designating the initial and final states as |n`m〉 and |n′`′m′〉, one derives the mean OS as,

f̄ (k)f i =
8π

(2k + 1)
∆E f i

1
2`+ 1 ∑

m
∑
m′
|〈n′`′m′|rkYkq(r)|n`m〉|2. (9)

This is a necessary part because the mean OS does not depend on the magnetic quantum
number. Thereafter we apply Wigner-Eckart theorem and sum rule for 3j symbol [77]
leading us to,

f̄ (k)f i = 2
(2`′ + 1)
(2k + 1)

∆E f i |〈rk〉n′`′n` |
2
{

`′ k `
0 0 0

}2

. (10)

The transition matrix element may be expressed by the following,

〈rk〉 =
∫ ∞

0
Rn′`′(r)r

kRn`(r)r2dr. (11)

In this article, we aim to compute dipole polarizability and OS for 1s, 2s, 2p states. The
relevant selection rule for dipole OS (k = 1) for these states are (i = 1 or 2),

f̄ (1)np−is = 2 ∆Enp−is|〈r〉
np
is |

2
{

1 1 0
0 0 0

}2

=
2
3

∆Enp−is |〈r〉
np
is |

2. (12)

It is important to mention that there exists an OS sum rule [78,79] in literature. To show
that all the transition states are rendered properly it is customary to verify what it holds. It
is denoted by S(k) and the respective sum rule is given by,

S(k) = ∑
n

f (k) = k〈ψi|r(2k−2)|ψi〉, (13)

2.2. Shannon Entropy

Shannon entropy (S) is a statistical quantity and a function of density. It is the arith-
metic mean of uncertainty associated with a given state. Therefore, it can be aptly used to
measure the change in density at the point of transition from bound to continuum state.
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It has been observed before that, at that point, Sr jumps suddenly. It is recently used to
investigate confined systems [80–83]. Mathematically, these are written as,

Sr = −
∫

R3
ρ(r) ln ρ(r)r2 dr, Sp = −

∫
R3

Π(p) ln Π(p)p2 dp,

Sθ,φ = −
∫

χ(θ) ln χ sin(θ) dθ, χ(θ) = |Θ(θ)|2,

St = Sr + Sp + 2Sθ,φ ≥ 3(1 + ln π).

(14)

Here, ρ(r) is the normalized position-space density, while Π(p) corresponds to momentum-
space density. This work incorporates Sr to characterize λ(c) in the mixed potential
condition.

3. Result and Discussion

The result will be discussed in three subsections. At the onset, it may be noted that
all calculations are achieved by keeping the pseudo-spectral parameter fixed at L = 1
(mapping parameter) and N = 300 (number of grid points). At first, we present the
calculated λ(c)s for both DHPWS and ECSCPWS through Shannon entropy. This will allow
us to investigate the phase transition in plasma systems. Then we look into the dipole OS
and polarizability for these pair of H-like plasmas embedded in the fullerene cavity, taking
Z = 1, 2. It is necessary to mention that, for the purpose of calculation, we have kept
rc > (Rc + ∆). Pilot calculations are conducted in ` = 0–5 states using the experimental
V0, ∆, Rc, γ values mentioned in Section 2.

3.1. Critical Screening Constant in DHPWS and ECSCPWS

In a plasma system, the number of bound state decreases with an increase in λ. The
characteristic λ at which a bound state vanishes is termed as λ(c), i.e., beyond which no
bound state exists. In the present endeavor, our objective is to find the effect of the fullerene
environment on λ(c). In practice, λ(c) is determined by the sign change argument of energy
(−ve for bound state and +ve continuum state). Interestingly, in a recent paper [63], the
authors have successfully used Sr to determine the same. At λ(c), it jumps suddenly to a
higher value indicating the conversion from a bound to a continuum state. Thus, at that
point

(
dSr
dλ

)
→ ∞, explaining a first-order phase transition. In general, this occurs when(

dSr
dT

)
→ ∞. We know that, λ is a function of T. Therefore, one can identify λ(c) as a

first-order phase transition point. Figure 1 depicts the behavior of calculated Sr against λ
for circular node-less states, having ` = 0–2 in DHPWS (panel I) and ECSCPWS (panel II),
having Z = 1, 2. Similarly, Figure 2 portrays the variation of Sr as functions of λ for some
other states like, 2s, 3s, 3p, 4d, 4 f , 5 f , 5g, 6g, with Z = 1 and 2 in DHPWS (panels I) and
ECSCPWS (panels II) systems. A detailed analysis of these figures reveals the following:

1. At the onset, it should be mentioned that the qualitative behaviour of Sr with λ in
DHPWS and ECSCPWS are quite similar.

2. Panels (I), (II) in Figure 1 show that there exists at least three bound states in either
of the fullerene trapped plasmas. Because, in both cases, circular or node-less states
with ` = 0–2 are never going to be deleted. As a consequence, no abrupt jump in Sr is
observed. In these states Sr increases with λ and finally converges to the respective
limiting values.

3. Panels (I), (II) of Figure 2 suggest that, for a given state, there exists a characteristic λ
at which the Sr value jumps suddenly, signifying the phase transition. The position
of these λ(c) gets right shifted with a rise in Z. Here, a first order phase transition
happens in both the plasmas involving 2s, 3s, 3p, 4d, 4 f , 5 f , 5g, 6g states.

4. These observations lead us to the conjecture that, in these two fullerene trapped
plasmas, phase transition occurs for all ` ≥ 3 states. However, for ` = 0–2 states, a
similar phenomenon occurs only when (n− `− 1) ≥ 1.
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Apart from the above procedure, we have also estimated λ(c) using the usual sign-
change argument of energy for the same set of states explored above. Results are collected
in Table 1 at two selected Z (1, 2) for both DHPWS and ECSCPWS. It is worth mentioning
that these results corroborate all the inferences drawn from Figures 1 and 2. Moreover, the
present result of λ(c) in DHPWS is in complete consonance with the observation (obtained
by energy sign change) given in [62], as evident from the entries provided in the footnote
of Table 1. However, the λ(c) pattern in ECSCPWS could not be found in the literature;
here they are reported for the first time. Now, we move to investigate dipole OS and
polarizability for these pair of fullerene-trapped plasmas in both the confined condition and
at the free regime as a limiting case. Note that some of the entries are left blank indicating
no λ(c) in such occasions.

Table 1. Calculated λ
(c)
n,` for H-like ions for 1s, 2s, 3s, 2p, 3p, 3d, 4d, 4 f , 5 f , 5g, 6g states in DHPWS and

ECSCPWS (L = 1, N = 300). See text for details.

DHPWS ECSCPWS

Z State λ
(c)
n,` En,` Z State λ

(c)
n,` En,`

1 1s − − 1 1s − −
2 − − 2 − −

1 2s 0.9111 a −0.000000254 1 2s 0.6287 −0.000000038
2 2.1247 −0.000000197 2 1.3618 −0.000000165

1 3s 0.1565 a −0.000000439 1 3s 0.0762 −0.000000130
2 0.3900 −0.000000055 2 0.2688 −0.000000238

1 2p − − 1 2p − −
2 − − 2 − −

1 3p 0.1160 a −0.000000096 1 3p 0.0730 −0.000001331
2 0.3575 −0.000011586 2 0.2633 −0.000053585

1 3d − − 1 3d − −
2 − − 2 − −

1 4d 0.0732 −0.000000291 1 4d 0.0466 −0.000003059
2 0.1197 −0.000005269 2 0.0782 −0.000064445

1 4 f 0.1947 −0.000000856 1 4 f 0.1267 −0.000007139
2 0.2994 −0.000023163 2 0.1681 −0.000018290

1 5 f 0.0472 −0.000016099 1 5 f 0.0323 −0.000001631
2 0.0831 −0.000007057 2 0.0540 −0.000038551

1 5g 0.0333 −0.000000778 1 5g 0.0278 −0.000006697
2 0.1231 −0.000005413 2 0.0903 −0.000078050

1 6g 0.0288 −0.000005039 1 6g 0.0210 −0.000001928
2 0.0588 −0.000040341 2 0.0403 −0.000068680

a Literature result for Z = 1: λ
(c)
2s = 0.909926, λ

(c)
3s = 0.1534008 and λ

(c)
3p = 0.115595.

Figure 1. Cont.
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Figure 1. Plot of Sr as function of λ for 1s, 2p, 3d states; bottom (I) and top (II) panels refer to DHPWS
and ECSCPWS, having Z = 1, 2. See text for details.

Figure 2. Plot of Sr as function of λ for 2s, 3s, 3p, 4d, 4 f , 5 f , 5g, 6g; bottom (I) and top (II) panels refer
to DHPWS and ECSCPWS, having Z = 1, 2. See text for details.
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3.2. Dipole Oscillator Strength

In this section, we aim to discuss dipole OS for free and confined fullerene-trapped
plasmas. It may be noted that, f (1) acts as a cornerstone in estimating several spectroscopic
properties, like polarizability, mean excitation energy etc. The (+)ve value of f (1) indicates
absorption, whereas a (−)ve value signifies emission. With progress in f (1), the probability
of radiative transition increases in comparison to its non-radiative counterpart. On the
contrary, f (1) → 0 explains non-radiative transitions. Here, calculations are conducted at
three selected rc values, namely 7.7, 8 and infinity.

In the case of ` = 0, the selection rule for dipole transition is ∆` = ±1. Thus, the
transition may be possible only to ` = 1 states. However, for p and d states, transitions may
occur to ` = 0, 2 and ` = 1, 3 states, respectively. Table 2, at first, reports the calculated
f (1) for 1s, 2p and 3d states at several selected λ, keeping rc fixed at 7.7, 8, ∞ and Z = 1, 2,
addressing all possible modes of transition allowed by the selection rule. Here, columns 2–6
represent DHPWS and columns 7–10 signify ECSCPWS. In both situations, at a given Z and
rc, f (1)1s→2p decreases to reach a minimum, and then rises to a maximum before achieving
the limiting value. Further, at a fixed rc, on moving from Z = 1 to 2, the position of
the minimum gets right shifted. On the contrary, f (1) for 2p → 1s indicates emission.
Here, at a fixed Z and rc, f (1) increases to attain a maximum and declines thereafter;
the position of the maximum moves toward the right with Z. The 2p → 3d transition
suggests absorption. In this case, f (1) imprints a distinctly different pattern in DHPWS
and ECSCPWS. In DHPWS a shallow maximum is seen at Z = 1, rc = 7.7. However, at
rc = 8 it decreases with λ. On the contrary, at Z = 2 and rc = 7.7, 8 it passes through
a maximum. In ECSCPWS for Z = 1 (when rc = 7.7, 8) it reduces with λ. However, at
Z = 2, it decreases to reach a minimum then climbs a maximum and then again declines
to a minimum. As expected, f (1)3d→2p explains emission. In this case, we observe more or less

an opposite pattern to f (1)2p→3d. In DHPWS, f (1)3d→4 f abates with λ at Z = 1, rc = 7.7, 8 and
Z = 2, rc = 8. However, in case of Z = 2, rc = 7.7 it passes through a maximum. Now,
we move to discuss the behavior of f (1) in either of the plasmas at rc → ∞ involving these
five transitions. Table 3 records the same for these two plasmas at some selected λ value,
keeping Z = 1 and 2. It is observed that variation of f (1) in free systems is different from
their confined counterparts. Moreover, f (1)1s→2p at Z = 1 drops sharply to reach a minimum
and then climbs up to a maximum. Similarly, for Z = 2, it passes through a minimum.
For the 2p → 1s transition we observe a reverse trend. Now, for 2p → 3d transition, in
DHPWS (i) we observe a decreasing pattern at Z = 1 (ii) but at Z = 2, we see a maximum.
In ECSCPWS, at Z = 1, a minimum is noticed. At Z = 2, there appears a maximum
followed by a minimum. Here, f (1)3d→2p imprints similar trends to f (1)2p→1s. Finally, we derive
a decreasing curve for 3d→ 4 f transition in both the plasmas.

The above observations of Tables 2 and 3 are rather sketchy. To derive a clearer
picture, we have plotted f (1) for DHPWS and ECSCPWS in Figures 3 and 4 as function of
λ, respectively, at three selected rc values, keeping Z = 1 and 2. The transitions shown
correspond to (a) 1s → 2p (b) 2p → 1s (c,d) 2p → 3d (e,f) 3d → 2p and (g,h) 3d → 4 f .
Panels (c,e,g) correspond to Z = 1 while (d,f,h) produce the same for Z = 2. It is found
that f (1) in DHPWS and ECSCPWS are quite similar. A careful examination reveals that,
all these plots corroborate the inferences drawn from Tables 2 and 3.
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Table 2. f (1) values for DHPWS and ECSCPWS for fixed rc = 7.7, 8 and Z = 1, 2, using L = 1 and
N = 300.

Transition λ DHPWS ECSCPWS

rc = 7.7 rc = 8 rc = 7.7 rc = 8

Z = 1 Z = 2 Z = 1 Z = 2 Z = 1 Z = 2 Z = 1 Z = 2

1s→2p

0.01 0.472909 0.405489 0.393008 0.399455 0.473031 0.405670 0.393153 0.399658
0.1 0.463893 0.389264 0.382538 0.380980 0.466412 0.399214 0.385322 0.392167
0.5 0.506522 0.146559 0.445168 0.104184 0.506896 0.062774 0.475507 0.036498
1.0 0.859970 0.072607 0.881023 0.047763 0.941505 0.069773 0.911234 0.051167
2.5 0.937700 0.910538 0.902761 0.915478 0.918853 0.924631 0.884901 0.889980

2p→1s

0.01 −0.157636 −0.135163 −0.131002 −0.133151 −0.157677 −0.135223 −0.131051 −0.133219
0.1 −0.154631 −0.129754 −0.127512 −0.126993 −0.155470 −0.133071 −0.128440 −0.130722
0.5 −0.168840 −0.048853 −0.148389 −0.034728 −0.168965 −0.020924 −0.158502 −0.012166
1.0 −0.286656 −0.024202 −0.293674 −0.015921 −0.313835 −0.023257 −0.303744 −0.017055
2.5 −0.312566 −0.303512 −0.300920 −0.305159 −0.306284 −0.308210 −0.294967 −0.296660

2p→3d

0.01 1.088693 0.800227 1.082666 0.732754 1.088689 0.800197 1.082677 0.732695
0.1 1.088778 0.806429 1.081425 0.743057 1.088627 0.798441 1.081926 0.731705
0.5 1.071869 1.055338 1.054450 1.060247 1.055825 1.067797 1.036342 1.050053
1.0 1.052710 1.063993 1.034850 1.045177 1.039857 1.036862 1.023702 1.020954
2.5 1.043849 1.044600 1.027258 1.027832 1.042933 1.042720 1.026567 1.026410

3d→2p

0.01 −0.653216 −0.480136 −0.649599 −0.439652 −0.653213 −0.480118 −0.649606 −0.439617
0.1 −0.653267 −0.483857 −0.648855 −0.445834 −0.653176 −0.479064 −0.649156 −0.439023
0.5 −0.643121 −0.633202 −0.632670 −0.636148 −0.633495 −0.640678 −0.621805 −0.630032
1.0 −0.631626 −0.638396 −0.620910 −0.627106 −0.623914 −0.622117 −0.614221 −0.612572
2.5 −0.626309 −0.626760 −0.616355 −0.616699 −0.625760 −0.625632 −0.615940 −0.615846

3d→4f

0.01 1.361677 1.378364 1.350361 1.374690 1.361703 1.378352 1.350391 1.374693
0.1 1.359552 1.378857 1.347923 1.373824 1.360468 1.378527 1.348914 1.374145
0.5 1.342821 1.355667 1.330534 1.342513 1.333760 1.336163 1.321648 1.322866
1.0 1.334518 1.337464 1.322958 1.325371 1.329986 1.328230 1.319261 1.317836
2.5 1.331894 1.331979 1.320806 1.320868 1.331802 1.331794 1.320741 1.320736

Figure 3. Plot of f (1) as function of λ in DHPWS potential for selected transitions mentioned in the
panels (a–h), for Z = 1, 2. See text for details.
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Table 3. f (1) values for DHPWS and ECSCPWS for rc → ∞ and Z = 1, 2, using L = 1 and N = 300.

Transition
DHPWS ECSCPWS

λ Z = 1 λ Z = 2 λ Z = 1 λ Z = 2

1s→2p

0.01 0.149983 0.01 0.377669 0.01 0.150086 0.01 0.378002
0.1 0.143844 0.1 0.345192 0.1 0.143408 0.1 0.363852
0.5 0.405345 0.5 0.014097 0.5 0.795304 0.5 0.003368
1.0 0.853185 1.0 0.008094 1.0 0.815081 1.0 0.015977
2.5 0.813876 2.5 0.829531 2.5 0.809188 2.5 0.810333

2p→1s

0.01 −0.049994 0.01 −0.125889 0.01 −0.050028 0.01 −0.126000
0.1 −0.047948 0.1 −0.115064 0.1 −0.047802 0.1 −0.121284
0.5 −0.135115 0.5 −0.004699 0.5 −0.265101 0.5 −0.001122
1.0 −0.284395 1.0 −0.002698 1.0 −0.271693 1.0 −0.005325
2.5 −0.271292 2.5 −0.276510 2.5 −0.269729 2.5 −0.270111

2p→3d

0.01 1.062893 0.01 0.511654 0.01 1.062940 0.01 0.511243
0.1 1.059233 0.1 0.563033 0.1 1.061126 0.1 0.525528
0.5 1.039334 0.5 1.058267 0.5 1.033436 0.5 1.037782
1.0 1.032612 1.0 1.035607 1.0 1.029282 1.0 1.028293
2.5 1.030470 2.5 1.030594 2.5 1.030324 2.5 1.030294

3d→2p

0.01 −0.637736 0.01 −0.306992 0.01 −0.637764 0.01 −0.306745
0.1 −0.635539 0.1 −0.337820 0.1 −0.636675 0.1 −0.315316
0.5 −0.623600 0.5 −0.634960 0.5 −0.620061 0.5 −0.622669
1.0 −0.619567 1.0 −0.621364 1.0 −0.617569 1.0 −0.616975
2.5 −0.618282 2.5 −0.618356 2.5 −0.618194 2.5 −0.618176

3d→4f

0.01 1.358996 0.01 1.377113 0.01 1.358989 0.01 1.377140
0.1 1.358827 0.1 1.374730 0.1 1.358891 0.1 1.376182

0.176 1.352618 0.15 1.372349 0.12602 1.354588 0.157 1.372370
0.1931 1.347244 0.255 1.364948 0.12638 1.354413 0.16724 1.369061
0.19462 1.346487 0.29949 1.354689 0.12671 1.354225 0.16812 1.368517

Figure 4. Plot of f (1) as function of λ in ECSCPWS potential for selected transitions mentioned in the
panels, for Z = 1, 2. See text for details.

3.3. Polarizability

In this subsection now, we proceed to discuss α(1) for 1s, 2p, 2s states. It can have
(−)ve as well as (+)ve values. When emission predominates over absorption, we derive
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(−)ve values. On the contrary, a (+)ve values indicates that, absorption contribution
has overcome the respective emission part. For the ground 1s state, it is always (+)ve.
However, for excited states, it can have either sign. Here, results are presented for 1s, 2p, 2s
states involving rc = 7.7, 8, infinity having Z values 1 and 2.

In Table 4, we have shown the results for α(1) for these three states at rc = 7.7, 8 and
Z = 1, 2. Columns three to six represent DHPWS while ECSCPWS results are tabulated in
columns seven to ten. At a given Z and rc, in 1s state it always increases with λ. At a given
rc, these decrease with Z. Conversely, at a given Z, it increases with rc. Interestingly, for
2s and 2p, the pattern behavior of α(1) is not that straightforward. Depending upon the λ
values it can have either a (−)ve or (+)ve sign. However, the absolute numerical values
abate with Z and progress with rc. Table 5 indicates α(1) for both the plasmas in 1s, 2s, 2p
states at rc → ∞ at Z = 1, 2. In 1s state, as usual it grows with a rise in λ. However, in the
other two cases, we observe both (+)ve and (−)ve results.

To probe further, we have now plotted α(1) as a function of λ at rc = 7.7, 8 and
infinity, keeping Z fixed at 1, 2. Figures 5 and 6 represent DHPWS and ECSCPWS cases,
respectively. Panels (a,b) correspond to 1s state. Similarly, panels (c–e) give the plots for
2p state, and finally 2s results are produced in panels (f–i). It complements the conclusion
discussed in Tables 4 and 5. However, for 2s, and 2p curves, one can observe discontinuities.
This may appear due to a sign change in α(1).

Figure 5. Plot of α(1) as function of λ in DHPWS potential, for 1s, 2s, 2p states as mentioned in the
panels, for Z = 1, 2. See text for details.
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Figure 6. Plot of α(1) as function of λ in ECSCPWS potential, for 1s, 2s, 2p states as mentioned in the
panels, for Z = 1, 2. See text for details.

Table 4. α(1) values for DHPWS and ECSCPWS for rc = 7.7 & 8 and Z = 1, 2, using L = 1 and
N = 300.

State λ

DHPWS ECSCPWS

rc = 7.7 rc = 8 rc = 7.7 rc = 8

Z = 1 Z = 2 Z = 1 Z = 2 Z = 1 Z = 2 Z = 1 Z = 2

1s

0.01 4.657831 0.28128622 4.746857 0.2812862 4.6554220 0.2812521 4.7442022 0.2812521
0.1 4.881931 0.28451405 4.994924 0.2845141 4.7251882 0.2817758 4.8232375 0.2817759
0.5 12.2287 0.35794112 14.6516 0.3579433 17.04331 0.3321934 24.00875 0.3321963
1.0 78.7749 0.69849914 140.048 0.6990358 202.0018 1.1380112 320.2554 1.1591198
2.5 230.696 128.19895 345.626 226.2246 259.3304 251.0688 375.0790 367.0643
3.0 240.868 187.73712 356.253 299.8536 260.2497 256.3160 375.9265 372.1057

2s

0.01 −6323.6041 1974.66567 2449.20791 1407.62883 −6259.74897 2014.6251 2455.03251 1427.48523
0.1 −25,299.096 762.542243 2096.11187 671.915445 −12,087.9810 1214.6507 2197.55093 975.180845
0.5 18,546.933 297.184946 2569.87340 369.786944 4830.94856 368.81438 2570.99350 481.397967
1.0 −252.97113 421.447127 −232.042760 527.012512 −26.4762447 481.38339 −9.29681306 592.581494
2.5 9.5211800 −128.377389 18.4890829 −86.8752095 29.6816393 21.677927 36.7365367 29.6077279
3.0 16.629850 −29.6973425 24.7934626 −13.1804006 30.8831256 27.068895 37.7878081 34.3689306

2p

0.01 2191.410 −643.03504 −702.8776 −452.1602 2170.076 −656.3755 −704.8910 −458.8075
0.1 8520.618 −237.05905 −579.3616 −204.1988 4114.992 −388.9010 −615.7853 −306.8603
0.5 −6061.053 −24.508518 −694.8934 −13.59247 −1473.332 −1.579597 −678.1659 9.116706
1.0 204.2574 −8.8332529 219.5863 −0.670906 100.0618 −6.121894 97.77017 −1.240847
2.5 79.78501 152.51948 81.67296 148.6793 67.74707 71.51052 70.12450 73.50398
3.0 75.37053 102.96430 77.42353 103.0182 67.26899 69.03491 69.71802 71.31396
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Table 5. α(1) values for DHPWS and ECSCPWS for rc → ∞ and Z = 1, 2, using L = 1 and N = 300.

State
DHPWS ECSCPWS

λ Z = 1 λ Z = 2 λ Z = 1 λ Z = 2

1s

0.01 5.041120 0.01 0.2812863 0.01 5.0373245 0.01 0.2812522
0.1 5.405572 0.1 0.2845141 0.1 5.1638458 0.1 0.2817760
0.5 71.4353 0.5 0.3579454 0.5 553.3792 0.5 0.3321994
1.0 1076.49 1.0 0.7000504 1.0 1241.072 1.0 1.2523499
2.5 1242.28 2.5 1183.049 2.5 1257.825 2.5 1254.207
3.0 1247.93 3.0 1220.684 3.0 1258.140 3.0 1256.377

2s

0.01 1480.865 0.01 871.382822 0.01 1480.571 0.01 877.9676
0.1 1507.894 0.1 578.058339 0.1 1497.317 0.05 845.6145
0.3 1720.036 0.5 1060.98797 0.2 1587.219 0.09 738.4854
0.5 2721.953 1.0 1338.07651 0.3 1771.873 0.3 940.9011
0.7 −326.1830 1.5 1503.41076 0.5 −1276.650 0.7 1404.159
0.9 23008.31 2.0 −23.222516 0.6 259.9035 1.3 −65.30549

2p

0.01 −150.7481 0.01 −262.0658419 0.01 −150.9188 0.01 −264.3678
0.1 −139.2984 0.1 −152.6892619 0.1 −140.9449 0.1 −201.3010
0.5 −443.5363 0.5 69.93496507 0.5 786.5248 0.5 87.43362
1.0 168.1365 1.0 64.90555224 1.0 114.3632 1.0 55.87104
2.5 111.5520 2.5 133.2633406 2.5 106.2537 2.5 107.5945
3.0 109.6328 3.0 119.4094711 3.0 106.1153 3.0 106.7672

4. Conclusions

Multi-pole oscillator strength and polarizability are estimated for H-like plasmas
inside a fullerene cavity under high pressure and with special emphasis on excited states.
The desired confinement condition has been imposed primarily by trapping the system
under a endohedral cavity. Illustrative calculations have been undertaken for 1s, 2s, 2p, 3d
states. Negative values of f (1) and α(1) are reported here for certain excited states. The
qualitative behavior of α

(1)
1s does not change with rc or Z. Moreover, λ(c) has been studied in

a free condition using Sr. A thorough analysis reveals that, under a fullerene cavity 1s, 2p, 3d
states will never be deleted. However, for other states, at λ(c), Sr jumps suddenly indicating
a first-order phase transition. A detailed inspection of f (k) and α(k) in many-electron
systems under confinement would throw some light on their understanding. Investigation
of several other properties like the photo-ionization cross-section, the mean excitation
energy, and the electronic stopping cross-section may also be undertaken in future.
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