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holotronix@gmail.com

Abstract: We show that the quantum wavefunctional can be seen as a set of classical fields on the 3D
space aggregated by a measure. We obtain a complete description of the wavefunctional in terms
of classical local beables. With this correspondence, classical explanations of the macro level and of
probabilities transfer almost directly to the quantum. A key difference is that, in quantum theory, the
classical states coexist in parallel, so the probabilities come from self-location uncertainty. We show
that these states are distributed according to the Born rule. The coexistence of classical states implies
that there are many worlds, even if we assume the collapse postulate. This leads automatically to a
new version of the many-worlds interpretation in which the major objections are addressed naturally.
We show that background-free quantum gravity provides additional support for this proposal and
suggests why branching happens toward the future.

Keywords: wavefunction; 3D space; many-worlds interpretation; Born rule; branch counting; wave-
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1. Introduction

This article explores the relationship between the wavefunction and 3D space in
quantum mechanics. This relation should be clarified because even in nonrelativistic
quantum mechanics (NRQM), the wavefunction is not a function defined on 3D space
but on the higher dimensional configuration space. Apparently, the situation does not
seem to improve in more sophisticated theories, such as quantum field theory (QFT)
or quantum gravity (QG). We will see that the answer to this question touches several
foundational questions in quantum mechanics and suggests that a version of the many-
worlds interpretation gives the answers.

It is important to understand the wavefunction in terms of fundamental entities having
a clear 3D space ontology, i.e., entities that are in or on 3D space. J.S. Bell calls such entities
local beables [1]. We will work with quantum fields in the wavefunctional formulation of
quantum field theory. Because the configuration space consists of fields instead of positions,
the wavefunction is replaced by a wavefunctional. In Sections 2 and 3, we will see how the
wavefunctional has a natural interpretation as many classical fields on 3D space aggregated
by a measure. This answers the following

Question 1. Can the wavefunction encode local beables or be described in terms of them?

We use this in Section 3 to propose answers to the following related question:

Question 2. What is the ontology of the wavefunction?

The answer is “a set of classical fields aggregated by a measure”. The phases become
absorbed in the U(1) gauges of the classical fields, so this also addresses the question:

Question 3. Why is the wavefunction a complex function?
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The classical fields determine a basis of the Hilbert space. Because they fully consist of
local beables, we call the states from the resulting basis ontic states. The ontic states are
compatible with the macrostates in which the universe is observed to be. Then, building on
Sections 2 and 3, Section 4 deals with the questions:

Question 4. How do 3D objects in space arise from the wavefunction?

Question 5. Why does the world look classical at the macroscopic level?

Most wavefunctionals describe macroscopic superpositions. Therefore, to answer
Question 5, it is important to understand which of the wavefunctionals do not describe
such superpositions. In classical physics, this problem does not exist precisely because
all classical entities are local beables. This indicates that local beables should give the
answer in quantum theory too. We argue that it does: microstates have to belong to a basis
(determined by the classical fields) whose states will be called ontic.

In classical physics, since ultimately the results of experiments are examined at the
macro level, the fact that a macrostate corresponds to more possible microstates is the key
to explain how probabilities arise. This is a problem in quantum theory:

Question 6. How do probabilities arise in quantum theory?

The key difference is that in quantum theory, the sample space seems to depend on
the experiment. In Section 5, we will see that, in quantum theory, the relation between
wavefunctional and 3D space leads to a unique sample space for all experiments if we
understand that, ultimately, all observations are macroscopic. Therefore, the answer is
similar to the classical one, but thinking that subsystems are separate systems obfuscates
this because the ontic basis only exists for the total system, not for subsystems.

We will see that, while in classical physics, probabilities describe the agent’s ignorance
of the actual microstate of the system, in quantum theory, they represent the ignorance of
the agent’s self-location in one of many microstates. This leads to a derivation of the Born
rule and the meaning of probabilities by “counting” the ontic states per macrostate.

In Section 6, it is shown that if we assume wavefunction collapse, probabilities en-
counter severe difficulties. Whether we assume wavefunction collapse or not, multiple ontic
states have to exist simultaneously. This suggests as the natural interpretation a version of
the many-worlds interpretation (MWI) [2–4] that results from this analysis. This addresses

Question 7. How should we interpret quantum mechanics?

This version of MWI includes probabilities in the classical sense due to the distribution
of microstates per macrostate rather than by simply interpreting the squared norm of the
state vector as a probability, as it is often proposed. In Section 7, our derivation of the Born
rule is compared with other possible ways to count microstates or worlds.

In Section 8, we will see that strong additional support for these findings comes
from background-free quantum gravity (which includes most approaches to QG). In the
background-free approaches, most linear combinations of states with different 3D geometry
cannot represent superpositions. This leads to the dissociation of the state into states with
different classical geometries, practically forcing upon us a new version of MWI.

When applied to the Big Bang, this dissociation effect suggests an answer to the time
asymmetry of the branching structure problem of the MWI (Section 9):

Question 8. Why does branching happen toward the future and not also toward the past?

These results address the major objections against the MWI, in a very conservative
and classical-like manner. The big picture resulting from this analysis will be discussed in
Section 10.
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Several technical details were relegated in Appendices A– C to simplify the article.

2. The Wavefunctional and the 3D Space

Let Σ be the 3D space, which is usually a manifold. If we ignore the curvature due
to gravity, we can assume that Σ = R3, but this works for any 3D manifold and even for
discrete structures.

Intuitively, we expect that an object is in 3D space if it can be seen as consisting of
parts, each of them having a definite position in 3D space. For example, a function or a
field defined on a space can be recovered from its values at different positions.

Strictly speaking, a point or set of points from 3D space is in 3D space. A classical field
φ is on 3D space, in the sense that φ is a function on the 3D space Σ, φ : Σ→ S , where S is
a set in which the field is valued. For example, S can be R or C for real or complex scalar
fields, R3 for real vectors, etc. More generally, a field is a section in a fiber bundle over Σ.
For example, the field φ : Σ→ S is a section of the trivial bundle Σ× S π17→ Σ, where π1 is
the projection on Σ. The field φ is a section in the sense that π1 ◦ φ = 1Σ, where 1Σ is the
identity map of Σ.

In Appendix A, it is explained that the wavefunction is, in fact, an object of 3D space
geometry, and that it can even be faithfully represented as infinitely many fields on Σ that
have a local Hamiltonian evolution. However, the representation that will be used in this
article comes directly and naturally from quantum field theory (QFT).

In the Schrödinger wavefunctional formulation of QFT, the configuration space C
consists of classical fields [5]. Therefore, instead of a wavefunction, one uses a function of
functions or fields, a wavefunctional Ψ[φ], Ψ : C → C.

There are more types of classical fields to be quantized, which can be scalar, spinor,
vector, or tensor fields. They can also have internal degrees of freedom, corresponding to
the internal spaces of gauge symmetries. Let φ = (φ1, . . . , φn) contain all the components
of all these fields. The operators φ̂j(x) act by multiplication with φj(x). Their canonical
conjugates are the functional derivatives π̂j(y) := −ih̄δ/δφj(y). They satisfy the canonical
commutation relations if they are bosonic and the canonical anticommutation relations
if they are fermionic, in which case they are Grassmann numbers. We assume that the
manifold C is endowed with a measure µ (see Appendix B for a discussion of its existence).

The Hilbert space H consists of the µ-measurable functionals Ψ : C → C that are
square-integrable with respect to the measure µ,

H := L2(C, µ,C). (1)

The state vectors labeled by φ ∈ C form an orthogonal basis (|φ〉)φ∈C so that, for any
compact-supported continuous functional Ψ : C → C,∫

C
〈φ|φ′〉Ψ[φ′]Dµ(φ′) = Ψ[φ]. (2)

The time evolution of the universe is governed by the Schrödinger equation:

Postulate 1 (Unitary evolution). The state of the universe can be represented by a unit vector
|Ψ(t)〉 ∈ H, whose evolution is described by the equation

|Ψ(t)〉 = Ût,t0 |Ψ(t0)〉. (3)

Here, the unitary evolution operator Ût,t0 := e−
i
h̄ (t−t0)Ĥ between the times t0 and t is

determined by the time-independent selfadjoint operator Ĥ, called the Hamiltonian.
The Hamiltonian operator acts locally in 3D space [5]. The wavefunctional formu-

lation allows the recovery of the usual formulation of QFT in terms of operator-valued
distributions and of the Fock representation [5].



Quantum Rep. 2023, 5 105

The wavefunctional Ψ can be understood naturally as consisting of a number |C|
(usually infinite) of fields on 3D space of the form

(
φ, cφ

)
, where φ ∈ C, φ : Σ → C is a

classical field from C, cφ := Ψ[φ] is constant in space, and |C| is the cardinal of C. Then, Ψ
is equivalent to a classical field Ψ : Σ→ C2|C| on the 3D space Σ,

Ψ(x) =
(
φ(x), cφ

)
φ∈C . (4)

This representation follows directly from the wavefunctional formulation. In the next
section, we will see how the phase of cφ can be absorbed in φ and that this allows us to
interpret the microstate of the universe as a classical field with a given gauge. We will see
that Ψ can be understood as a densitized set of gauge classical fields. For this reason, we
call the basis (φ)φ∈C the ontic basis.

3. The Wavefunction’S Ontology: A Densitized Set of Classical Worlds

Let us write down the wavefunctional Ψ in polar form with r[φ] ≥ 0,

Ψ =
∫
C

r[φ]eiθ[φ]|φ〉Dµ[φ]. (5)

We assume that there is a global U(1) gauge symmetry so that at least one of the
classical fields φj, j ∈ {1, . . . , n} transforms nontrivially under global U(1) gauge transfor-
mations. We know that this is true in our universe because there are always electromagnetic
potentials and Dirac fields. Although U(1) acts differently on different types of fields, for
simplicity, we denote by φ 7→ eiθφ the gauge transformation of the classical field φ. Then,
φ 6= eiθφ for any θ that is not an integer multiple of 2π.

A global gauge transformation of a classical field φ results in a physically equivalent
field eiθφ. On the other hand, a multiplication of the vector |φ〉with eiθ results in a physically
equivalent vector eiθ |φ〉. Then, without loss of consistency, we can identify

eiθ[φ]|φ〉 = |eiθ[φ]φ〉. (6)

In other words, a phase change in |φ〉 is made equivalent to a U(1) gauge transforma-
tion of φ. This is physically consistent because the physical state remains unchanged under
these transformations. The commutative diagram (7) summarizes this.

φγ eiθφγ

|φγ〉 eiθ |φγ〉 =
∣∣eiθφγ

〉

quantization

quantization

gauge transformation

phase transformation

(7)

Since U(1) ∼= SO(2,R), the complex numbers eiθ[φ] from Equation (5) can be inter-
preted as real gauge transformations, answering Question 3.

Since the configuration space C was constructed by fixing a gauge, a gauge trans-
formation leads to a different configuration space C̃ and a different ontic basis (φ̃)

φ∈C̃ ,

φ̃ := eiθ[φ]φ and C̃ := {φ̃|φ ∈ C}. (8)

However, Equation (6) shows that the resulting Hilbert space is independent of the
gauge coefficients θ[φ] from Equation (8) that define the configuration space C̃, H =
L2(C̃, µ,C).
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On the other hand, from Equations (6) and (8), Ψ in the form from Equation (5)
becomes a real functional in the basis (φ̃)

φ∈C̃ because the phases are absorbed,

Ψ =
∫
C̃

r[φ̃]|φ̃〉Dµ[φ̃]. (9)

Since r[φ] has to be a µ-measurable function on C, there is a measure µ̃ so that

Dµ̃ = r[φ]Dµ[φ]. (10)

Then, from Equations (6) and (10), Equation (5) becomes

Ψ =
∫
C̃
|φ̃〉Dµ̃[φ̃]. (11)

Equation (8) explains complex numbers in quantum theory, addressing Question 3.
Representation (11) addresses Question 2, by suggesting the following ontology of the
wavefunctional: it consists of ontic states combined according to a density.

4. The World Appears Classical at the Macroscopic Level

At the macroscopic level, the observers have imperfect “resolution” so that states
that are microscopically different cannot be distinguished. We assume that this defines
an equivalence relation of states. Classical macrostates are equivalence classes of classical
states from the configuration space C, and they form a (disjoint) partition of C,

C =
⊔

α∈A
Cα. (12)

This induces a direct sum decomposition of the Hilbert spaceH defined in Equation (1),

H =
⊕
α∈A
Hα,Hα := L2(Cα, µ,C). (13)

Definition 1. In the following, the subspace Hα will represent macrostates. The states repre-
sented by vectors from macrostates will be called quasiclassical states. Projectors P̂α on subspaces
representing macrostates, so thatHα = P̂αH, will be called macroprojectors.

Postulate 2 (Macroclassicality). (i) If the state of the universe is |Ψ〉, the world is observed to be
in a macrostate P̂αH for which P̂α|Ψ〉 6= 0. (ii) Subsequent observations are consistent with the
state of the universe being P̂α|Ψ〉/|P̂α|Ψ〉| at that time.

If Postulate 2 seems too complicated, it is because it carefully avoids assuming more
than can be observed. In particular, it avoids presuming whether the wavefunction collapses
or not. For quantum measurements, it avoids assuming too much about the state of the
“observed subsystem”, because what we actually observe is a macrostate in which the
pointer observable has a definite state.

It is useful to detail how Postulate 2 applies to quantum measurements. LetHS be the
Hilbert space of the observed system. Let Â be a Hermitian operator onHS, representing the
observable of interest, with eigenbasis (ψA

1 , . . . , ψA
n ). To indicate the result of a measurement,

the measuring device contains a pointer, which is readable at the macroscopic level and
can be found in one of the eigenstates (ζA0 , ζA1 , . . . , ζAn ) of the pointer observable ẐA. Let ζA0
represent the “ready” state of the pointer, and |ψ〉 the state of the observed system before
the measurement. If the measurement of Â takes place between t0 and t1, Equation (3) leads
to a linear combination involving pointer states,

|Ψ(t1)〉 = Ût1,t0 |ψ〉 ⊗ |ζA0 〉 ⊗ . . . = ∑
j
〈ψA

j |ψ〉|ψA
j 〉 ⊗ |ζAj 〉 ⊗ . . . (14)
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Since the pointer eigenstates are macroscopically distinguishable, the states |ψA
j 〉 ⊗

|ζAj 〉 ⊗ . . . are quasiclassical and correspond to distinct macrostates. Therefore, a state

containing the pointer in an eigenstate of ẐA is quasiclassical, as stated in Postulate 2.
Postulate 2 accommodates the possibility of different measurement setups that we

would normally consider incompatible. The measuring devices that perform different
measurements are macroscopically distinct, so the macrostates corresponding to different
measurement results are orthogonal. The incompatibility is between the observables
associated with the observed subsystem, but the possible macrostates from which we
normally infer the state of the observed subsystem are orthogonal.

The possible resulting states of the universe are not determined by the eigenstates
of the observed system nor by those of the pointer of the measuring device. A pointer
is a macroscopic object, and it corresponds to the macrostates of the universe, but each
macrostate consists of a continuum of microstates from (|φ〉)φ∈C . The world should be in a
definite ontic state. This suggests the following

Postulate 3 (Microstates). Only the ontic states (|φ〉)φ∈C can be microstates.

At first sight, there is a tension between Postulate 2, which says that the future
observations are consistent with the state being P̂α|Ψ〉/|P̂α|Ψ〉|, and Postulate 3, which
says that microstates can only be from (|φ〉)φ∈C . However, what Postulate 3 says is that
each macrostate consists of microstates that are ontic states, P̂α =

∫
Cα
|φ〉〈φ|Dµ[φ]. This is

consistent with Postulate 2, since P̂α|Ψ〉 =
∫
Cα

Ψ[φ]Dµ[φ].
Postulate 3 is consistent with Postulate 2, because the classical states |φ〉 are also

quasiclassical, since each φ belongs to a unique macrostate C̃α. It also clarifies Postulate 2:
the world looks classical because its microstates are classical ontic states. Since the ontic
states consist of objects in 3D space, this addresses Questions 4 and 5.

In standard quantum mechanics (SQM), the Projection Postulate was introduced to
explain why we observe only one of the states |ψA

j 〉 ⊗ |ζAj 〉 ⊗ . . .. The Projection Postulate
was given in terms of quantum measurements [6,7]. Here, we replaced the Projection
Postulate with Postulate 2, which

• is more general, including measurements as particular cases,
• avoids presuming whether the wavefunction collapses or not,
• relates the macrostates to microstates of the form |φ〉, where φ ∈ C have clear relations

with 3D space.

The probabilities are given by the Born rule:

Rule 1 (Born rule). If the state of the universe is represented by |Ψ〉, the probability that an
observation of the world finds it in the macrostate P̂αH is

Pα = 〈Ψ|P̂α|Ψ〉. (15)

From Equation (11) P̂α|Ψ〉 =
∫
C̃α
|φ̃〉Dµ̃[φ̃], therefore,∣∣∣∣∫C̃α

|φ̃〉Dµ̃[φ̃]

∣∣∣∣2 = 〈Ψ|P̂α|Ψ〉. (16)

This is not yet a proof of the Born rule. In SQM, the Born rule is postulated, but in
Section 5, we will derive it based on the relation between Postulates 2 and 3.

5. Naive Counting Gives the Born Rule in the Continuous Limit

Suppose Alice asks Bob to participate in the following experiment. Alice instructs Bob
to wait until a bell rings and as soon as the bell rings, to push a button. The button stops a
stopwatch, and Bob, without reading it, has to guess whether the stopwatch indicates an
even or an odd number for the millisecond.
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A way to interpret the probability that Bob assigns to the event is that the state of the
universe contains the state of the stopwatch, including its property that the millisecond is
an even or an odd number. Bob does not know the state of the world, but he can attribute
the probability 1/2 to the event that the millisecond is even. This subjective probability is
based on the incomplete knowledge of the state of the system.

Another interpretation is that Bob is a succession of infinitely many instances, one for
each moment of time. There is an instance of Bob which stops the stopwatch as a result
of (a previous instance of Bob) hearing the bell ringing. Then, (a subsequent instance of)
Bob can interpret the probability as representing the odds that his instance that pressed the
button was located along the time axis in an interval labeled by an even or an odd number
representing the millisecond. This is the self-location probability of Bob in time.

In the example with the stopwatch, both the subjective view and the self-location view
are valid. However, an adept of presentism may prefer the subjective view, while an adept
of eternalism may prefer the self-location view of probability.

Now consider an experiment in which Alice sends Bob a qubit in the state 1/
√

2
(|0〉+ |1〉), asking him to determine whether the qubit’s state is |0〉 or |1〉. The probability
that Bob determines that the qubit is in the state |1〉 is 1/2. However, the subjective view
applies if the wavefunction collapses, while if both worlds exist, the probability comes
from Bob’s ignorance of whether he is the Bob instance in the world where the result is |0〉
or the one in which the result is |1〉, so the self-location view applies.

Now, let (|φk〉)k∈{1,...,n} be orthonormal eigenvectors of the operator Â representing
the observable, andHS the observed system’s Hilbert space. Or (|φk〉)k∈{1,...,n} can be an
orthogonal system of quasiclassical states, and Â a macroscopic observable. Then, if

|ψ〉 = 1√
n

n

∑
k=1
|φk〉 (17)

is the state vector of the observed system, and P̂j is the projector of the eigenspace corre-
sponding to the eigenvalue λj, the Born rule coincides with counting states:

〈ψ|P̂j|ψ〉 =
1
n ∑
|φk〉∈P̂jHS

〈φk|φk〉 =
nj

n
, (18)

where nj is the number of the eigenbasis vectors |φk〉 that are eigenvectors for λj.
However, this “naive state counting” does not give the right probabilities because

it coincides with the Born rule only in this special situation. In general, the coefficients
in Equation (17) are distinct complex numbers, and counting them will give a different
probability from the Born rule. For this reason, in the standard versions of MWI it was
proposed to interpret self-location uncertainty as being given by the squared amplitude
and not simply by counting [8], and even that this should be postulated [9].

However, the worlds are not determined by the vectors |φk〉. What is naive about
the “naive self-location view” is to count the eigenstates of the observed system or of the
pointer state as worlds in which the observer can be located. The full ontic states should be
counted, and an agent should be in a definite ontic state. Self-location should be about the
possible ontic states of the universe, which are (|φ〉)φ∈C (Postulate 3).

Moreover, while counting states works only for states of the form (17), in the contin-
uous limit, it works for all states |Ψ〉 ∈ H. However, counting should be applied to the
whole system, not to its parts (Postulate 2), and only to ontic states (Postulate 3).

Theorem 1. The Born rule is obtained as the continuous limit of counting ontic states.

Proof. The macroprojectors consistent with Postulate 3 have the form

P̂α =
∫
Cα

|φ〉〈φ|Dµ[φ], (19)
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where the set Cα ⊂ C is µ-measurable. For any unit vector |Ψ〉 ∈ C, there is an infinite
sequence (Pn)n∈N of sets of projectors with the following properties:

(i) Each projector from Pn has the form P̂n,k =
∫

Dn,k
|φ〉〈φ|Dµ[φ], where C = ⊔2n

k=1 Dn,k

is a partition of C into measurable subsets so that
∫

Dn,k
r2[φ]Dµ[φ] = 1/2n.

(ii) For each n, Pn+1 refines Pn, i.e., projectors from Pn are sums of those from Pn+1.
(iii) The measure of the sets Dn,k included in Cα converges to the measure of Cα.
Then, from (i) and (ii), for each n, |Ψ〉 decomposes as |Ψ〉 = 1/

√
2n ∑2n

k=1 |n, k〉, where
|n, k〉 :=

√
2nP̂n,k|Ψ〉 are orthogonal unit vectors. From (iii), the sequence (Pn)n∈N con-

verges to a refinement of the set of macro-projectors (P̂α)α∈A. Hence, the continuous limit
of a counting as in (18) gives the Born rule. For more details, see [10].

Then, due to Postulate 3, the Born rule is obtained as a probability measure over
the ontic states. This is possible because C̃ becomes a sample space, (C̃α)α∈A an event
space, and P : (C̃α)α∈A → [0, 1], P(C̃α) =

∫
C̃α

r2[φ̃]Dµ a probability function. Therefore,(˜̃C, (C̃α)α∈A, C̃α 7→
∫
C̃α

r2[φ̃]Dµ
)

becomes a classical probability space. At any instant in

time, the probability density |Ψ[φ]|2 on C̃ can be interpreted similarly to the probability
density on the phase space from classical physics. If only one microstate exists, but it is
unknown, the probability is subjective. If more microstates can coexist simultaneously, it
can be interpreted as self-location probability. This answers Question 6.

6. Wavefunction Collapse Is Inconsistent with Our Derivation of the Born Rule

It may seem that we can interpret Equation (16) probabilistically in two different ways
and get the Born rule (15). The subjective view applies if there is only one world whose
microstate is unknown to the agent, and the wavefunction collapses to be consistent with
Postulate 2. The self-location uncertainty view applies if there are many worlds, but the
agent does not know in which of them they are located.

Now we will see that SQM, which assumes wavefunction collapse, is inconsistent
with Postulate 3 and, therefore, with our derivation of the Born rule. In SQM, |Ψ(t)〉
is a microstate at all times. Whenever it evolves into a linear combination over more
macrostates it collapses to one of them to ensure consistency with Postulate 2.

However, if there is only one world that collapses to avoid macroscopic superpositions,
it should be allowed to be in states that do not belong to the same basis. To see this, let us
look again at Equation (14). It assumes that at t0

|Ψ(t0)〉 = |ψ〉 ⊗ |ζA0 〉 ⊗ . . . . (20)

The vector |ψ〉 ∈ HS can be any unit vector from HS. Let |ψ′〉 ∈ HS be another unit
vector. Then, the total state vector is |Ψ′(t0)〉 = |ψ′〉 ⊗ |ζA0 〉 ⊗ . . .. In particular, there are
vectors |ψ〉, |ψ′〉 ∈ HS so that, at t0, 〈ψ|ψ′〉 6= 0, which implies 〈Ψ(t0)|Ψ(t0)

′〉 6= 0. The
states |Ψ(t0)〉 and |Ψ′(t0)〉 are distinct microstates of the same macrostate in which the
pointer state is |ζA0 〉. Since, in SQM, the world is allowed to be in any of them, and they are
not orthogonal, the world is not restricted to be only in the states from an orthogonal basis.
This contradicts Postulate 3, so the derivation of the Born rule from Theorem 1 does not
seem to apply to SQM. The following proposition shows this.

Proposition 1. If any state from a macrostate should be counted as a world, the proof of Theorem 1
cannot be used to derive the Born rule.

The proof is given in Appendix C.
If, to keep Postulate 3, we assume that there is only a single world that is always in

an ontic state, Postulate 2 will be satisfied without invoking the wavefunction collapse.
However, this would be a single-world unitary theory [11–13], and this is possible only if the
initial conditions are very strongly fine-tuned [14], violating Bell’s statistical independence
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assumption [1]. Even if this would mean something like superdeterminism, conspiracy,
retrocausality, or global consistency [15], it is a possibility.

We can try a modified version of Postulate 3: “Linear combinations of ontic states can
exist as long as they belong to the same macrostate. When they belong to more macrostates,
collapse is invoked so that the resulting microstate is from (|φ〉)φ∈C .” However, when the
collapse is invoked for a measurement of S, and a measurement of a different subsystem
S′ follows immediately, the subsystem S′ can also be in any state at the same time when
the collapse is invoked for system S. This contradicts the modified version of Postulate 3.
We can try to modify it more: “Linear combinations of ontic states can exist as long as
they belong to the same macrostate. When they belong to more macrostates, collapse is
invoked, but all ontic states in the macrostate that remains after the collapse are preserved.”
This works, but it requires the self-location interpretation of probabilities, and it would
be a version of MWI where some of the worlds disappear, and the remaining ones are
macroscopically indistinguishable, an ad hoc strategy. Since after recording the results
of the measurements, the worlds from different macrostates no longer interfere anyway,
why postulate the disappearance of some of them? It follows that the only consistent and
natural way to satisfy the conditions required by the proof of Theorem 1 is the MWI. This
suggests an answer to Question 7.

7. What Should Be Counted as a World?

The question “what should be counted as a world?” has two meanings:
Meaning 1. What kinds of unit vectors in the Hilbert space count as worlds?
Meaning 2. What components of the wavefunction should be counted when we

calculate the probabilities?
However, the answer to both these questions is the same, Postulate 3.
However, since linear combinations of ontic vectors |φ〉 from the sameHα also belong

to Hα, they are quasiclassical, and maybe they should be counted as worlds too. This
happens, for example, if we try to prove the Born rule by finding a finite number of
orthonormal vectors for the macrostates that add up to |Ψ〉, as in Equation (18), and
counting them, as in [2,16]. If the basis (|φk〉)k∈{1,...,n} from Equation (18) depends on |Ψ〉,
this implies that we have to interpret all such possible orthogonal systems as consisting of
words. Proposition 1 shows that this leads to overcounting, and it cannot give the Born
rule. However, Theorem 1 shows that in the continuous case, if we use the same basis, in
agreement with Postulate 3, this works. Therefore, Theorem 1 can be understood as the
continuous limit of the proposal from [16], necessarily amended with Postulate 3.

Can Postulate 3 be avoided by defining the worlds differently?
The worlds cannot be the macrostates because this will give the naive branch counting

according to which all outcomes with nonvanishing amplitude have the same probability.
Can the worlds be the nonvanishing components P̂α|Ψ〉 of |Ψ〉? It seems that they

cannot be, for the same naive branch-counting argument. However, we can reinterpret
probability in a decision-theoretic way as in [17,18], or as a measure of existence as in [19],
or other arguments that the size of P̂α|Ψ〉 matters so that its square is the probability. It can
be argued that Theorem 1 offers an alternative to these new interpretations of probability. It
can also be argued that Theorem 1 is consistent with them, and it only shows that they can
be understood as a coarse-graining of a more conservative probability, that of self-location
in the ontic states.

8. The 3D Geometry as the Preferred Basis

Several important approaches to quantum gravity are background-free. We will see
that background freedom brings strong evidence for the existence of an ontic basis, as in
Postulate 3, but based on 3D space geometry.

Canonical quantum gravity, as formulated in [20] is based on quantizing Einstein’s
equation expressed in 3 + 1 dimensions Σ×R as in [21]. Since after quantization, time
seems to disappear, the time-evolving wavefunction is decoded from the Wheeler-de Witt
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constraint equation by using the Page–Wootters formalism [22]. The result is a wave-
functional formulation, in which the configuration space of classical fields includes the
components of the metric tensor on the 3D space Σ. The theory is invariant to diffeomor-
phisms, similar to gauge invariance. This makes it background-free.

The classical configuration space consists of fields φ = (γab, φ1, . . . , φn) ∈ C, where
a, b ∈ {1, 2, 3}, γ = (γab) contains the components of the 3D metric, and |ϕ〉 represents the
matter fields on Σ and any other fields that may be needed by the theory. Let CS be the
configuration space of 3D metrics up to diffeomorphisms, and CM the configuration space
of matter fields, so that C = CS × CM.

A state vector with classical geometry has the form |Ψ〉 = |γ〉|ϕ〉, where |ϕ〉 is a
general quantum state of matter. Because of the invariance to diffeomorphisms, there is
no correspondence between the points of (Σ, γ1) and those of (Σ, γ2), except in the special
case when they are isometric. For any linear combination of states with classical geometries,
there are infinitely many sets of field operators (φ̂j(x), π̂j(y))j that satisfy the canonical
(anti)commutation relations. They depend on the relative diffeomorphisms of the 3D spaces
of the states in the linear combination. It is possible to fix such a set of field operators,
but this would make the theory background-dependent. This is why, in background-free
quantum gravity, even though the vector c1|γ1〉|ϕ1〉+ c2|γ2〉|ϕ2〉 exists inH, in general, it
represents dissociated states with distinct geometries and not a superposition of two states
on Σ.

This dissociation becomes even more evident if the theory of quantum gravity has a
discrete 3D space or spacetime because, in this case, the underlying graphs or hypergraphs
of the states in a linear combination can be nonisomorphic, so a correspondence between
their points is not even possible. Examples of background-free approaches to quantum
gravity in which space or spacetime is discrete include causal sets [23], Regge calculus [24],
causal dynamical triangulations [25], the spin network formulation of loop quantum
gravity [26,27], etc. In these approaches, the 3D space Σ or the spacetime is a graph or a
hypergraph with values attached to their vertices and (hyper-)edges to encode the metric,
curvature, or spins, depending on the approach. All these approaches can be described
in the Schrödinger formulation. The classical fields φ ∈ C have to include the possible
configurations of Σ. In the discrete approaches, graphs or hypergraphs representing Σ are
not assumed to be embedded in a 3D manifold. Therefore, they are background-free, in the
sense that only the intrinsic properties of Σ matter [28].

The problem of superpositions of states with different classical geometries was dis-
cussed, for example, in [29,30]. However, maybe this is not a bug but a feature of background-
free quantum gravity. We claim that this dissociation leads to a new version of MWI [31].

Observation 1. Due to the background freedom, linear combinations c1|γ1〉|ϕ1〉+ c2|γ2〉|ϕ2〉
cannot be interpreted, in general, as superpositions.

A state |Ψ〉 = |γ〉|ϕ〉 with classical geometry immediately evolves into a linear combi-
nation of states with distinct geometries. This means that the basis (|γ〉)γ∈CS determines
an absolute branching structure. The wavefunctional evolves on the configuration space,
and its branches can interfere again. Therefore, dissociated states can reassociate. When
dissociation corresponds to differences recorded at the macro level, it becomes irreversible
and macroscopic branching occurs. These macroscopic differences may coincide with
those due to usual branching in the MWI or may lead to additional observable effects at
the macro level. This remains to be explored. As in the case of branching in Everett’s
interpretation, this irreversibility is not due to unitary evolution, which is reversible but
to initial conditions of the universe similar to those responsible for the Second Law of
Thermodynamics [4]. We will return to the problem of time asymmetry of the branching
structure in Section 9.

We do not know yet if background freedom is a feature of our universe and to what
extent the dissociation of the state into states with different classical geometries prevents
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superposition. Probably states with different geometries that are isometric on some regions
of 3D space allow for local superpositions and interference in those regions. In any case,
this problem is open, and future theoretical and experimental investigations can hopefully
tell us more about it. The deviations from regular quantum mechanics may be accessible to
empirical testing, and experiments may corroborate or refute background freedom.

The existence of dissociation into states with different classical 3D geometries due to
the absence of superpositions would make a much stronger case for the existence of ontic
states. In this case, the 3D space metric of the ontic states has to be classical, so they are of
the form |γ〉|φ〉.

Whether or not quantum gravity has to be background-free in this way remains to
be seen. Even if it were background-dependent, the states with classical 3D space form a
special basis, consistent with our experience and with all the experiments conducted so far.
Therefore, they deserve to be considered ontic states.

9. The 3D Geometry and the Branching Structure

To prevent violations of the Born rule in the MWI, distinct worlds should not interfere
again. Branching has to occur only toward the future. It is often believed that decoherence
answers Question 8, but unitary evolution is time-symmetric, so the initial conditions
should break this symmetry to ensure branching only toward the future. There are strong
reasons to believe that the low entropy of the initial state of the universe, postulated
to explain the Second Law of Thermodynamics, also explains branching asymmetry [4].
However, we do not have a satisfactory answer for the initial low entropy either.

However, quantum gravity reveals a strong connection between the branching asym-
metry and the cosmological arrow of time, i.e., the Big Bang followed by the expansion of
the universe.

The Big Bang singularity consists of the fact that the 3D space metric vanishes as
t→ 0 [32]. It is often believed that classical general relativity breaks down at singularities.
However, there is a formulation of general relativity whose equations do not break down for
a large class of singularities. Its equations are equivalent to Einstein’s outside singularities
but remain finite at singularities [33]. Such “benign” singularities require that the matter
fields are constant in the directions in which the metric tensor is degenerate. This means
that, since γab → 0 in all directions as t→ 0, the matter fields have to become constant on
the 3D space Σ. The set of possible classical fields consistent with this condition is described
by a very small number of parameters. The wavefunctional is, therefore, constrained
initially to a small subspace of the Hilbert space, a single macrostate of very low entropy.
The wavefunctional gradually expands and spreads over more and more, larger and
larger macrostates.

This explanation makes sense even if our quantum-gravitational universe is not
background-free. However, since at the Big Bang singularity, there is a unique 3D space
geometry γab = 0, the state is fully associated. Since background freedom implies that Ψ
dissociates as it evolves, it seems to give a stronger reason for the time asymmetry of the
branching structure than the background-dependent theories.

10. Conclusions

We have seen that the wavefunctional formulation of quantum field theory comes
implicitly with a natural interpretation of Ψ in 3D space. This has implications for several
different problems in quantum mechanics. The central implication is that it provides an
ontology in terms of local beables. This ontology requires a preferred basis, the ontic basis.
Since we can only directly observe the macrostates, the ontology of the ontic microstates
justifies counting them as possible states in which the system is, just like in classical physics.
However, unlike classical physics, in quantum mechanics, a state can evolve into a linear
combination of microstates. The local beable ontology of the wavefunctional suggests
interpreting these linear combinations as multiple ontic states coexisting in parallel. Since a
macrostate is an equivalence class of microstates, probabilities arise by taking into account
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the possible microstates in each macrostate. It turns out that this probability satisfies the
Born rule.

If there were a single ontic world, this probability would be subjective, representing
the uncertainty about the microstate. However, we have seen that, even in the standard
interpretation of quantum mechanics, multiple ontic states have to coexist in parallel.
Therefore, the probability should be about the self-location of the agent in one of the
microstates. It follows that a new version of MWI is unavoidable in this framework. In this
version of MWI, because the ontic states are orthogonal, the agent can exist only in an ontic
state, and the macrostates can consist of a different amount of microstates, probabilities
appear from the agent’s self-location uncertainty about the microstate.

If background freedom is a feature of quantum gravity, it implies that the wavefunc-
tional dissociates into states with distinct but classical 3D geometries. This gives strong
additional support to the big picture described above. In addition, quantum gravity sug-
gests that the Big Bang singularity may explain the time asymmetry of the branching
structure because at the Big Bang singularity, the state is not dissociated, all of its compo-
nents having the same geometry γab = 0 and constant fields. As the universe evolves, it
spreads over more and more macrostates, so the wavefunctional branches more and more.
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Appendix A. The Wavefunction as an Object in 3D Space

In NRQM, the wavefunction for n particles is defined on the configuration space Σn,
and it can be expressed as n functions on Σ only in the absence of entanglement.

However, in NRQM, the wavefunction is also an object of Euclidean geometry. A
figure consisting of triangles and other polygons is an object of Euclidean geometry. This
remains true if we label its vertices with complex numbers. Ψ(x1, . . . , xn) is equivalent
to infinitely many figures consisting of n points in R3, each such figure (x1, . . . , xn) being
labeled with the complex number Ψ(x1, . . . , xn). We can also interpret labeled figures as
unlabeled figures in a complex line bundle over 3D space [34].

The wavefunction is an object of Euclidean geometry also, according to Klein’s Erlan-
gen program [34,35]. Moreover, if we apply Klein’s ideas to quantum theory and require
the Hilbert space to be a representation of the Galilei group or the Poincaré group, as
Wigner and Bargmann did, we get that the wavefunction is an object of spacetime, the
classification of the types of particles by spin and rest mass, and the free evolution equations
as in quantum theory [36–38]. For more details, see [34].

Moreover, it is also possible to represent the wavefunction as a vector field with
infinitely many components on Σ. In [39], it was shown that the usual tensor product of
functions defined on 3D space can be represented as a direct sum by using an additional
global gauge symmetry. By direct sums between these vector bundles subject to gauge
equivalence, the full tensor product Hilbert space can be represented as a vector field. Since
the resulting representation is redundant, the redundancy is removed by using an even
larger global gauge symmetry. Then, this global gauge symmetry can be made local by
introducing a flat connection for its group. This allows the field representing Ψ to be locally
separable in the sense that it can be changed in an open subset A of Σ without affecting its
values outside of A. The Hamiltonian is local, and the field evolves locally as long as no
wavefunction collapse is assumed to take place.



Quantum Rep. 2023, 5 114

This representation also applies to quantum field theory in the Fock representation. It
is a faithful representation of Ψ, which can, therefore, be seen as consisting of local beables.
However, this representation is artificial and was given in [39] only as a proof of concept.
The natural representation is given in Sections 2 and 3.

Appendix B. The Existence of a Measure on the Configuration Space of Classical Fields

If the configuration space of classical fields C were an infinite-dimensional manifold,
no analog of the Lebesgue measure could be defined on it (although other measures are
possible [40]). However, there are indications that the dimension of C is finite: the fields are
constrained by equations, the gauge degrees of freedom need to be factored out, the entropy
bound indicates that the Hilbert space has a finite number of dimensions in bounded regions
of space [41,42], and the arrow of time requires severe additional constraints [43]. Therefore,
we will assume that the manifold C is finite-dimensional if this is what it takes for it to be
compatible with a measure µ.

Appendix C. Possible Worlds Should Form a Basis

Proof of Proposition 1. For every n, let |Ψ〉 = 1/
√

n ∑n
k=1 |n, k〉 be a decomposition of

|Ψ〉 in orthonormal vectors, so that, as n → ∞, Nn,α/n converges to 〈Ψ|P̂α|Ψ〉, where
Nn,α = {k ∈ {1, . . . , n}||n, k〉 ∈ Hα}. Let Sn,α be the set of vectors obtained from |n, k〉 by
all unitary transformations ofHα that preserve P̂α|Ψ〉. Unitary symmetry implies that any
vector from Sn,α belongs to orthogonal systems similar to {|n, k〉|k ∈ Nn,α}. Therefore, by
the hypothesis of Proposition 1, they should be counted as worlds. Let p(S) denote the
probability measure of a set S ⊆ H of state vectors counting as worlds. Let α 6= β ∈ A so
that |P̂α|Ψ〉| = |P̂β|Ψ〉| 6= 0. Due to unitary symmetry, there is a unitary transformation
Ŝ that maps the line CP̂β|Ψ〉 ⊂ Hβ to the line CP̂α|Ψ〉 ⊂ Hα, so that either ŜHβ = Hα, or
ŜHβ ( Hα, orHα ( ŜHβ. The symmetry requires that p(ŜHβ) = p(Hα). It also allows the
existence of infinitely many such transformations. Let Ŝ′ be another one with the same
properties so that Ŝ′Hβ 6= ŜHβ. Since ŜHβ ∩ Ŝ′Hβ is a strict subspace of ŜHβ, p(ŜHβ ∩
Ŝ′Hβ) = 0, and p(Ŝ′Hβ) = p(Ŝ′Hβ \ ŜHβ) = p(ŜHβ \ Ŝ′Hβ) = p(ŜHβ). Therefore,
p(Hα) > p(ŜHβ) + p(Ŝ′Hβ) > p(ŜHβ) = p(Hβ). However, according to the Born rule,
p(Hα) = p(Hβ). It follows that the Born rule is satisfied only if ŜHβ = Hα for every
α 6= β ∈ A. However, now we will show that, for |P̂α|Ψ〉| > |P̂β|Ψ〉|, this contradicts
the Born rule. The angle ωn,α between |n, k′〉 and 1/

√
n ∑k∈Nn,α |n, k〉 when k′ ∈ Nn,α

satisfies cos ωn,α = |〈n, k′|1/
√

nNn,α ∑k∈Nn,α |n, k〉| = 1/
√

nNn,α. Therefore, as n → ∞,
ωn,α → π/2, for all α. It follows that in the limit n → ∞, p(Sn,α)/p(Sn,β) = 1. Therefore,
counting all vectors from the sets Sn,α as worlds contradicts the Born rule.
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