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Abstract: In a known gedanken experiment, a delocalized mass is recombined while the gravitational
field sourced by it is probed by another (distant) particle; in it, this is used to explore a possible
tension between complementarity and causality in case the gravitational field entangles with the
superposed locations, a proposed resolution being graviton emission from quadrupole moments.
Here, we focus on the delocalized particle (forgetting about the probe and the gedanken experiment)
and explore the conditions (in terms of mass, separation, and recombination time) for graviton
emission. Through this, we find that the variations of quadrupole moments in the recombination
are generically greatly enhanced if the field is entangled compared to if it is sourced instead by the
energy momentum expectation value on the delocalized state (moment variation ∼ m d2 in the latter
case, with m mass, d separation). In addition, we obtain the (upper) limit recombination time for
graviton emission growing as m in place of the naive expectation

√
m. In this, the Planck mass acts as

threshold mass (huge, for delocalized objects): no graviton emission is possible below it, however fast
the recombination occurs. If this is compared with the decay times foreseen in the collapse models
of Diósi and Penrose (in their basic form), one finds that no (quadrupole) graviton emission from
recombination is possible in them. Indeed, right when m becomes large enough to allow for emission,
it also becomes too large for the superposition to survive collapse long enough to recombine.

Keywords: quantum nature of gravity; graviton emission; collapse models

1. Introduction and Background

To date, there is still no direct evidence for a nonclassical nature of the gravitational
field. Quantum effects accompanying gravity are expected to unavoidably show up at the
Planck length scale lp. Many of the proposed tests on quantumness of gravity involve con-
sideration of cosmological or astrophysical circumstances, in which the cumulative effects
over long distances might compensate for the smallness of lp. A trouble with this is the lack
of full control of the experimental circumstances, i.e., our degree of ignorance/uncertainty
concerning the model of the universe, the source, and the propagation of the signal to
the observer.

The alternative is laboratory tests on systems suitably designed to let potential quan-
tum features of gravity to show up, following a proposal proposed originally by Feynman.
The idea is [1] that the final quantum state of a system in which a delocalized mass is
allowed to gravitationally interact with another mass ought to be different depending on
whether the mediating field is quantum or classical.

The difference appears very hard to detect, but advances in quantum technologies
have, by now, made these kind of tests feasible, or at least conceivable in practice. Quantum
systems are used as sources of the field typically in a superposition of locations ([2,3] for re-
view and discussion), the main difficulty to face in this kind of effort being decoherence [4].

Suggestions have been made, for example, to look at stochastic fluctuations of quantum
origin in the gravitational field [5–7]. Starting from [8,9], a new twist has been given to
the subject with the proposal to directly check quantum coherence aspects of gravity, in
the form of the ability of the gravitational field to entangle systems initially prepared in
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a separable state. The point is that no entanglement can be created by two parties that
communicate exclusively through a certain local channel if the latter is classical [10,11];
the appearance of entanglement between two accessible parties from initial conditions of
no entanglement would then exhibit a nonclassical nature for the mediating unaccessed
channel [12].

Strictly speaking, we can argue that the communication processes involving the
gravitational field might be nonlocal, yet causal [13]. If this is the case, there would be no
mediators and the just-mentioned creation of entanglement would prove that quantum
sources do create superpositions of geometries, yet without gravitons to mediate this [13].
In this paper, we assume the locality of the gravitational channel, since our focus is on the
possible emission of (physical) gravitons in the recombination of a delocalized source.

The proposals [8,9] have suggested to consider two masses, each one delocalized, inter-
acting exclusively through their gravitational field. The masses are prepared in a separable
state, allowed to interact gravitationally, and are eventually tested for entanglement. The
experimental requirements accompanying these kind of tests place their feasibility in a
hopefully not-so-far future. This possibility appears even closer when looking at [14]. In it,
an experimental setup is considered in which the strength of the gravitational interaction
is increased through use of a very heavy (not delocalized) mass, which acts as a mediator
between an unlocalized mass and an ancillary qubit.

Building on Feynman’s observation, other circumstances can be considered, in which,
even leaving the actual feasibility apart, the difference between the effects of quantum ver-
sus classical mediating gravitational field can be evident and possibly rich in consequences
at the theoretical level. One example, which is our starting point here, is the configuration
described schematically in Figure 1 [15,16]. In it, a particle, that we call Alice’s particle A
with mass mA, is held (from a distant past) in a superposition of locations (paths 0 and 1
with separation d), and another particle, B at a distance D, Bob’s particle with mass mB,
(only) gravitationally interacts with A. At a preassigned time, Alice starts recombining A
and Bob releases B (or decides not to). Alice will perform her task in a time TA, and Bob
will check for the position of B after a time TB from the release (we assume the experiment
is local, with Alice and Bob having no relative motion and sharing a local frame). If the
gravitational field indeed entangles, the superposed positions of A are accompanied by
different fields at B (the two locations of A give rise to different quadrupole moments
for Alice’s system, and the gravitational field at B, entangled with A’s locations, is in a
superposition of the two states sourced by the corresponding quadrupole moments), and
Bob can in principle be able, after a certain minimum time Twp, to discriminate between
the paths of A.

The configuration we are describing was proposed in [15] (which elaborated on a
previous investigation on gravitational tagging of the path [17]) then reconsidered in [16],
and further discussed in [18–21]. In these works, this is viewed similar to the scene of a
gedanken experiment, the focus being on describing a seemingly paradoxical situation
arising from requiring both the complementarity principle—meant as the fact that obtaining
which-path as performed by Bob must be incompatible with Alice being able to recombine
coherently—and causality. In particular, the perspective in [15] is to extract from the
avoidance of a potential paradox the existence of a minimum time Alice needs in order to
find if the state of A is a coherent superposition or a mixture.

The premise for the arising of a paradox is, as mentioned, the assumption that the
gravitational field at Bob’s location can possibly allow for discrimination of the path of A. If
this is the case, and if circumstances are such that the distance D between A and B is larger
than TA, TB (we use Planck units through all the paper unless explicitly stated otherwise),
then the which-path Bob performs apparently leads by complementarity principle to
superluminal transmission of information from Bob to Alice (A has to lose coherence). If,
on the other hand, the gravitational field at B cannot distinguish the path, as would be
the case if the field is sourced by a mixture of the two paths, then no paradox at all can
arise (cf. [21]). The latter is, for example, the case if the gravitational field at B is sourced by
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the expectation value 〈Tab〉 of the energy–momentum tensor of A (and its lab) (this would
be gravity in its semiclassical description, matter is quantum but the gravitational field is
classical): in this case, the gravitational field feels a mixed state of paths, and the positions of
B are not entangled with the single possible paths. This makes it clear that the assumption
of the gravitational field being able to entangle, that is (with locality assumption), of being
quantum, is at the origin of the possible paradox.

t

x

TA
TB

xA
d

D
C

particle A particle B

01
0 1

f

Figure 1. Setup of the thought experiment [15,16] as used in the analysis here (see main text). The x
coordinate is distance taken from Alice’s system’s center of mass C (lab + her particle A), and C’s
worldline acts as the time axis. At a same time (t = 0), Alice starts recombining A, from a (held from
long before) superposition of locations (with separation d), and Bob releases his particle B located at
a distance D � d from A. Alice completes her task in a time TA while Bob checks the position of B
at t = TB. The labels 0 and 1 tag the superposed configurations of the system (no superposition for
particle B in case gravity is not able to entangle). f tags A when it is undelocalized, assuming it is
located at a small distance x̄A from C.

According to [16,18,19], the overcoming of the paradox is in the interplay between
the spatial resolution, unavoidably finite, of Bob in determining the position of B (ideally
the Planck length lp), and the fact that when Alice recombines A quickly enough, Alice’s
system emits gravitational radiation (from the variation in the quadrupole moment of
Alice’s system) in the form of a quantum of radiation, namely, a graviton. In practice, were
circumstances (read, the difference of quadrupole moment of Alice’s system for the two
positions of A) such that Bob would be able to obtain which-path with Twp < D, then, in
case TA < D, A would necessarily be above the threshold for graviton emission. That is,
the coherence of A becomes destroyed regardless of what Bob actually does, since we see
that happens even if Bob decides not to release the particle. In this, they then move one
step farther with respect to [15], in that they do not only recognize the existence of a limit
time in performing coherently the recombination, but also they identify the underlying
reason for it. The absence of a paradox comes, then, as a consequence.

Here is the point of the present investigation. The emission of quadrupole radiation
is clearly conceivable only if the quadrupole moment of Alice’s system changes in the
recombination. This is precisely what one would expect if the gravitational field has values
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entangled with the superposed positions of A. One might then think of the emission of
radiation by Alice’s system during recombination of A as a way to tag the ability of the
gravitational field to become entangled with the path, regardless of any possible recourse
to a test particle B. In the case of the classical gravitational field, sourced by the expectation
value of the energy–momentum tensor on the delocalized state, we also expect a variation
of quadrupole moment in the recombination. This variation, however, turns out to be
generically negligibly smaller than the above, as we will see. This aside, the emission of
(classical) radiation would originate from the delocalized state as a whole and we would
not expect it to affect the coherence of A.

In principle, we could then think of an experiment in which the quantum nature of the
gravitational field might be checked, under locality assumption, using only one delocalized
mass: Alice’s particle A here, looking at that when it is recombined quickly enough—in
a time below a certain threshold TA < Temit—it emits a graviton, this being witnessed by
the abrupt loss of coherence in an ideal situation in which the environmental influence on
A is taken under full control. One can guess that an experiment of this kind is similar to
an impossible task. However, leaving any actual feasibility aside, there might be, from
a theoretical point of view, an interest in having a closer look at the conditions one has
to require to allow for graviton emission, and this is the aim of the present work. As a
byproduct, some indications on the (im)practicability of such an experimental scheme will
also emerge, as we will see (as well as some specifications about the actual reasons behind
the avoidance of the paradox).

2. Conditions for Graviton Emission

Let us start from the analysis in [16,18,19], which is within the just-discussed approxi-
mations and limits. With reference to Figure 1, it is shown that in case the gravitational field
felt by B is entangled with the path of A, then, assuming the spatial resolution is limited by
the Planck length lp, Bob cannot perform which-path in a time TB < Twp with

Twp ∼
D√
QA

D; (1)

On the other hand, during recombination of A, Alice’s system will emit (at least) a graviton
if TA < Temit with

Temit ∼
√

QA. (2)

In these equations, QA is assumed to be the order of magnitude of both the difference
(taken positive) between the quadrupole moments of Alice’s system for configurations 0
and 1 and for before and after recombination of A (at leading order we have a quadrupole
term, not dipole, since the dipole contribution is suppressed by momentum conservation
of Alice’s system [16]). From these results, we see that whenever Bob can actually perform
which-path in TB < D, this from (1) means that we must have D <

√
QA, and then if

TA < D, necessarily TA <
√

QA, and Alice’s system emits [16,18,19]. No paradox can
then arise.

The actual value of QA is of no importance in the argument above. The authors of [19]
take this to be

QA = d2 mA, (3)

as might be envisaged by dimensional considerations. In what follows, we will see that
generically QA might be actually expected to be quite larger than this, and that the discrep-
ancy might be of importance as a signature of the emission being nonclassical.

We proceed now with our analysis. We are working under the assumption that the
gravitational field requires a quantum description, and the field sourced by A is entangled
with the superposed positions. We assume then that the energy–momentum densities
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Tab
0 , Tab

1 , Tab
f (a, b are spacetime indices) associated with the configurations 0, 1, and f of

Alice’s system do quantum correlate with the gravitational field they generate, described
quantum-mechanically by the field states |φ0〉, |φ1〉, and |φ f 〉 respectively, and we write the
state of Alice’s system (A + fields) as

|ψ〉 = 1√
2

(
|x0〉|φ0〉+ |x1〉|φ1〉

)
, (4)

at t = 0, and

|ψ f 〉 = |x f 〉|φ f 〉, (5)

at t = TA, where |x0〉, |x1〉, and |x f 〉 are the states of A corresponding to configurations 0,
1, and f , namely, with the center of mass of A at coordinates x0, x1, and x f where these
are taken in the center of mass frame of Alice’s system which we choose as our reference
frame. As far as the two positions of A are well separated (≈ no overlap between the
states of A describing each given position), the matter states can be taken as orthogonal.
As for the field states, in the linearized quantum theory of gravity (gab = ηab + hab with
ηab the Minkowski metric and perturbation hab small) which we find appropriate in our
circumstances, we assume we can proceed analogously to the electromagnetic case (with
energy–momentum tensors replacing currents, cf. [22]). In the latter case, the overlap
〈ϕ′|ϕ〉 between two states ϕ′, ϕ associated with the currents j′a, ja can be written as the
overlap between the vacuum and the state associated with the current ja − j′a [23,24]. Here,
we have 〈φ1|φ0〉 = 〈0|φ0 − φ1〉, with |φ0 − φ1〉 the field state generated by Tab

0 − Tab
1 . The

differences Tab
0 − Tab

f , Tab
1 − Tab

f are what is expected to produce radiation (the entangling

part coming from the difference of the two, Tab
0 − Tab

1 , cf. [16]). These differences might
be generically expected to be quite significant in the region of superposition, thus giving
|φ0〉 and |φ1〉 nearly orthogonal. It is assumed, however, that the two components, even
if nearly orthogonal at t = 0, can be fully recombined in time TA [16]. We will return to
this later.

As for the emission during recombination, we are free to probe the possibly emerging
radiation where we like. We use this freedom, imagining to analyze it at distances much
larger than d, x̄A; d � D is also the condition used in [16,18,19]. Assuming there is
an analogy with classical emission, this enables us to describe the radiation in terms of
multipole expansion in powers of 1/r, having taken r the distance from the center of
mass C of Alice’s system, and in practice approximate it with the lowest-order terms.
What matters are the differences between the configurations 0 or 1 and f . Assuming
momentum (and angular momentum) conservation during recombination, the dipole term
gives vanishing contribution, and the emission is determined by (the third time derivatives
of) quadrupole moments Q. We have to consider the differences Q(0)−Q( f ), Q(1)−Q( f ),
and Q(0)− Q(1) (with obvious meaning of the notation), with the latter being the part
responsible for emission of entangling radiation (in this case, the field emitted is entangled
with the source and then brings decoherence and fading out of the final interference
pattern) [16]. The latter quantity is also clearly responsible for the difference of the two
superposed fields felt by a probe at r (as, in particular, B).

In view of our task of determining the conditions for graviton emission, what we
perform here is simply computing these differences of quadrupole moments, having
in mind a situation generic with A delocalized starting from a position not necessarily
coinciding with C, with coordinate x̄A (which we take as non-negative) with respect to C
taken as origin.
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We find (the calculation is spelled out in the Appendix A) that, denoting 2QA ≡
Q(0)−Q(1), QA turns out indeed to be also QA = Q(0)−Q( f ) = |Q(1)−Q( f )|, at least
when x̄A is significantly larger than d, and

QA = 2mA x̄Ad =
2x̄A

d
mAd2. (6)

In particular, a same QA thus rules emission and entangling emission (and which-path
discrimination at distance r).

As for the avoidance of the paradox along the lines of [16,18,19], this changes nothing
for it amounts merely to replace (3) with (6) in giving QA (assuming D � d, x̄A). It just
confirms that we can use a same QA in (1) and (2).

We see that (6) gives a dependence on the quantity mAd2, which is QA in (3), with a
factor 2x̄A/d in front. Both give, then, a threshold time for emission which goes like

√
mA.

The factor 2x̄A/d in (6) can give, however, a value for QA in principle much bigger than (3),
when x̄A is significantly larger than d, and this has consequences for the limit time. From (2)
and (6), we obtain

Temit ∼
√

QA =

√
2x̄A

d
√

mA d =

√
2x̄A

d

√
mA
mp

d
c

, (7)

where, in the last equality, we reinserted all constants with mp the Planck mass and c the
speed of light in vacuum.

In the first step here (which is Equation (2)), we are making a classical analogy and tak-
ing 1

TA
as basic, characteristic scale of the angular frequency ω of the emerging radiation [16]

(similar to if recombination were obtained harmonically or similar to in the emission part
of Thomson scattering). The emitted power is ∼(

...
QA)

2 (dots are time derivatives) and the
emitted energy E in time TA can be written as

E ∼
∫ TA

0

...
QA

2
dt =

...
QA

2
TA, (8)

with
...
QA ∼ 1

TA

(
1

TA

QA
TA

)
. If E is in gravitons of energy 1

TA
, the emission of at least one

of them is possible indeed only if TA <
√

QA [16]. Emission at lower frequencies can
also be expected both in a classical (Fourier transforming a generic pulse of duration TA,
angular frequencies up to 1

TA
are significantly present) and a quantum setting (population

of low-energy states in the radiation field), even if depressed (radiated power is ω6 for a
quadrupole source) and of lower impact in reducing the coherence of A. This means that
we have a tail of emission also when TA >

√
QA, but the gross picture is that there is an

effective threshold recombination time of a characteristic scale ∼
√

QA to have emission;
this is what we refer to when considering the conditions for the onset of emission.

This analysis is for when the gravitational field does entangle with the superposed
locations. This corresponds to having the field state at a point as a superposition of (nearly
orthogonal) states |φ0〉 and |φ1〉, as said, and gives ≈±QA as variations of quadrupole
moments associated with each of the branches of the superposition and ≈2QA as difference
of quadrupole moments between the branches. In case the field does not entangle with
the superposed locations and is sourced instead by the expectation value of the energy–
momentum tensor on the delocalized state, we have a single expression for the field φ
given as the gravitational field sourced by the mass density distribution:

ρ(xi) =
1
2
[
mAδ(xi − xi

0) + mAδ(xi − xi
1)
]
+ ρl (9)

(describing A in terms of Dirac’s δ) where xi
0 = (x0, 0, 0) and xi

1 = (x1, 0, 0) are the
two superposed positions of A, and ρl is the mass density distributions of Alice’s lab,
A excluded. In this case, we cannot have a difference connected with positions 0 and
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1 (energy–momentum densities of both positions contribute to the field, no which-path
possible), and the variation Q̃A, and also the emitted energy, we obtain in the recombination
is much smaller than in the case that the field is entangled. Indeed, as can be easily verified
(cf. Appendix A), Q̃A = 1

2 d2mA = 1
2 QA/( 2x̄A

d ) which is� QA for d� x̄A. We see that the
factor 2x̄A

d gives the order of magnitude of QA/Q̃A, the gain we have in the amplitude if
the field entangles, and ( 2x̄A

d )2 the gain in emitted energy.
The factor d/c in (7) clearly has the meaning of absolute lower limit to the recombina-

tion time TA for two paths separated by a distance d: TA ≥ d always (cf. [15]). In addition,
if the recombination takes places in a time TA, we have to consider that only a portion of
size cTA (inserting, explicitly, the speed of light) of Alice’s system can be involved in mo-
mentum transfer (this being the part involved in overall momentum conservation during
the recombination of A), as components of Alice’s system far from one another and from A
by more than this distance have no time to talk each other in reaction to A recombination.

This suggests that when following the approach of [16,18,19], one has to be careful
with the definition of the system under examination. In particular, we have to consider the
consequences of that; along with [16,18,19], we assume that A can be coherently recombined
in time TA, namely, with the fields following the matter evolution from the superposed
state (4), with nearly orthogonal |φ0〉 and |φ1〉, to the recombined state (5). Indeed, the
gravitational field at points farther than cTA from particle A cannot be causally affected
by Alice system’s evolution during recombination, and then the assumption that the
superposition can be coherently recombined requires, for consistency, that only that same
portion of size ≈cTA of the system is involved. This would correspond to the view that the
local physics of A and its neighborhood ought to be ruled in terms of quantities causally
connected with it. Alice’s system can thus be considered as effectively made by this portion
with particle A and the fields there, and C ought then to be taken as the center of mass of
this reduced system. This implies that we always have TA > 2x̄A in Equation (7).

The latter condition is the only remnant of this local physics request. Looking at
the Appendix A, we see, indeed, that all the calculation carries over for this restricted
system provided the reduced system mass M′ is still� mA, and gives the same results (A8)
and (A9), with QA given again by (6).

Concerning the gedanken experiment, for TA < D (which is the interval we are
interested in), this, strictly speaking, leaves out B and the region around it. This is not a
real problem, however, since, from the considerations just made, the (differences of the)
fields felt by B from the restricted configuration (fields suitably extended till reaching B) are
practically the same as those actually sourced by the full mass distribution of Alice’s system.

A tension between the request that Alice is able to recombine A in a finite time
TA and the fact that the fields do extend far beyond cTA and cannot keep up with the
evolving source was emphasized in [25]. There, it was argued that this can be taken as
showing that, if A can actually be coherently recombined in time TA and thus is able
to provide interference patterns, then the field states at t = 0 ought not to be nearly
orthogonal, but instead have sizable overlap. Building on this, Ref. [25] showed this
would imply that the interference fringes, if present in the absence of a test body (this
meaning the fields produce negligible decoherence), would never disappear, whichever
body might interact with the fields (in particular, our test particle B). This eliminates any
possibility of superluminal communication with A and would solve, once and for all, any
potentially paradoxical issue in the gedanken experiment. One might feel, however, a little
uncomfortable with the fact that in this approach, the gravitational fields sourced by a
delocalized (and then recombined) particle, such as, for example, those in the full-loop
Stern–Gerlach interferometers envisaged in the proposals [8,9], apparently would be far
from being orthogonal to each other even if sourced by orthogonal states.

Here, we take quite a complementary view. On the basis of the fact that the physics of A
should also be describable in terms of only local quantities, namely, quantities able to affect
A in time TA, we maintain that if Alice’s system (including its fields) is effectively restricted
to a causally connected neighborhood of A, we can actually have coherent recombination
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starting from orthogonal |φ0〉, |φ1〉, thus having orthogonal field states corresponding to
orthogonal source states. We stick, thus, to the protocol [16,18,19], only noting that it
requires a redefinition of the system effectively taking part in the action. This might not
seem to solve all potential issues (cf. [25]) accompanying the gedanken experiment in the
protocol [16,18,19], but shows at least the viability of coherent recombination of orthogonal
states in the mentioned restrictions. This is all we need here after all, our focus being not an
examination of the gedanken experiment, but, instead, the possible graviton emission, and
the latter is dictated by the variations Q(0)−Q( f ), Q(1)−Q( f ), which do not depend, as
discussed, on the approach.

This said, we search now for conditions which allow for graviton emission. For this,
we must have

d < TA <
√

QA, (10)

which is

1 <
TA
d

<

√
mA
mp

√
2x̄A

d
, (11)

inserting explicitly the Planck mass.
Inequalities (11) give

1 <
TA
d

<

√
mA
mp

√
TA
d

, (12)

which is clearly impossible to satisfy as long as mA < mp, for TA
d > 1 implies TA

d >
√

TA
d .

That is, if mA < mp, we can never have TA < Temit, i.e., graviton emission associated
with recombination, and this is regardless of the choice of x̄A. The Planck mass acts as a
lower-limit threshold mass memit for quadrupole emission, the latter being possible only if
mA > memit = mp.

Present technology, and that foreseen in the near future, gives a delocalized mA � mp
by far. Alice’s (thought) experiment on A (as well as the action on each of the two delocal-
ized particles in actual experimental proposals [8,9] checking for the nonclassical nature
of gravity) is akin to completing a Stern–Gerlach apparatus with a recombination stage
to obtain a proper Stern–Gerlach interferometer. A first realization of such a device was
recently reported at single-atom level [26], with possible extensions of this same experi-
mental procedure to nanodiamonds (106 carbon atoms, mA ≈ 10−20 kg) appearing within
reach. In addition, for microdiamonds of mA ≈ 10−14 kg (radius ≈ 1 µm), coherence times
of &1 s might be conceivable under cooling [27], and delocalizations of objects of this mass
with separation of order of their size might be within reach soon [28]. These figures are
expected to be good enough for proposals [8,9] to start to be effective, but, anyway, leave
mA � mp = 2.18 · 10−8 kg.

Looking at present and near-future capabilities, we thus cannot have graviton emission
associated with recombination even if TA is taken as short as causally allowed. However,
from a theoretical point of view, we can be allowed to imagine full-loop Stern–Gerlach
interferometers working with mA > mp. In them, A can be recombined fast enough to
allow Alice’s system to emit. In (11) (right inequality), we see that the threshold time Temit
depends on x̄A. The best option for allowing emission for a given TA is to have x̄A as large
as possible, namely, such that 2 x̄A = TA. We assume that this choice is not only possible if
TA is just above d but that it is generically realized with Alice’s system being macroscopic.
With it, inequality (11) coincides with (12) and allows that we have emission when

TA <
mA
mp

d, (13)
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that is,

Temit ∼
mA
mp

d, (14)

which can also be derived from (7), taking 2x̄A = Temit. We see that the condition of
emission depends this way generically on parameters concerning particle A alone (mA, d)
as one might have hoped, not on Alice’s lab. Notice that inequality (13) gives a threshold
time which grows linearly with mA, not as

√
mA, as might seem to be inferred instead

from (7).
This as far as the ability of Alice’s system to emit is concerned. Regarding, instead,

the paradox, notice that its avoidance when mA < mp is in that for these masses we cannot
have (by far)

√
QA > D, and thus Bob cannot perform which-path in TB < D in the first

place. Indeed, from (6) (with mp inserted), we have√
QA/D =

√
2x̄a/D

√
mA/mp

√
d/D, (15)

which clearly is� 1 for mA < mp if x̄A, d� D.
Generic mA > mp is still not enough for the potential onset of the paradox. In view

of (15), we have to indeed require mA � mp in order to have
√

QA > D. When mA is large
enough to give this, Alice’s system necessarily emits [16,18,19], as described above, and no
paradox can in anyway arise.

Inequality (13) coincides with the mentioned minimum discrimination time reported
in [15] (Equation (3) in [15]) needed to avoid the paradox, in spite of being (quite uncon-
vincingly, cf. [16]) derived there from consideration of dipole gravitational moments (that
is, neglecting the reaction of Alice’s lab to the displacements of particle A, a reaction which
brings instead to momentum, and thus dipole moment, conservation); notice, however,
that according to our results, the no-paradox argument used in [15] can be leveraged only
when mA � mp, as just mentioned.

Further, if we imagine that Alice checks the coherence of particle A through an inter-
ference experiment (as considered in [16,17,20]), the minimum allowed time to have the
fringes ideally discernible (on account of the finite spatial resolution limit lp) does coincide
with the threshold time (14) for emission. Indeed, following [20], if we call δ the fringe
spacing, we have (with all constants) δ ∼ λvTA/d ∼ lp

mp
mA

cTA
d , where v is the velocity of A,

λ = h/(mAv) its de Broglie wavelength, and h is (unreduced) Planck constant. From this,
requiring that δ > lp, we obtain (13).

This finding of equivalence/coincidence between no-emission condition and (ideal)
detectability of fringe pattern in an interference experiment is at variance with [20], where
(using (2) with QA given by (3)) the visibility of fringes is found to constrain more than
no-emission (when emission sets in, the fringes are undetectable already). However, when
x̄A is not maximal (i.e., when 2 x̄A < TA, quite a nongeneric situation as we mentioned)
we also find, as per [20], that when emission sets in, fringes’ visibility is already lost. The
general picture we obtain is that emission has all that is needed to avoid the paradox,
but fringes’ discernibility taken alone (i.e., without considering emission) is also fine for
this; moreover, in generic circumstances, the two requirements do coincide. They are then
basically equivalent concerning the avoidance of the paradox in an interferometric setup.

This confirms the stance [20] that, at least as far as checking of coherence of A is
carried out through interference, the limit posed by existence of a limit length lp is enough
(without, strictly speaking, a need of bringing into play emission, but being, as we find here,
equivalent to the no-emission condition) to avoid any clash between complementarity and
causality. This is also what [17] found (though neglecting there, too, the abovementioned
reaction of Alice’s lab to the displacements of A, i.e., using dipole gravitational momenta).

In [19], however, a different setting to probe the coherence of A is considered, not
relying on the detection of an interference pattern. Looking at this, it seems we have
inevitably to require graviton emission to avoid the paradox in case mA � mp (clearly,
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provided gravity is supposed to be able to entangle; if not, no paradox can arise). This occurs
when supposing that locality holds. Assuming, instead, nonlocality of the gravitational
communication channel (as contemplated in [13]), it is not clear how to avoid the paradox
(when mA � mp) since we have, of course, causality anyway and no quantized mediators
to react on A which is causally disconnected from B; but we will return to this in the final
comments of the paper. The consideration of the potential paradox might highlight a
possible weakness of (causal) nonlocality of the channel as compared to locality.

3. Contrasting with Collapse Models

In (7) and (14), the Planck mass mp plays a pivotal role in that it sets the mass threshold
for particle A to emit. In particular, these expressions say, as discussed, that if we have a
delocalized particle we cannot expect quadrupole emission on recombining it if mA < mp.

We would like to ask now how this compares with Diósi’s and
Penrose’s hypothesis [29–31] that any such superposition of a mass m in two locations is
unstable when the mass is large, and collapses or decays to one of the two locations with
average lifetime τ = h̄/E∆ (all constants in), where E∆ is the gravitational self-energy of the
difference of mass configurations in the two locations, up to a multiplicative constant ([32]
for details, see also [33]). As a matter of fact, this model seems ruled out in its basic
formulation [34], but there is still a dependence on some parameters. We ask for which
masses m the decay time τ keeps being large enough to allow for quadrupole emission
from recombination if TA is taken sufficiently short.

For this, we take the expression τ = 5
6 R/m2 of [32] for a uniform massive delocalized

sphere with radius R, valid when the separation is d � R and for a specific/reasonable
choice of the multiplicative constant (given by the parameter γ in [32] set to 1

8π , which is
∼50 times smaller than the value ruled out in [34], thus giving ∼50 times longer lifetimes).
The exact expression of E∆ grows rapidly at increasing d from 0 at d = 0 to being already
roughly 2/3 of the value quoted above at d = 2 R [32].

This clearly gives an upper limit m̃ to mass to leave τ large enough for the above.
This can easily be estimated as follows. If we take the separation as short as d = 2 R,
corresponding to have the two superposed mass distributions on the verge of overlapping,
we must have

2 R = d <
3
2
· 5

6
R

m2 ,

which gives m < m̃ =
√

5/8 = 0.79 mp, inserting, explicitly, the Planck mass. Any larger
d at mass fixed means a larger recombination time and, in addition, a smaller τ; for any
given mass, the best option to obtain recombination time < τ is then to choose d = 2R, and
the just-given m̃ is the largest allowed mass to have this inequality satisfied.

There is clearly a tension between the collapse models on one side and the possibility
to obtain quadrupole emission from recombination on the other. When mA is, indeed,
large enough to allow, in principle, for emission (mA > memit = mp), the collapse models
foresee it to decay before it can recombine (and, if we read this the other way around, the
delocalization itself of such an mA is problematic in the first place, with mA ≈ mp playing,
then, the role of an upper-limit mass scale for delocalization to possibly happen in collapse
models, cf. [35]). If the proposal of Diósi and Penrose (in its basic form) is correct, there is
no possibility to obtain (quadrupole) emission while recombining A; this, whichever mA is
and however small we (consistently) take the recombination time TA.

Something that is a little bit striking is the coincidence memit ≈ m̃ between the
(lower-limit) threshold mass memit for quadrupole emission from recombination and the
(upper-limit) threshold mass m̃ to have the collapse proposal allowing for the delocalized
particle to have enough time to recombine (and have it delocalized in the first place). Things
happen as if when circumstances would finally allow for emission (delocalized masses
large enough), right then the latter is inhibited by the collapse.
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As for the paradox, one thing that the consideration of collapse models adds is that if
Diósi and Penrose are right, the crucial case mA � mp can never happen. This immediately
means that no paradox can arise (in particular, no need to invoke graviton emission), and,
in addition, looking at (15) and (1), that long integration times are needed for B to possibly
obtain which-path (this being hardly compatible with a noncollapsing A [4]).

4. Summary and Conclusions

We tried to determine the conditions for graviton emission from recombination of
a delocalized particle. This was carried out having as background the gedanken exper-
iment [15,16] (in which Alice recombines a delocalized particle (A) while Bob tries to
perform which-path a distance D apart with a test particle (B); in this, a tension between
causality and complementarity might potentially arise when Alice and Bob act in times
TA, TB < D if we assume that the gravitational field sourced by A entangles with the
superposed locations).

To this aim, we simply explicitly computed, for generic geometric conditions, the
variation of quadrupole moments (of the delocalized particle and its lab, which we called
Alice’s system) from before to after A’ recombination, both in case the field is entangled with
the positions and in case it is not and is instead sourced by the expectation value of energy–
momentum on the delocalized state. In view of the gedanken experiment, we also computed
the difference between the quadrupole moments of the superposed configurations.

We found that the variation of the moments in the recombination is greatly enhanced
in case the field is entangled compared to if it is instead sourced by the energy–momentum
on the delocalized state (in which case the variation is simply ∼mAd2, i.e., what is naively
expected on dimensional grounds) and provided the gain. We provided a formula for how
quickly recombination must occur for graviton emission to set in. In it, the threshold time
for graviton emission grows as mA in place of

√
mA (which is what is obtained instead if

the variation of quadrupole moment is ∼mAd2). In all this, graviton emission is found to
be possible only when mA > mp for recombination times short enough, meaning that for
masses smaller than the Planck mass, no graviton emission is possible, however small we
(consistently) take the recombination time.

Concerning the gedanken experiment, from the computed difference of the moments
in the superposed configurations, we find that a potential clash between causality and
complementarity is, in principle, conceivable only when mA � mp (which comes from
requiring Bob to be able to perform which-path in TB < D). Clearly, no clash can arise,
however, since for these masses, if TA < D, Alice’s system necessarily emits, and the
coherence of A is affected without need of causal relationship with B, along the lines
of [16,18,19]. If the coherence of A is probed, in particular, through inspection of interference
fringes when A is recombined, the condition for the onset of emission turns out to coincide
with the condition of the separation δ of the fringes to become δ < lp, so that the two
conditions of the onset of emission on one side and the disappearing of the interference
pattern (at ideal conditions) on the other, do result as equivalent in this setting. If, instead,
the probing of the coherence of A is performed in another manner (as proposed in [19]) not
relying on the detection of the interference pattern, it seems crucial that graviton emission
sets in to avoid any clash between causality and complementarity.

This brings with it that if the communication channel is assumed to be nonlocal—
instead of local, as implicit in discussion above concerning emission—yet causal, as con-
templated (together with the local channel) in [13], it is not so clear how to avoid the
paradox when mA � mp in the noninterferometric setting of [19], since we do not have
interferometric fringes to wash off (with finite limit lp), nor we can rely on emission for
having A to decohere while recombining it in TA < D; yet performing which-path of B is
ideally possible within TB < D, this potentially clashing with complementarity.

When all this is considered within the collapse models of Diósi and Penrose [29–31]
(in their basic formulation), we saw that the case mA � mp can never happen (since the
delocalized state decays before it recombines, or before it can be formed in the first place),
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and then no paradox can arise since Bob will never be able to perform which-path in
TB < D.

Indeed, in these models it is not possible to have A delocalized, even when, simply,
mA > mp. Connected to the above, this means that (quadrupole) emission from recombi-
nation would be never possible in them. More precisely, we have the curious coincidence
memit ≈ m̃ (≈mp) between the threshold mass memit for emission and the threshold mass
m̃ to have separation that withstands decay, meaning that right when mA would be large
enough to obtain emission (with A recombining in a time as short as possible), it would
then become also too large to have A not collapsed yet in one of the two locations.

In closing, we would like to make a comment on the role of Planck length lp in the
above. We saw that the onset of graviton emission in the recombination of a delocalized
particle and the washing out of the pattern in an interferometric setting due to the limit lp
are two sides of the same coin. This may lead one to suspect that the existence of a limit
length alone, when suitably introduced in the formalism, might account for a great deal of
results concerning quantum features of curvature (cf. [36]), this clearly irrespective of the
actual underlying quantum theory of gravity.

The systematic investigation of all the consequences of a limit length is the goal of the
framework [37,38] (called minimum-length or zero-point-length metric or qmetric), which
computes the distance between two points, p and P, with a lower-limit-length built in,
thus with smallest-scale nonlocality embodied in the biscalar, which provides distances. In
this, tensors are replaced by bitensors as fundamental objects in the description, with some
selected ones playing a major role. In particular, the metric tensor is replaced by a (qmetric)
bitensor which, consistent with the need to provide a finite limit length, diverges in the
coincidence limit. We might speculate that the loss of coherence of particle A, as described
here at weak-gravity conditions (we use Newtonian gravity), might be reobtained as an
effect of the qmetric associated with Minkowski (that is, replacing Minkowski with qmetric
Minkowski), regardless of graviton emission; a hint, in this sense, might be that, assuming
gravity has mediators, the threshold mass for graviton emission we obtained turns out to
be the Planck mass (this would cure, by the way, the problem mentioned above of how to
avoid a clash between causality and complementary in case we lack interferometric fringes
to wash off or gravitons to emit).

On a parallel side, some intriguing curvature-related quantum effects investigated
through the use of key bitensors are discussed in [39,40]. In the qmetric, a number of results
have been obtained relating curvature, and the dynamics (field equations), to an underlying
quantum structure of spacetime (see [41,42]); attempts to investigate the latter are detailed
in [43–45].
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Appendix A. Evaluation of Gravitational Gradients and Their Variations

We address the problem of determining the difference of the gravitational gradients
felt at a distance in the two configurations corresponding to the two superposed positions
0 and 1 of A (Figure 1). No dipole term can contribute to this difference [16]; the dipole
term taken with respect to the center of mass of Alice’s system (A + lab of Alice) is actually
vanishing in any configuration. In the circumstances assumed in [20] (centers of mass of
A and of the lab of Alice coinciding for undelocalized A), the quadrupole moments in
the two configurations are equal and cannot affect the difference. We claim here that if
we consider the slight generalization of not-coinciding centers of mass, the quadrupole
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moments with respect to the center of mass of Alice’s system are different in the two cases,
and they become the dominant contribution, as in [16]. Moreover, their variations result as
much bigger in case the field is entangled with the superposed locations than if it is instead
sourced by the expectation value of the energy–momentum tensor on the delocalized state.

To see how this comes about, let us write the gravitational potential φ at a point of
spatial coordinates xi, i = 1, 2, 3 with respect to some origin, as (cf. e.g. [46])

φ = −
(M

r
+

djnj

r2 +
Qijninj

2r3 + · · ·
)

, (A1)

where M is the mass of the body which is the source of the potential (in our case, Alice’s
system: A + lab of Alice), ni = xi/r with r the distance to the origin, di is dipole moment,
and the quadrupole is

Qij =
∫
(3x′i x

′
j − r′2δij) ρ dV, (A2)

where the integral runs over the body, with r′ the distance to the point with the attached
volume element dV at coordinates x′i, and ρ the density there.

We decide to compute φ, taking as origin the center of mass C of Alice’s system.
Clearly, this implies that di = 0, i = 1, 2, 3. Now, at points along the x axis, taken as the
direction connecting the superposed positions, we have

Qijninj =
∫
(3x′2 − r′2) ρ dV ≡ Qxx. (A3)

If we consider the approximation of a mass distribution ρA of the A particle given by a
Dirac’s δ (for the sake of simplicity, but this can be relaxed), and assume that the particle
has coordinate xA with respect to C, we obtain∫

(3x′2 − r′2) ρA dV =
∫
(3x′2 − x′2)mA δ(x′ − xA) dx′

= 2 x2
A mA. (A4)

Considering the mass distribution of the lab of Alice (meant specifically as the system
of Alice with A removed), and calling xlabA the x-coordinate of its center of mass with
respect to C, we have∫

(3x′2 − r′2) ρlabA dV =
∫
(3x′2 − x′2) dMA

=
∫

2 (x′ − xlabA + xlabA)
2 dMA

= 2
[ ∫

(x′ − xlabA)
2 dMA + η x2

A mA

]
, (A5)

with MA the mass of the lab, η ≡ mA/MA, and, of course, xlabA = −η xA.
Let us consider general circumstances in which the position of A when not delocalized

is not coinciding with C but has, instead, a slight offset x̄A � r along the x-axis (x̄A = 0
in the circumstances of [20]). In the configuration of Alice’s system corresponding to the
particle A in path 0 (see Figure 1), we have x(0)A = x̄A + d/2, where the index (0) tags the

configuration. Analogously, x(1)A = x̄A − d/2.
Calling Qxx(0) and Qxx(1) the corresponding quadrupoles, from (A3) we obtain

Qxx(0) = 2
(

x̄A +
d
2

)2
mA + 2

[ ∫
(x′ − x(0)labA)

2 dMA + η
(

x̄A +
d
2

)2
mA

]
(A6)
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and

Qxx(1) = 2
(

x̄A −
d
2

)2
mA + 2

[ ∫
(x′ − x(1)labA)

2 dMA + η
(

x̄A −
d
2

)2
mA

]
(A7)

with x(0)labA = −η x(0)A and x(1)labA = −η x(1)A . The two integrals here depend only on the
form of mass distribution of the lab around its actual center of mass in the two config-
urations; their difference, as well as their difference with respect to the value Qxx( f )
for the final configuration with particle A recombined (i.e., xA = x̄A), can be estimated
to be O((ηd)2MA) = O(η d2 mA) (and is identically vanishing in the approximation of
rigid displacement).

Considering the case of field entangled with the superposed positions, we have that
the variations of the quadrupole moments in recombination are |Qxx(0)− Qxx( f )| and
|Qxx(1) − Qxx( f )| for positions 0 and 1, respectively, while their difference in the two
positions is Qxx(0)−Qxx(1). Neglecting terms containing η as a factor, namely, of order
O(ηx̄2

A, ηx̄Ad, ηd2), we obtain

Qxx(0)−Qxx( f ) = 2
(

x̄A +
d
2

)2
mA − 2 x̄2

AmA

= 2
(

x̄Ad +
d2

4

)
mA

= QA +
d2

2
mA, (A8)

with QA = 2 x̄Ad mA, and analogously,

Qxx(1)−Qxx( f ) = −QA +
d2

2
mA. (A9)

We have, then, Qxx(0)− Qxx(1) = 2 QA and, when x̄A is significantly larger than d
(though still with x̄A � r), |Qxx(0)− Qxx( f )| ' |Qxx(1)− Qxx( f )| ' QA. This proves
Equation (6) and what we said about its meaning in the main text.

We see that, contrary to the case considered in [20], in general, the quadrupoles
corresponding to the two configurations are not equal, with a difference O

(
x̄Ad mA

)
,

which provides the dominant contribution to the difference ∆φ in the gravitational field
felt by B (of course, in case of ability of the gravitational field to entangle A with B).

With this, we can proceed to compute the difference ∆x in the position of particle
B associated with this ∆φ, assuming d, x̄A � D. We have ∆φ = QA/r3 ≈ QA/D3, and
then ∆g = 3 QA/r4 ≈ 3 QA/D4, with g denoting the acceleration of B. We then have
∆x = 1/2 ∆g T2

B = 3/2 QA/D4 T2
B ∼ QA/D4 T2

B, which, on imposing ∆x > 1, gives
Equation (1) in agreement with [16], but with QA, as in Equation (6).

If the field is not entangled with the positions but is sourced instead by the expectation
value of the energy–momentum tensor on the delocalized state, the quadrupole term is not
a superposition of two terms but has a well-defined value, and no discrimination is possible
between the paths. There is, anyway, a variation Q̃A of the quadrupole moment in the
recombination which can be calculated as Q̃A = 1

2 [Qxx(0) + Qxx(1)]−Qxx( f ) = 1
2 d2mA,

where Qxx(0) and Qxx(1) are as given in (A8) and (A9). We see this is the same order of
magnitude of the naive guess (3) and is, in general, much smaller than QA = 2 x̄Ad mA,
which is what we obtain instead if the field does entangle with the positions.
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