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Abstract: Statistical measures of complexity hold significant potential for applications in D-dimensional
finite fermion systems, spanning from the quantification of the internal disorder of atoms and
molecules to the information–theoretical analysis of chemical reactions. This potential will be shown
in hydrogenic systems by means of the monotone complexity measures of Cramér–Rao, Fisher–
Shannon and LMC(Lopez-Ruiz, Mancini, Calbet)–Rényi types. These quantities are shown to be
analytically determined from first principles, i.e., explicitly in terms of the space dimensionality D,
the nuclear charge and the hyperquantum numbers, which characterize the system’ states. Then,
they are applied to several relevant classes of particular states with emphasis on the quasi-spherical
and the highly excited Rydberg states, obtaining compact and physically transparent expressions.
This is possible because of the use of powerful techniques of approximation theory and orthogonal
polynomials, asymptotics and generalized hypergeometric functions.

Keywords: multidimensional hydrogenic systems; Cramér–Rao complexity-like measures; Fisher–
Shannon complexity-like measures; LMC–Rényi complexity-like measures; highly excited Rydberg states

1. Introduction

The physical and chemical properties of atomic and molecular systems can be de-
scribed, according to the density–functional theory, by means of integral functionals of
the electron probability density ρ(r) (see e.g., [1,2]). These functionals, which quantify the
multifaceted electronic complexity of these systems, are obtained from the entropy-like
and complexity-like (Cramér–Rao, Fisher–Shannon, LMC–Rényi) measures of the systems:
the basic variables of the classical and quantum information and complexity theory [3,4].
The entropic measures of a multidimensional quantum system (Fisher, Shannon, Rényi)
quantify, like the familiar variance, a single facet of ρ(r); however, opposite to the variance,
they do not depend on any particular point of the density’s domain such that they are
much more appropriate quantities for the uncertainty type.

The complexity-like measures estimate the combined balance of two or more facets
of the density. Guided by the theory of quantum entanglement [5] and the recent devel-
opments of quantum coherence [6], we will here consider the most relevant monotone
complexity-like measures [7] of a finite D-dimensional quantum system so that each simul-
taneously quantifies two facets of its internal disorder as described by the electron density
ρ(r), namely, the Cramér–Rao complexity [8], the Fisher–Shannon complexity [9–12] and
the LMC–Rényi complexity [13–17]; see also some modifications of them [14–16,18–25].

In this work, we review and determine these complexity-like measures for the general
quantum states of the D-dimensional hydrogenic system in terms of the state’s hyperquan-
tum numbers, the nuclear charge and the space dimensionality; each measure allows us to
estimate jointly two different facets of the electronic complexity [26–30]. Then, we apply
them to several relevant classes of particular states with emphasis on the quasi-spherical
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and highly excited Rydberg states. This hydrogenic system plays a fundamental role in
the multidimensional quantum physics since encompasses a great deal of the standard
three-dimensional hydrogenic atoms (see, for example, [31]) and non-standard low- and
high-dimensional objects of great relevance in condensed matter, quantum cosmology and
quantum computation, such as quantum wells, wires and dots, semiconductor excitons,
qubits, Rydberg atoms, exotic atoms, and antimatter atoms, . . . (see, for example, [32–38]).

The Cramér–Rao complexity CCR[ρ] measures the gradient content of the electron
density jointly with its concentration around the centroid. The Fisher–Shannon complexity
CFS[ρ] quantifies the concentration of electron density around its maxima together with
its total spreading all over the system’s volume. The (biparametric) LMC–Rényi com-
plexity Cα,β[ρ] takes into account two different aspects of the electronic spreading of the
system, which depend on the specific values of its two parameters. The particular case
(α → 1, β = 2) corresponds to the plain LMC (López-Ruiz–Mancini–Calvet) complexity
measure [15,39,40] C1,2[ρ] which quantifies the density’s non-uniformity (or departure from
equiprobability) jointly with its total extent over the density domain. These complexity-
like measures were recently applied to numerous phenomena in atomic and molecular
physics [24,28,29,41–50] and chemical reactions [51–53], and its analytical determination is
shown to require powerful algebraic techniques [54–59] and asymptotical methods [60–64]
of approximation theory and orthogonal polynomials.

The structure of the paper is the following. In Section 2, we fix the notation used and
briefly define and discuss the monotonic complexity-like measures of a general multidimen-
sional density considered in this work. In Section 3, we show and analyze the probability
density of the multidimensional hydrogenic system in light of the complexity-like measures
previously mentioned. In Sections 4–6, we describe the main results on the Crámer–Rao,
Fisher–Shannon and LMC–Rényi complexity measures of the multidimensional hydrogenic
systems, respectively, and we apply them to various specific states of quasi-spherical and
highly excited Rydberg states. Finally, some concluding remarks are given.

2. Complexity-like Measures of a Multidimensional Density

In this section, we show the complexity-like measures of a D-dimensional quantum
density ρ(r) in position space which fulfills the monotonicity property [7]. They are the
Cramér–Rao complexity measure [8,14,65] defined by

CCR[ρ] := F[ρ]×V[ρ] = F[ρ]×
〈

r2
〉

, (1)

(the second equality holds for quantum systems subject to a central potential, because then
the variance V[ρ] =

〈
r2〉 as shown later on), the Fisher–Shannon complexity [9–12] given by

CFS[ρ] := F[ρ]× 1
2πe

e
2
D S[ρ]. (2)

and their generalization, the LMC–Rényi complexity [13–16,19], defined as

Cα,β[ρ] := e
1
D (Rα [ρ]−Rβ [ρ]), 0 < α < β < ∞, α, β 6= 1, (3)

where F[ρ], S[ρ] and Rq[ρ] denote the Fisher information [66–68], the Shannon entropy [69,70]
and Rényi entropy of order q [71,72], respectively. They are expressed as

F[ρ] :=
∫
RD

|∇D ρ(r)|2

ρ(r)
dr, (4)

S[ρ] := −
∫
RD

ρ(r) log ρ(r) dr; Rq[ρ] =
1

1− q
log

∫
RD

[ρ(r)]q dr, 0 < q < ∞, q 6= 1,

(5)



Quantum Rep. 2023, 5 118

respectively, being r ≡ |r|, r = (r, θ1, θ2, . . . , θD−1) ≡ (r, ΩD−1), dr = rD−1dr dΩD−1,
with dΩD−1 =

(
∏D−2

j=1 sin2αj θj

)
dϕ and 2αj = D − j − 1, and ∇D the D-dimensional

gradient operator given by

∇D =
∂

∂r
r̂ +

1
r

D−2

∑
i=1

∂

∂θi
θ̂i +

1
r ∏D−2

i=1 sin θi

∂

∂ϕ
ϕ̂. (6)

Symbol 〈ra〉 =
∫
RD

raρ(r)dr, a = 1, 2 and the variance of the density is defined as
the sum of variances of the components of r so that V[ρ] =

∫
|r− 〈r〉|2ρ(r) dr =

〈
|r| 2

〉
−

|〈r〉|2 =
〈
r2〉, since |〈r〉|2 = 0 for any quantum state of a central potential. Then the

variance quantifies the concentration of the density around the origin. There is a certain
controversy about the notion of variance [41,73–76]. For general quantum systems, it is
often defined as

〈
r2〉− 〈r〉2; however, it corresponds to the one-dimensional radial density

but not to the total multidimensional density. The Rényi entropies, which have very
relevant properties [26,77–81], estimate numerous spreading-like facets of the quantum
probability density, allowing for a quantitative discussion of the intrinsic randomness
(quantum uncertainty) and the geometrical profile of the quantum system; so, further
beyond the Heisenberg-like uncertainty [82,83] which is based on the variance of the
density and their generalizations, the radial expectation values [84].

In addition, the limit q → 1 allows to recover the Shannon entropy from the Rényi
entropy, i.e., limq→1 Rq[ρ] = S[ρ]. Moreover, the case (α → 1, β = 2) of the LMC–Rényi
complexity (3) describes the plain LMC (López-Ruiz–Mancini–Calvet) complexity mea-
sure [15,39,40] C1,2[ρ] = D[ρ]× eS[ρ], which measures the combined balance of the density’s
departure from equiprobability (or disequilibrium D[ρ] = e−R2[ρ]) and its total extent (as
given by the power Shannon quantity eS[ρ]). Moreover, the Fisher information is a local
uncertainty measure [85] because it depends on the density’s gradient operator so that it
increases with the concentration of the density among its nodes; the Shannon and Rényi
entropies are uncertainty measures of global character because they are logarithmic and
power integral functionals of ρ(r), which estimate different macroscopic aspects of the
density all over its dimensional support according to the parameter q.

Consequently, the Cramér–Rao quantity is a complexity measure of local–global
character which depends on a specific point of the systems (the origin); and the Fisher–
Shannon and LMC–Rényi quantities are complexity measures of local–global and global–
global character, respectively, which do not depend on any specific point.

These three complexity measures are known to be dimensionless, invariant un-
der translation and scaling transformation [86,87], and universally bounded from be-
low [27,28,88,89] as

CCR[ρ] ≥ D2, CFS[ρ] ≥ D, and Cα,β[ρ] ≥ 1 i f α < β (7)

for D-dimensional probability densities. The universal minimum bound D2 for the Cramér–
Rao complexity is reached by the (Gaussian) density associated with the ground state of the
D-dimensional harmonic oscillator [26,76]. Moreover, the LMC–Rényi complexities [13]
give their minimum value when applied to the uniform distribution (maximum disorder)
with a bounded support. However, these complexity measures are not well defined when
applied to the Dirac-delta distribution (maximum order), although this is something which
can be easily cured [20]. Other extensions/modifications of these statistical complexities
have been proposed, such as the Fisher–Rényi complexities [18,19,21–23] and the biparamet-
ric Cramér–Rao and Heisenberg–Rényi complexities [24], although they will be discussed
separately elsewhere together with some atomic and cosmological applications. Finally,
the corresponding complexity measures for the probability density γ(p) in momentum
space [17] will be denoted by CCR[γ], CFS[γ] and Cα,β[γ], respectively.
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3. The Multidimensional Hydrogenic System: The Probability Density

In this section, we fix the notation and describe the wavefunctions and the associated
probability densities for the stationary states of the D-dimensional hydrogenic system in
both position and momentum spaces. This system is a negatively charged particle moving
around a positively charged core which electromagnetically binds it in its orbit. Atomic
units (i.e., h̄ = me = e = 1) are used throughout the paper.

The Schrödinger equation of the D-dimensional hydrogenic system has the form(
−1

2
∇2

D + V(r)
)

Ψ(r) = EΨ(r), (8)

where r = (r, θ1, θ2, . . . , θD−1) in hyperspherical units and r ≡ |r| ∈ [0, +∞). The symbols
∇D and V(r) denote the D-dimensional gradient operator and the Coulomb potential
V(r) = − Z

r , respectively. It has been shown [4,90] that the wavefunctions of this system
are characterized by the energies

E = − Z2

2η2 , η = n +
D− 3

2
; n = 1, 2, 3, . . . , (9)

and the associated eigenfunctions

Ψn,l,{µ}(r) = Rn,l(r)×Yl,{µ}(Ωd−1), (10)

where (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µD−1) denote the hyperquantum numbers associated to
the angular variables Ωd−1 ≡ (θ1, θ2, . . . , θD−1), which may take all values consistent with
the inequalities l ≡ µ1 ≥ µ2 ≥ · · · ≥ |µD−1| ≡ |m| ≥ 0. The radial part of the eigenfunction
is given by

Rn,l(r) =
(

2Z
η

) D
2
(

1
2η

)1/2[ω2L+1(r̃)

r̃D−2

]1/2
L̃(2L+1)

η−L−1(r̃) (11)

where r̃ = 2Z
η r, L is

L = l +
D− 3

2
, l = 0, 1, 2, . . . (12)

and the symbol L̃(α)k (x) denotes the orthonormal Laguerre polynomial of degree k with
respect to the weight ωα(x) = xαe−x on the interval [0, ∞) [91]. The angular part of the
eigenfunction is given by the known hyperspherical harmonics Yl,{µ}(ΩD−1) [90,92,93],
defined as

Yl,{µ}(ΩD−1) = Nl,{µ}e
imφ ×

D−2

∏
j=1
C(αj+µj+1)

µj−µj+1
(cos θj)(sin θj)

µj+1 (13)

with αj = (D− j− 1)/2 and the normalization constant

N 2
l,{µ} =

1
2π
×

D−2

∏
j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]
2

π 21−2αj−2µj+1 Γ(2αj + µj + µj+1)
, (14)

where the symbol C(λ)n (t) denotes the Gegenbauer polynomial of degree n and parameter
λ. These hyperfunctions satisfy the orthonomalization condition satisfy the orthonomaliza-
tion condition ∫

SD−1

Y∗l′ ,{µ′}(ΩD−1)Yl,{µ}(ΩD−1)dΩD−1 = δl,l′δ{µ},{µ′} (15)
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Then, the position probability density for a generic (n, l, {µ}) ≡ (n, l, µ2, . . . , µD−1)
state of the D-dimensional hydrogenic systems is

ρn,l,{µ}(r) =
∣∣∣Ψn,l,{µ}(r)

∣∣∣2 = R2
n,l(r)×

∣∣∣Yl,{µ}(ΩD−1)
∣∣∣2. (16)

which is normalized so that
∫

ρn,l,{µ}(r) dr = 1.
The probability density in momentum spaces γ(p) is obtained by squaring the d-

dimensional Fourier transform of the configuration eigenfunction, i.e., the momentum
eigenfunction [4]:

Ψ̃n,l,{µ}(p) =Mn,l(p)×Yl{µ}(ΩD−1), (17)

whose radial part is

Mn,l(p) =
( η

Z

)d/2
(1 + y)3/2

(
1 + y
1− y

) d−2
4 √

ω∗L+1(y) C̃
L+1
η−L−1(y) (18)

=
( η

Z

) D
2 Kn,l

(η p̃)l

(1 + η2 p̃2)L+2 C
(L+1)
η−L−1

(
1− η2 p̃2

1 + η2 p̃2

)
, (19)

with y = 1−η2 p̃2

1−η2 p̃2 , p̃ = p
Z and the constant

Kn,l = 22L+3
[
(η − L− 1)!
2π(η + L)!

] 1
2
Γ(L + 1)η

1
2 . (20)

Symbols C(α)k (y) and C̃(α)k (x) denote the orthogonal and orthonormal Gegenbauer

polynomials with respect to the weight function ω∗α(x) = (1 − x2)α− 1
2 on the interval

[−1,+1] [91], respectively, so that and the symbol C(α)k (y) denote the orthogonal Gegen-
bauer polynomial, related to the orthonormal one as [91]

C̃(α)k (y) =
(

k!(k + α)Γ2(α)

π21−2αΓ(2α + k)

)1/2

C(α)k (y). (21)

The momentum probability density for a generic (n, l, {µ}) ≡ (n, l ≡ µ1, µ2, . . . , µD−1)
state of the D-dimensional hydrogenic systems is

γn,l,{µ}(p) =
∣∣∣Ψ̃n,l,{µ}(p)

∣∣∣2 =M2
n,l(p)×

[
Yl{µ}(ΩD−1)

]2
, (22)

which is normalized so that
∫

γn,l,{µ}(p) dp = 1.
Now, we will show the analytical determinarion of the complexity measures which

quantify the different facets of the electron complexity of the D-dimensional hydrogenic
system in both position and momentum spaces.

4. Hydrogenic Cramér–Rao Complexity

In this section, we first calculate the Cramér–Rao complexity (1) for a generic stationary
state (n, l, {µ}) ≡ (n, l, µ2, . . . , µd−1) of the D-dimensional hydrogenic system in both
position and momentum spaces; then, we apply it to the three-dimensional hydrogenic
atom. We have to determine the variance and the Fisher information. In position space, we
obtain the values
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V[ρn,l,{µ}] =
〈

r2
〉
≡
∫
RD

r2ρn,l,{µ}(r)dr =
∫ ∞

0
rd+1R2

nl(r)dr

=
1

2η

(η

2

)2 ∫ ∞

0
ω2L+1(r̃)

[
L̃(2L+1)

nr (r̃)
]2

r̃3dr̃

=
η2

2Z2

[
5η2 − 3L(L + 1) + 1

]
, (23)

and

F
[
ρn,l,{µ}

]
=
∫
RD

∣∣∣∇D ρn,l,{µ}(r)
∣∣∣2

ρn,l,{µ}(r)
dr

= 4
〈

p2
〉
− 2|m|(2l + D− 2)

〈
r−2
〉

=
4Z2

η3 [η − |m|], D ≥ 2. (24)

for the variance [4,94,95] and the Fisher information [68,96,97] of the D-dimensional hy-
drogenic system, respectively. Here, we have also used that

〈
r−2〉 = 2Z2

η3
1

2L+1 . Then,
the position Cramér–Rao complexity (1) for a generic D-dimensional hydrogenic state
(n, l, µ2, . . . , µd−1) has the value

CCR[ρn,l,{µ}] := F[ρn,l,{µ}]×V[ρn,l,{µ}] =
2
η
(η − |m|) [5η2 − 3L(L + 1) + 1], (25)

where η and L are given by Equations (9) and (12), respectively.

In momentum space, we can work in a similar manner. Then, we obtain the values

V[γn,l,{µ}] =
〈

p2〉 = ∫ p2γ(p) dp =
∫ ∞

0 pD+1M2
n,l(p) dp =

Z2

η2 (26)

and

F
[
γn,l,{µ}

]
= 4

〈
r2
〉
− 2|m|(2l + D− 2)

〈
p−2

〉
=

2η2

Z2

[
5η2 − 3L(L + 1)− |m|(8η − 6L− 3) + 1

]
; D ≥ 2. (27)

for the variance [4,95,98–100] and Fisher information [68,96,97], where we have also used
that 〈p−2〉 = η2

Z2
8η−3(2L+1)

2L+1 . Then, the momentum Cramér–Rao complexity (1) has the value

CCR[γn,l,{µ}] = F[γn,l,{µ}]×V[γn,l,{µ}]

= 2
[
5η2 − 3L(L + 1)− |m|(8η − 6L− 3) + 1

]
(28)

for a generic D-dimensional hydrogenic state (n, l, µ2, . . . , µD−1). Note that the position
and momentum Cramér–Rao complexity measures given by Equations (25) and (28) do
not depend on the nuclear charge Z [101]; moreover, they are bigger than the universal
minimum values D2 (see Equation (7)) and 4

[
1− 2|m|

2L+1

] (
L + 3

2
)2

(see [102]) for the corre-
sponding measures of general systems and systems with central potentials, respectively,
as they should be.
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The application of the previous general results (25) and (28) to quasi-spherical states
(i.e., states with hyperangular momentum quantum numbers µ1 = µ2 = · · · = µd−1 =
n− 1) gives rise to the following values:

CCR[ρn,n−1,{n−1}] =
(D− 1)(2n + D− 1)(2n + D− 2)

(2n + D− 3)
, (29)

CCR[γn,n−1,{n−1}] = (2n + D)(D− 1) + 2, (30)

for the Cramér–Rao complexity measures in position and momentum spaces, respectively.
In addition, for D = 3 we have from the general expressions (25) and (28) that the

Cramér–Rao complexity for the stationary states (n, l, m) of the hydrogenic atom has the
values [41,46]

CCR[ρn,l,m] =
2
n
(5n2 − 3l(l + 1) + 1)(n− |m|) (31)

and
CCR[γn,l,m] = 2(5n2 − 3l(l + 1)− |m|(8n− 6l − 3) + 1), (32)

in the position and momentum spaces, respectively. These expressions show that the
Cramér–Rao complexity behaves as 10n2 for the highly excited Rydberg states (i.e., states
with large n) of the hydrogenic atom with l fixed in both reciprocal spaces. See [89] for
a numerical study of this complexity measure in some states of the three-dimensional
hydrogen atom.

5. Hydrogenic Fisher-Shannon Complexity

In this section, we consider the Fisher–Shannon complexity (2) for a generic stationary
state (n, l, {µ}) ≡ (n, l, µ2, . . . , µd−1) of the D-dimensional hydrogenic system in both
position and momentum spaces; then, we apply it to the three-dimensional hydrogenic
atom. Emphasis is placed on the quasi-spherical and highly excited Rydberg hydrogenic
states. According to (2), the position and momentum Fisher–Shannon complexity measures
of general states (n, l, {µ}) are given by

CFS[ρn,l,{µ}] = F[ρn,l,{µ}]× 1
2πe e

2
D S[ρn,l,{µ} ]

= 2
πeη3 [η − |m|]× e

2
D S[ρn,l,{µ} ] (33)

and

CFS[γn,l,{µ}] = F[γn,l,{µ}]×
1

2πe
e

2
D S[γn,l,{µ} ]

=
η2

πe

[
5η2 − 3L(L + 1)− |m|(8η − 6L− 3) + 1

]
× e

2
D S[γn,l,{µ} ], (34)

respectively, where we have taken into account the values (24) and (27) for the position and
momentum Fisher information. So, we need to calculate only the Shannon entropy for any
hydrogenic state (n, l, {µ}) in the two reciprocal spaces. In position space, the Shannon
entropy [103] is

S[ρn,l,{µ}] = −
∫
RD

ρn,l,{µ}(r) log ρn,l,{µ}(r) dr

= S[Rn,l , D] + S[Yl,{µ}, D], (35)

where the radial and angular components, according to Equation (16), are given by

S[Rn,l , D] = −
∫ ∞

0
rD−1R2

nl(r) log
(
R2

nl(r)
)

dr (36)



Quantum Rep. 2023, 5 123

and
S[Yl,{µ}, D] = −

∫
SD−1

|Yl,{µ}(ΩD−1)|2 log |Yl,{µ}(ΩD−1)|2 dΩD−1 (37)

respectively. The entropy-like integral of the hyperspherical harmonics S[Yl,{µ}, D] is under
control since it can be numerically evaluated by the efficient Buyarov et al.’s algorithm [104]
and analytically calculated not only in some specific cases (see [105]) but also for arbitrary
states as explained later on. Similarly, the momentum Shannon entropy is given by

S[γn,l,{µ}] = −
∫
RD

γn,l,{µ}(p) log γn,l,{µ}(p) dp

= S[Mn,l , D] + S[Yl,{µ}, D], (38)

where the radial component, according to Equation (22), is given by

S[Mn,l , D] = −
∫ ∞

0
pD−1M2

nl(p) log
(
M2

nl(p)
)

dp (39)

Note that the two position and momentum radial Shannon components depend on
the hyperquantum numbers {n, l ≡ µ1} only, while the angular part does not depend on
the principal hyperquantum number n, but only on the magnetic hyperquantum numbers
{µi, i = 1, . . . , D− 1}. Moreover, the radial and angular Shannon entropies can be deter-
mined [4] in terms of the entropy-like functionals of Laguerre and Gegenbauer polynomials,
being that the expression

Ei[pn] = −
∫ ∞

0
xiω(x)p2

n(x) log p2
n(x)dx, i = 0, 1 (40)

is the entropy-like functional of the polynomials pn(x) orthogonal with respect to the
weight function ω(x). Indeed, according to Equations (11) and (36), we have that the radial
position Shannon entropy is

S[Rn,l , D] = A(n, l, D) +
1

2η
E1

[
L̃(2L+1)

η−L−1

]
− D log Z (41)

with

A(n, l, D) = −2l
[

2η − 2L− 1
2η

+ ψ(η + L + 1)
]
+

3η2 − L(L + 1)
η

+− log
[

2D−1

ηD+1

]
. (42)

And, according to Equations (18) and (39), the radial momentum Shannon entropy is

S[Mn,l , D] = F(n, l, D) + E0

[
C̃(L+1)

η−L−1

]
+ D log Z (43)

where

F(n, l, D) = − log
ηD

22L+4 − (2L + 4)[ψ(η + L + 1)− ψ(η)]

+
L + 2

η
− (D + 1)

[
1− 2η(2L + 1)

4η2 − 1

]
, (44)

where ψ(x) is the digamma or Psi function [91]. In addition, the angular component of the
Shannon entropies (37) turns out to be [4,106]

S[Yl,{µ}, D] = B(l, {µ}, D) +
D−2

∑
j=1

E0

[
C̃(αj+µj+1)

µj−µj+1

]
, (45)
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with the coefficient

B(l, {µ}, D) = log (2π)− 2
D−2

∑
j=1

µj+1
[
ψ(2αj + µj + µj+1)

−ψ(αj + µj)− log 2− 1
2(αj + µj)

]
, (46)

Following (33) and (34) and (41)–(45), the final expressions of position and momentum
Fisher–Shannon complexity measures for any D-dimensional hydrogenic state (n, l, {µ}) ≡
(n, l, µ2, . . . , µd−1) are given by Equations (33) and (34) with the following expressions for
the position and momentum Shannon entropies:

S
[
ρn,l,{µ}

]
= A(n, l, D) + B(l, {µ}, d) +

1
2η

E1

[
L̃(2L+1)

η−L−1

]
+

D−2

∑
j=1

E0

[
C̃(αj+µj+1)

µj−µj+1

]
− D log Z, (47)

and

S
[
γn,l,{µ}

]
= F(n, l, D) + B(l, {µ}, D) + E0

[
C̃(L+1)

η−L−1

]
+

D−2

∑
j=1

E0

[
C̃
(αj+µj+1)
µj−µj+1

]
+ D log Z, (48)

respectively. Recently, these two entropy-like functionals of Laguerre and Gegenbauer
polynomials were encountered by the use of some linearization techniques of orthonormal
polynomials such that analytical compact expressions were found for the position and
momentum Shannon entropies (and then for the corresponding Fisher–Shannon complexity
measures) [107], which can be symbolically solved by general-purpose computer algebra
systems, such as Maple and Mathematica and their variations [108,109].

5.1. Application to Quasi-Spherical and Ground States

The application of the previous result to the quasi-spherical states, (n, n− 1, {n− 1}) =
(n, µ1 = µ2 . . . = µD−1 = n− 1), of the D-dimensional hydrogenic system with nuclear
charge Z allowed us to find [29] the following values:

S[ρn,n−1,{n−1}] = D log
(

e
√

π η

2

)
+ log

(
2 Γ(2 η + 1)
(n) D

2 −1

)
+ (n− 1) cD,n − D log Z, (49)

for the position Shannon entropy, with η = n+ D−3
2 and cD,n = ψ(η + 1

2 )−ψ(n)− 2ψ(2η +
1) + 2. And for n = 1 one has the value

S[ρ1,0,{0}] = D log
(

e
√

π

4

)
+ log

2 (D− 1)D Γ(D)

Γ
(

D
2

)
− D log Z,

for the position Shannon entropy for the ground state (n, l, {µ}) = (1, 0, {0}) of the D-
dimensional hydrogenic system with nuclear charge Z. Moreover, for three dimensional
hydrogenic systems, we have the values

S[ρn,n−1,n−1, D = 3] = log
[
πΓ(n)2n4

]
+ 2n +

1
n
− (2n− 2)ψ(n)− 3 log Z

S[ρ1,0,0, D = 3] = 3 + log π − 3 log Z (50)

for the position Shannon entropies of the quasi-circular states and the ground state, respec-
tively. Then, for example, from (33) and (50), we have the value CFS[ρ1,0,0, D = 3] = 2e

π1/3

for the Fisher–Shannon complexity of the three-dimensional hydrogenic atom.
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Similarly, we can find [29] that the momentum Shannon entropy for the quasi-spherical
states, (n, n − 1, {n − 1}) = (n, µ1 = µ2 . . . = µD−1 = n − 1), of the D-dimensional
hydrogenic system with nuclear charge Z is given by

S
[
γn,n−1,{n−1}

]
= A(n, D) + log

 2D+1π
D+1

2 Γ(n)

(2n + D− 3)DΓ
(

n + D−1
2

)
+ D log Z, (51)

where the constant

A(n, D) =
2n + D− 1
2n + D− 3

− D + 1
2n + D− 2

− (n− 1)ψ(n)

−
(

D + 1
2

)
ψ

(
n +

D− 2
2

)
+

(
n +

D− 1
2

)
ψ

(
n +

D− 3
2

)
. (52)

For the particular case n = 1, one has the value

S
[
γ1,0,{0}

]
= log

π
D+1

2

(D− 1)DΓ
(

D+1
2

) + (D + 1)
[

ψ(D + 1)− ψ

(
D
2
+ 1
)]

+ D log Z, (53)

for the momentum Shannon entropy of the ground state.
Finally, the corresponding position and momentum Fisher–Shannon complexity mea-

sures for the quasi-spherical and ground states are given by Equations (33) and (34) together
with the Shannon entropy values (51) and (53), respectively. A numerical study of these
complexity measures is conducted in [41,110] for a few specific three-dimensional hydro-
genic states.

5.2. Application to Highly Excited Rydberg States

The position and momentum Fisher–Shannon complexity measures for the highly
excited Rydberg states (i.e., states (n, l, {µ}) with n→ ∞) are given by Equations (33) and
(34), respectively, together with the Shannon entropy values:

S(Ry)
[
ρn,l,{µ}

]
= 2D log n + (2− D) log 2 + log π + D− 3− D log Z + S

(
Yl,{µ}

)
+ o(1) (54)

in position space [4,111] (see also [41,112] for three-dimensional systems), and

S(Ry)[γn,l,{µ}] = −D log n + D log Z + 5 log 2− D− 2 + log π + S[Yl,{µ}] + O(
1
n
) (55)

in momentum space [113], which improves a previously known result [4,41]. The proof
of these results requires the use of the strong (degree) asymptotics of the entropy-like
functionals of the Laguerre and Gegenbauer orthogonal polynomials, which control the
wavefunctions of the Rydberg states in both position and momentum spaces, in the spirit
of Aptekarev et al. [60,61,114–117]. In particular, for the Rydberg (nS)-states, we have the
following values:

S(Ry)
[
ρn,0,{0}

]
= 2D log n + (2− D) log 2 + 2 log π + D− 3 + o(1), (56)

for the position Shannon entropy [41], and

S(Ry)[γn,0,{0}] = −D log n + D log Z + 6 log 2− D− 2n

+ (
D
2
+ 1) log π − log Γ(

D
2
) + O(

1
n
) (57)

for the momentum Shannon entropy [113], where we have used that the angular Shannon
entropy S[Y0,{0}] = log 2 + D

2 log π − log Γ(D
2 ).
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Finally, one has from (54) and (55) that the total Shannon-entropy uncertainty for the
Rydberg D-dimensional hydrogenic state (l, {µ}) is given by the sum

S(Ry)
[
ρn,l,{µ}

]
+ S(Ry)

[
γn,l,{µ}

]
= D log n + (7− D) log 2 + 2 log π − 5

+ 2 S
(
Yl,{µ}

)
+ o(1). (58)

So that the net sum of the position and momentum Shannon uncertainties follows
a D log n law. In addition, it does not depend on the nuclear charge Z because of the
homogeneity of the Coulomb potential [90,101]. Let us also highlight that this entropic
uncertainty sum satisfies not only the universal entropic uncertainty relation [118], S[ρ] +
S[γ] ≥ D(1 + log π), but also the more stringent entropic uncertainty sum [119]

S[ρ] + S[γ] ≥ Bl,{µ} (59)

with

Bl,{µ} = 2l + D + 2 log

Γ
(

l + D
2

)
2

− (2l + D− 1) ψ

(
l +

D
2

)

+(D− 1)
(

ψ

(
2l + D

4

)
+ log 2

)
+ 2S(Yl,{µ}) (60)

valid for the spherically symmetric quantum states. Notice that this bound depends on
the magnetic hyperquantum numbers (l, {µ}) and the dimensionality D, but not on the
principal (energetic) quantum number n because the analytical form of the central potentital
VD(r) was not specified.

Then, for example, the Fisher–Shannon complexity of the three-dimensional Rydberg
states (n, l, m) with n→ ∞ and (l, m) fixed has the following value:

C(Ry)
FS [ρn,l,m] =

(
2
π

) 1
3
e−1+ 2

3 S(Yl,m)n2 + o(n2), (61)

according to (33), (54) and (55). The symbol S(Yl,m) denotes the angular Shannon entropy,
which is under control as already discussed. In particular, for states with |m| = l, one has

S(Yl,l) = log

(
22l+1π

3
2 l!

Γ
(
l + 3

2
) )− 2l

[
ψ(2l + 1)− ψ

(
l +

1
2

)
− 1

2l + 1

]
, (62)

and for nS−states (i.e., when l = m = 0), one has that S(Y0,0) = log 4π. In the case that l is
not fixed, as it often happens, then the expression (61) varies because then the involved
Laguerre polynomial is a varying polynomial and consequently, the position Shannon
entropy is not (54) anymore but one has to take into account the values found by [120].

6. Hydrogenic LMC-Rényi Complexity

In this section, we consider the LMC–Rényi complexity (3) for a generic stationary state
(n, l, {µ}) ≡ (n, l, µ2, . . . , µd−1) of the D-dimensional hydrogenic system in both position
and momentum spaces; then, we apply it to quasi-spherical and highly excited Rydberg
hydrogenic states. According to (3), the LMC–Rényi complexity measures of the state
(n, l, {µ}) are given [13–17] by

Cα,β[ρn,l,{µ}] := e
1
D (Rα [ρn,l,{µ} ]−Rβ [ρn,l,{µ} ]), 0 < α < β < ∞, α, β 6= 1, (63)

and
Cα,β[γn,l,{µ}] := e

1
D (Rα [ρn,l,{µ} ]−Rβ [γn,l,{µ} ]), 0 < α < β < ∞, α, β 6= 1, (64)
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in the position and momentum spaces, respectively. The symbols Rq[ρn,l,{µ}] and Rq[γn,l,{µ}]
(with natural q other than unity) denote the position and momentum Rényi entropies (5) of
the D-dimensional hydrogenic states (n, l, {µ}) respectively, given (see [121]) by

Rq[ρn,l,{µ}] =
1

1− q
log

∫
RD

[ρn,l,{µ}(r)]
q dr (65)

= Rq[Rn,l , D] + Rq[Yl,{µ}] (66)

in position space and

Rq[γn,l,{µ}] =
1

1− q
log

∫
RD

[γn,l,{µ}(p)]
q dp (67)

= Rq[Mn,l , D] + Rq[Yl,{µ}] (68)

in momentum space. Here the symbols Rq[Rn,l , D] and Rq[Mn,l , D] denote the position
and momentum radial Rényi entropies respectively, given by

Rq[Rn,l , D] =
1

1− q
ln
∫ ∞

0
[Rn,l(r)]2qrD−1 dr (69)

=
1

1− q
ln
[( η

2Z

)D(1−q)
(

Γ(n− l)
2ηΓ(n + l + D− 2)

)q]
+

1
1− q

ln q−D−2lq
∫ ∞

0
x2lq+D−1e−x

[
L(2l+D−2)

n−l−1

(
x
q

)]2q
dx, (70)

(where we took into account (11) in the second equality) and

Rq[Mn,l , D] =
1

1− q
ln
∫ ∞

0
[Mn,l(p)]2q pD−1 dp (71)

=
1

1− q
ln

ZD

ηD

K2q
n,l

2q(L+2)

+
1

1− q
×

ln
∫ 1

−1
(1− y)lq+ D

2 −1(1 + y)D(q− 1
2 )+q(l+1)−1

[
C(L+1)

n−l−1(y)
]2q

dy (72)

where we took into account (19) in the second equality; the constant Kn,l is given by (20).
The symbol Rq[Yl,{µ}] in Equations (66) and (68) denotes the angular Rényi entropy

given by

Rq[Yl,{µ}] :=
1

1− q
ln Λq[Yl,{µ}] (73)

with the integral functionals of the hyperspherical harmonics [122] defined as

Λq[Yl,{µ}] =
∫
SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1

= 2πN 2q
l,{µ}

D−2

∏
j=1

∫ π

0
[C(αj+µj+1)

µj−µj+1
(cos θj)]

2q(sin θj)
2qµj+1+2αj dθj, (74)

where the constant Nl,{µ} is given by (14). Note that the angular Rényi entropies Rq[Yl,{µ}]
do not depend on the principal hyperquantum number n.

Then, from Equations (69)–(74), we observe that the determination of the position
and momentum radial and angular Rényi entropies of the D-dimensional hydrogenic
systems are expressed in terms of some integral functionals of (2q)-type powers of La-
guerre and Gegenbauer polynomials. These functionals were determined by use of the
recent linearization techniques of hypergeometric orthogonal polynomials (Laguerre, Ja-
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cobi, Gegenbauer) [54–56] (see also [57]) together with some multivariate hypergeometric
functions of Lauricella and Srivastava–Karlson types [55,58] .

The application of these techniques to the Laguerre and Gegenbauer functionals of (70)
and (74) together with Equation (66) has allowed us to find [56,121] the position Rényi
entropies of the D-dimensional hydrogenic states (n, l, {µ}) as

Rq[ρn,l,{µ}] = D ln

(
π

1
2 η

2Z

)
+

q
1− q

ln
(
(η − L)2L+1

2η

)

+
1

1− q
ln
[
Fq(D, η, L)Aq(D, L)

]
+

1
1− q

ln

 Γ(l + D
2 )

q

Γ
(

ql + D
2

) Γ(qm + 1)
Γ(m + 1)q


+

1
1− q

D−2

∑
j=1

ln
[
Bq(D, µj, µj+1) Gq

(
D, µj, µj+1

)]
+ ln 2, (75)

with Aq(D, L) ≡ Γ(D+2lq)
qD+2lqΓ(2L+2)2q , and

Fq(D, n, l) ≡ F(2q)
A


2lq + D;

2q︷ ︸︸ ︷
−n + l + 1, . . . ,−n + l + 1

;
1
q

, . . . ,
1
q︸ ︷︷ ︸

2q2l + D− 1, . . . , 2l + D− 1︸ ︷︷ ︸
2q


, (76)

where the symbol F(s)
A (x1, . . . , xr) denotes the Lauricella function of type A of s variables

and 2s + 1 parameters defined [59] as

F(s)
A

 a; b1, . . . , bs
; x1, . . . , xs

c1, . . . , cs

 =
∞

∑
j1,...,js=0

(a)j1+...+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj1
1 · · · x

js
s

j1! · · · js!
. (77)

Note that the function Fq(D, n, l) is a finite sum because of the properties of the

involved Pochhammer symbols (z)k =
Γ(z+k)

Γ(z) with negative integer arguments. Moreover,
for l = n− 1 the function Fq(D, n, l) in Equation (76) is equal to unity such that the third
term on the right side vanishes.

The symbols Bq
(

D, µj, µj+1
)

and Gq(D, µj, µj+1) denote the values

Bq
(

D, µj, µj+1
)
=

1
[(µj − µj+1)!]q

(2αj + 2µj+1 + 1)q
2(µj−µj+1)

(2αj + µj + µj+1)
q
µj−µj+1

(qµj+1 + αj + 1)q(µj−µj+1)

(αj + µj+1 + 1)q
µj−µj+1

(78)

and

Gq(D, µj, µj+1) = F1:2;...;2
1:1;...;1

 aj : bj, cj; . . . ; bj, cj
; 1, . . . , 1

dj : ej; . . . ; ej


=

µj−µj+1

∑
i1,...,i2q=0

(aj)i1+...i2q

(dj)i1+...+i2q

(bj)i1(cj)i1 · · · (bj)i2q(cj)i2q

(ej)i1 · · · (ej)i2q i1! · · · i2q!
(79)

with aj = αj + qµj+1 +
1
2 , bj = −µj + µj+1, cj = 2αj + µj+1 + µj, dj = 2qµj+1 + 2αj + 1 and

ej = αj + µj+1 +
1
2 , respectively. Note that the sum becomes finite because bj is a negative
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integer number, and so the Pochhammer numbers (bj)i =
Γ(bj+i)

Γ(bj)
= 0, ∀i > |bj|. Let us

also highlight that when µj = µj+1, the function Bq(D, µj, µj+1) = Gq(D, µj, µj+1) = 1.
Moreover, the application of the previously mentioned linearization techniques to

the Gegenbauer functionals of (72) and (74) together with Equation (68) allowed us to
find [56,121] the momentum Rényi entropies of the D-dimensional hydrogenic states
(n, l, {µ}) as

Rq[γn,l,{µ}] = D ln

(
π

1
2 Z
η

)
+

q
1− q

ln[2η (η − L)2L+1]

+
1

1− q
ln

F q(D, η, L)Aq(D, L)
Γ(l + D

2 )
q

Γ
(

ql + D
2

) Γ(qm + 1)
Γ(m + 1)q


+

1
1− q

D−2

∑
j=1

ln
[
Bq(D, µj, µj+1) Gq

(
D, µj, µj+1

)]
+ ln 2 (80)

with the coefficients

Aq(D, L) ≡ 22q−1
Γ
(

D
2 + ql

)
Γ
(
−D

2 + q(D + l + 1)
)

Γ
(

D
2 + l

)2q
Γ(q(D + 2l + 1))

(81)

and

F q(D, η, L) ≡ F1:2;...;2
1:1;...;1

 a : b, c; . . . ; b, c
; 1, . . . , 1

d : e; . . . ; e


=

n−l−1

∑
i1,...,i2q=0

(a)i1+...i2q

(d)i1+...+i2q

(b)i1(c)i1 · · · (b)i2q(c)i2q

(e)i1 · · · (e)i2q i1! · · · i2q!
, (82)

which is a multivariate Srivastava–Daoust function [55,58] with a = (L + 3
2 )q +

D
2 (1− q),

b = −(η − L− 1), c = η + L + 1, d = q(2L + 4), e = L + 3
2 . The other two coefficients Bq

and Gq are already given by Equations (78) and (79). Note that when l = n− 1, the function
Fq(D, η, L) = 1.

Finally, the combination of Equations (63) and (75), and Equations (64) and (80) gives
rise to the final expressions of the LMC–Rényi complexity measures in position and mo-
mentum spaces, respectively, for arbitrary D-dimensional hydrogenic states. These general
expressions depend only on the state’s hyperquantum numbers (n, l, {µ}), the nuclear
charge Z and the space dimensionality D. They are, however, somewhat highbrow but
allow to determine the values of the Rényi complexity measures by general-purpose
symbolic-like computer program systems (see [108,109]) in an algorithmic way. For low
values of the involved parameters (α, β), the corresponding complexity-like measures are
analytically obtained in a compact manner for some particular hydrogenic states, such as
the quasi-spherical and ground states. The relevant case (α→ 1, β = 2) of the LMC–Rényi
complexity (3), which corresponds to the pioneering LMC (López-Ruiz–Mancini–Calvet)
complexity measure [15,39,40] C1,2[ρ] = D[ρ]× eS[ρ] with D[ρ] = e−R2[ρ] was monographi-
cally analyzed [29] for general and quasi-spherical states in the two reciprocal spaces.
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6.1. Application to Quasi-Spherical and Ground States

The application of the previous general result to the quasi-spherical states,
(n, n− 1, {n− 1}) ≡ (n, µ1 = µ2 . . . = µD−1 = n− 1), of the D-dimensional hydrogenic
system with nuclear charge Z allowed us to find [56] the values

Rq[ρn,n−1] = D ln
η

2Z
− q

1− q
ln[Γ(2η + 1)] +

1
1− q

ln
(

Γ(D + 2nq− 2q)
qD+2nq−2q

)
, (83)

Rq[γn,n−1] = D ln
Z
η
+

q
1− q

ln[4 Γ(2η + 1)] (84)

+
1

1− q
ln

Γ
(

D
2 + qn− q

)
Γ
(
−D

2 + q(D + n)
)

2Γ
(

n + D
2 − 1

)2q
Γ(q(D + 2n− 1))

,

and

Rq[Yl,{l}] = ln(2π
D
2 ) +

1
1− q

ln

Γ(l + D
2 )

q

Γ(l + 1)q
Γ(ql + 1)

Γ
(

ql + D
2

)
 (85)

for the radial and angular Rényi entropies of the quasi-spherical states in the two reciprocal
spaces, respectively. Moreover, for the case (n = 1, l = 0, {0}), these three expressions
provide us with the following values:

Rq[ρ1,0] = Γ(D) + D ln

 D− 1

4Z q
1

1−q

 (86)

Rq[γ1,0] = D ln
[

2Z
D− 1

]
+

q
1− q

ln[4 Γ(D)] (87)

+
1

1− q
ln

Γ
(

D
2

)1−2q
Γ
(

D(q− 1
2 ) + q

)
2Γ(Dq + q)


and

Rq[Y0,{0}] = ln

 2 π
D
2

Γ
(

D
2

)
 (88)

for the radial and angular position and momentum Rényi entropies of the ground state of
the D-dimensional hydrogenic system, respectively.

The corresponding position and momentum LMC-Rényi complexity measures for
these quasi-spherical and ground states are given by Equations (63), (64) and (66), (68)
together with the Rényi entropy values (83)–(85) and (86)–(88), respectively. A numeri-
cal study of these complexity measures was performed in [56] for a few specific three-
dimensional hydrogenic states, where it is also shown that the hydrogenic Rényi entropy
sum, Rα[ρn,l,{µ}] + Rβ[γn,l,{µ}], fulfills the Rényi-entropy-based uncertainty relation [82,83]
given by

Rα[ρ] + Rβ[γ] ≥ D log
(

2(2β)
1

2−2β (2α)
1

2−2α

)
,

1
α
+

1
β
= 2, (89)

which is universally valid.



Quantum Rep. 2023, 5 131

6.2. Application to Highly Excited Rydberg States

According to (63) and (66), the LMC–Rényi complexity measures of the highly excited
Rydberg states (i.e., states (n, l, {µ}) with n→ ∞; l, m fixed) are given by

C(Ry)
α,β [ρn,l,{µ}] := e

1
D (R(Ry)

α [ρn,l,{µ} ]−R(Ry)
β [ρn,l,{µ} ]), 0 < α < β < ∞, α, β 6= 1, (90)

and

C(Ry)
α′ ,β′ [γn,l,{µ}] := e

1
D (R(Ry)

α′ [ρn,l,{µ} ]−R(Ry)
β′ [γn,l,{µ} ]), 0 < α′ < β′ < ∞, α′, β′ 6= 1, (91)

in the position and momentum spaces, respectively. The symbols R(Ry)
q [ρn,l,{µ}] and

R(Ry)
q [γn,l,{µ}] (with natural q other than unity) denote the position and momentum Rényi

entropies (65) of the D-dimensional Rydberg hydrogenic states, respectively. According
to (66) and (70), the position Rényi entropies (65) of the D-dimensional Rydberg hydrogenic
states are given by

R(Ry)
q [ρn,l,{µ}] '

1
1− q

log N∞(n, l, D, q) + Rq[Yl,{µ}]

+ D log
η

2Z
− q

1− q
log(2η) (92)

' 1
1− q

log N∞(n, l, D, q) + D log
n

2Z
− q

1− q
log(2n) (93)

with

N∞(n, l, D, q) = lim
n→∞

∞∫
0

([
L̃(α)n (x)

]2
wα(x)

)q
xβ dx (94)

with α = 2l + D − 2 and β = (2 − D)q + D − 1. Now, taking into account the strong
asymptotics of Laguerre polynomials [115,117] (see [112] for further details) we have
obtained for D > 2 that

N∞(n, l, D, q) = c(β, q) (2(n− l − 1))1+β−q (1 + ¯̄o(1)), (95)

for q ∈
(

0, D−1
D−2

)
and the constant

c(β, q) :=
2β+1

πq+1/2
Γ(β + 1− q/2) Γ(1− q/2) Γ(q + 1/2)

Γ(β + 2− q) Γ(1 + q)
. (96)

Let us highlight that the position Rényi entropies of three-dimensional hydrogenic
system was monographically studied analytically and numerically [111]. For the remaining
pairs (D, q), the asymptotical value N∞(n, l, D, q) has also been found [112].

Similarly, according to (68) and (72), the momentum Rényi entropies (67) of the D-
dimensional Rydberg hydrogenic states are given by

R(Ry)
q [γn,l,{µ}] '

1
1− q

log I∞(n, l, q, D) + Rq[Yl,{µ}] + D log
Z
η

, (97)

' 1
1− q

log I∞(n, l, q, D) + D log
Z
n

, (98)

with

I∞(n, l, q, D) = lim
n→∞

∫ 1

−1

{
[C̃(l+ D−1

2 )
n−l−1 (y)]2 ωl+ D−1

2
(y)
}q

(1− y)a(1 + y)b dy, (99)
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which was recently calculated [113] at first order. One finally has that

R(Ry)
q [γn,l,{µ}]



∼ − 3q
1−q log n , q ∈ (q∗, q∗)

= −D log n + 1
1−q log log n + O(1), q = q∗

= −D log n + 1
1−q log c′(q, D) + o(1) , q ∈ (q∗, q+)

= −D log n + 1
1−q log log n + O(1), q = q+

� (−2D− q
1−q ) log n , q > q+

(100)

for n >> 1, l = 0, 1, 2, . . . and D > 0. The symbols q∗ := 1
2

D
l+D+1 , q∗ := D

D+3 and
q+ := D

D−1 . Moreover, q∗ = q∗ for D = 1 and l = 0, and q∗ < q∗ for D > 1; the constant
c′(q, D) has the value

c′(q, D) =
2a+b+1

πq+1
Γ(q + 1

2 )Γ(
1
2 )

Γ(q + 1)
Γ(a− q

2 + 1)Γ(b− q
2 + 1)

Γ(a + b− q + 2)
.

So that the momentum Rényi entropies of Rydberg hydrogenic states grow logarithmically
with n for all q > q∗. Finally, it is interesting to realize from Equations (93)–(95) and (100) that
the net sum of Rényi entropies R(Ry)

q [ρn,l,{µ}] + R(Ry)
p [γn,l,{µ}] of the Rydberg hydrogenic

states does not depend on the nuclear charge Z of the system (as expected [101]) and verifies
not only the universal Rényi entropy uncertainty relation for D-dimensional quantum
systems [82,83] given by

Rq1 [ρ{ni}] + Rq2 [γ{ni}] ≥ D log
(

πq
1

2q1−2
1 q2

1
2q2−2

)
with the conjugated parameters q1 and q2, but also the (conjectured) Rényi entropy uncer-
tainty relation for D-dimensional quantum systems subject to a central potential [123].

7. Concluding Remarks

The multidimensional hydrogenic system encompasses numerous standard and non-
standard quantum objects, ranging from the three-dimensional hydrogenic atoms to the
low-dimensional semiconductor excitons and the high-dimensional qubits and Rydberg
systems. In this work, we determine and review the main monotone complexity-like
statistical measures [7] of this system, inspired by the theory of the quantum information
of fermionic systems to a great extent; namely, the Crámer–Rao, Fisher–Shannon and
LMC–Rényi measures.

These three complexity-like measures, each describing jointly two macroscopic spread-
ing facets of the internal electronic disorder of the system, are shown to be analytically
determined in terms of the state’s hyperquantum numbers together with the nuclear
charge and the space dimensionality. Basically, this is possible because the entropic com-
ponents of these measures can be obtained in a simple (Fisher information) or a compact,
although somewhat highbrow at times, manner (Shannon and Rényi entropies) manner.
Keep in mind that the Fisher information has a close similarity to the multidimensional
kinetic energy due to its gradient-functional form; the Shannon and Rényi entropies can
be expressed by means of some logarithmic and power-like integral functionals of the La-
guerre and Gegenbauer orthogonal polynomials, respectively, whose analytical evaluation
is a formidable task as illustrated in [56,103], respectively.

Then, the resulting general expressions and the strong (degree) asymptotics of the
Laguerre and Gegenbauer functionals are applied to evaluate the Crámer–Rao, Fisher–
Shannon and LMC–Rényi complexity-like measures of the quasi-spherical and the highly
excited Rydberg states of the multidimensional hydrogenic system.
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