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Abstract: Quantum systems whose states are tightly distributed among several invariant subspaces
(variable spin systems) can be described in terms of distributions in a four-dimensional phase-space
T∗S2 in the limit of large average angular momentum. The cotangent bundle T∗S2 is also the classical
manifold for systems with E(3) symmetry group with appropriately fixed Casimir operators. This
allows us to employ the asymptotic form of the star-product proper for variable (integer) spin systems
to develop a deformation quantization scheme for a particle moving on the two-dimensional sphere,
whose observables are elements of e(3) algebra and the corresponding phase-space is T∗S2. We show
that the standard commutation relations of the e(3) algebra are recovered from the corresponding
classical Poisson brackets and the explicit expressions for the eigenvalues and eigenfunctions of some
quantized classical observables (such as the angular momentum operators and their squares) are
obtained.
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1. Introduction

In spite of multiple approaches being attempted, the problem of the quantization
of a given classical system still represents an intriguing problem [1–8]. One of the most
profitable quantization schemes involves a direct employment of the phase-space for-
malism [9–16]. The fundamental step in phase-space quantization programs consists of
establishing a map ω between elements of a functional space (the space of classical observ-
ables) and operators acting in an appropriate Hilbert space (see [1–6,14–16] and references
therein). This approach is tightly connected to the symmetry of a dynamical classical
system. In particular, the classical observables are considered as smooth functions in a
phase-space manifold M, where the group of the dynamic symmetry (generated by the Lie
algebra of observables) of the system acts transitively [17]. The notion of orbit-like coherent
states [18–20] naturally appears in such types of schemes.

It is required that a bijective map between classical and quantum objects

ω : f (ζ) ⇒ f̂ , ζ ∈ M, (1)

satisfies a set of basic properties that guarantee its invertibility (the dequantization process)
and the covariance under the group transformations [21–26].

In this framework, the form of the map determines the so-called star-product [27–29],

f (ζ) ∗ g(ζ) ⇒ f̂ ĝ, (2)

that relates operations in the functional and operator spaces. A general method for a con-
struction of phase-space quantization–dequantization maps is well established for systems
with semi-simple groups of dynamic symmetry, but is faced with certain ambiguities for
other groups (see, e.g., [1–8,30–51] and references therein), except for the well studied
Heisenberg–Weyl group H(1) and its direct products [52–56]).
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On the other hand, starting with a deformed product between two classical observables
as a function of a small parameter ε ≪ 1 (the semiclassical parameter) such that

lim
ε→0

( f (ζ) ∗ g(ζ)− g(ζ) ∗ f (ζ)) = −i{ f (ζ), g(ζ)}P,

where {., .}P is the Poisson bracket on M, we arrive at the concept of the deformation
quantization [28,29] (see also [4–6] and references therein).The semiclassical parameter char-
acterizes the strength of quantum fluctuations and depends on the symmetry of the system.
For instance, for systems with the Heisenberg–Weyl symmetry the physical semiclassical
parameter is the inverse number of excitations, while as a formal expansion parameter, the
Plank constant is usually taken, ε ∼ h̄. For systems with the SU(2) symmetry the inverse
effective spin length is a natural semiclassical parameter, etc. [50,51,57–59].

The standard requirements of the star-product are associativity, self-adjointness and
analyticity in the semiclassical parameter; they allow us to define a family of equivalent
star-products, satisfying the condition [4–6],

f (ζ) ∗T g(ζ) = T−1[T f (ζ) ∗ Tg(ζ)], (3)

where T is an appropriate linear operator usually depending on some continuous pa-
rameters. In practice, some additional physical considerations/restrictions should be
imposed in order to define a meaningful star-product on a given symplectic manifold [4–8].
Explicit constructions of well-behaved star-products for curved manifolds (describing
co-adjoint orbits of non semi-simple groups) may present significant difficulties and in
general require a detailed analysis in each particular case, although a general approach has
been developed [60].

The quantization of a particle in a curved configuration space, in particular, moving
on the S2 sphere [61–65], is one of long-standing problems. The corresponding classi-
cal phase-space is the cotangent bundle T∗S2, which is the co-adjoint orbit of the E(3)
group [31–39], obtained by fixing both Casimir operators (a constant magnitude position
vector is orthogonal to the angular momentum). The implementation of the standard
Stratonovich–Moyal–Weyl phase-space quantization protocol faces major complications in
this case, which are related, in particular, to the absence of orbit-like coherent states [66,67].
On the other hand, no sensible form of the star-product has been proposed, which limits
the application of the deformation quantization formalism.

It was shown in [68–70] that, while the phase-space of a single angular momentum is
the two-dimensional sphere, the operators describing variable (integer) spin systems, i.e.,
those “living” in several SO(3) irreducible subspaces, can be mapped into smooth functions
(symbols) on T∗S2 in the limit of large average angular momentum. Such functions are
commonly called s-parametrized symbols,

f̂ ⇒ W(s)
f (ζ), ζ ∈ T∗S2, (4)

where the index s labels the families of dual (sef-dual) functions, e.g., s = −1, 1, 0 corre-
spond to the so-called Q-, P- and Wigner symbols. Some of the family of symbols W(s)

f (ζ)

may coincide with the corresponding classical observables f (ζ) for an appropriate choice
of the parameter s.

The non-trivial observation (4) is based on the analysis of the semiclassical limit (large
angular momentum) of the evolution equation for the quasidistribution functions (symbols
of the density operators). In other words, the cotangent bundle T∗S2 can be considered
as the asymptotic phase-space for variable spin systems. The advantage of the map (4)
consists of the possibility to develop a full phase-space machinery, which includes the
star-product operation, i.e., a composition map (see [68] Equation (45)),

f̂ ĝ → W(s)
f (ζ) ∗ W(s)

g (ζ). (5)
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This suggests to apply the asymptotic form of the star-product proper to variable-spin
systems, for quantizing classical systems possessing the dynamic symmetry of the E(3)
group [31–39] and evolving in T∗S2 phase-space.

In this paper, we develop an asymptotic deformation quantization scheme for a particle
on the two-dimensional sphere, which basic classical observables generate the e(3) algebra,
by making use of the star-product operation inherited from variable angular-momentum
systems. In addition to the previous approaches [61–65] we will not only be able to recover
the appropriate e(3) commutation relations, but also obtain explicit expressions for the
eigenfunctions of several classical observables asymptotically quantized with (5).

In Section 2, we briefly review the basics of the phase-space approach to variable-spin
systems. In Section 3, we introduce a star-product on T∗S2 as a continuous limit of the
star-product for variable spin systems and apply it for quantization of classical dynamic
variables (elements of the e(3) algebra) describing a particle on S2. In Section 4, we obtain
the eigenfunctions and spectrum of some of the (quantized) observables.

2. Variable-Spin Quasidistributions

According to the variable-spin quantization–dequantization approach [68–70] a den-
sity matrix,

ρ̂ = ∑
S,S′=0,1,..

∑
m,m′

cSS′
mm′ |S, m⟩⟨S′, m′|,

can be mapped into a discrete set of functions (j-symbols) on S3,

f̂ ⇔ {W j(s)
f (Θ); j = 0, 1, . . . }, s ∈ [−1, 1], (6)

Θ = (ϕ, θ, ψ), 0 ≤ ϕ, ψ < 2π, 0 ≤ θ ≤ π, (7)

through a trace operation

W j(s)
f (Θ) = Tr

(
f̂ ω̂

(s)
j (Θ)

)
, (8)

where the Hermitian SO(3) covariant kernel ω̂
(s)
j (Θ) is defined in Appendix A, such that

the reconstruction relation,

f̂ =
∞

∑
j=0,1...

f̂ j, f̂ j =
j + 1
8π2

∫
dΘW j(s)

f (Θ)ω̂
(−s)
j (Θ), (9)

where dΘ = sin θdϕdθdψ is a volume element of SO(3), and the overlap relation

Tr
(

f̂ ĝ
)
=

∞

∑
j=0,1,2,...

j + 1
8π2

∫
dΘW j(s)

f (Θ)W j(−s)
g (Θ), (10)

are fulfilled. The symbols W j(±1)
f (Θ) are dual to each other and W j(0)

f (Θ) is self-dual. The
s-parametrized symbols are related to each other according to

W j(s)
f (Θ) =

[
F2j

(
J2
)]s
(

Γ
(
2j − J0 + 2

)
Γ
(
2j + J0 + 2

)
2j + 1

)−s/2

W j(s=0)
f (Θ), (11)

where J0 = −i∂ψ, J2 is the differential realization of the Casimir operator (A16) and Fj(J2)
is an operational function defined by its action on the Wigner D-functions (A13).

In addition, the map (6) entails the star-product [69] (associative by construction):

W j(s)
f g (Θ) = W j (s)

f ∗s W j (s)
g = ∑

j1,j2=0,1,...
L(s)

j,j1 j2

(
W j1(s)

f (Θ)W j2(s)
g (Θ)

)
, (12)
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where the explicit form of the operator L(s)
j,j1 j2

is given in Appendix A, Equation (A18).
Taking into account the parity property of the kernel (A4), one can show that the linear

combination

W j+
f (Θ) = W j

f (Θ) + W j+1
f (Θ), (13)

tends to a smooth function of j in the continuous limit, W j+
f (Θ) → W+

f (Θ, j) [71]. The evo-

lution of the symbols of the density matrix, W(s)+
ρ (Θ, j), commonly called s-parametrized

quasidistributions, is governed in the continuous limit and for a large mean spin by the
Liouville-type differential Equations [69,71],

∂tW
+(s)

ρ (Θ, j) ≈ {W +(s)
H (Θ, j), W +(s)

ρ (Θ, j)}P, (14)

where W+
H is the symbol of the Hamiltonian, and {., .}P are the Poisson brackets (where we

have used the notation (A14)),

{., .}P = −2 cot θ

j
(
∂θ ⊗ ∂ψ − ∂ψ ⊗ ∂θ

)
(15)

+
2

j sin θ

(
∂θ ⊗ ∂ϕ − ∂ϕ ⊗ ∂θ

)
+ 2
(
∂ψ ⊗ ∂j − ∂j ⊗ ∂ψ

)
, (16)

in a four-dimensional manifold isomorphic to the cotangent bundle T∗S2. This manifold is
the co-adjoint orbit of the E(3) group fixed by the Casimir operators

r̂2 = Î, l̂ · r̂ = 0, (17)

where the (commuting) generators of translations r̂ =(x̂, ŷ, ẑ) and the components of the
angular momentum operators l̂ = (l̂x, l̂y, l̂z) close the e(3) algebra (see Appendix B):[

l̂i, l̂j

]
= iεijk l̂k,

[
r̂i, r̂j

]
= 0,

[
l̂i, r̂j

]
= iεijk r̂k. (18)

The limit of a large average angular momentum corresponds to ⟨l̂2⟩ ∼ j2 ≫ 1.
The Darboux coordinates in T∗S2 are

(j cos θ, ϕ) and (j, ψ), (19)

so that the corresponding closed and exact two-form is

ω = −dα = dϕ ∧ d(j cos θ) + dψ ∧ dj ,

α = jdψ + j cos θdϕ. (20)

where the (continuous) index j becomes a dynamical variable conjugate to the angle ψ,
{j, ψ}P = 1. It is worth noting that the canonical coordinates (19) describe a rigid rotor
dynamics [72], in the sense that the projection j cos θ leads to a phase shift ϕ and changes in
the phase ψ are generated by the total angular momentum j.

3. Deformation Quantization on T∗S2

The asymptotic form of the evolution Equations (14) and (15) and its relation to the
rigid rotor motion suggests to apply the machinery developed for variable-spin systems
to quantum systems with E(3) dynamic symmetry group. The archetypical example
of such a system is a particle moving on the two-dimensional sphere, whose classical
phase-space is precisely T∗S2 [61]. Unfortunately, taking the direct continuous limit of the
map (6), (A1) faces significant difficulties. However, the star-product (A18) can be extended
to the continuous domain of the index j. This allows us to develop a deformation quanti-
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zation scheme completely in terms of internal coordinates of T∗S2 following the general
ideas [4–6,28,29].

Star-Product

Taking into account the displacement property

f (j + I ⊗ J0, Θ)g(j − J0 ⊗ I, Θ) = e(∂j⊗J0−J0⊗∂j) f (j, Θ)⊗ g(j, Θ), (21)

we can reduce the s-parametrized family of discrete star-product operations (A18) to the
form (3) considering the index j as a continuous variable,

f (j, Θ) ∗s g(j, Θ) = T−1(s)((T(s) f ) ∗ (T(s)g)), (22)

f ∗ g =
∞

∑
n=0

(−J+ ⊗ J−)n

n!
1

Γ(2j − J0 ⊗ I + I ⊗ J0 + n + 2)
e(∂j⊗J0−J0⊗∂j)/2 f ⊗ g, (23)

T(s) =
(√

2j + 1F2j

(
J2
))1−s(

Γ
(

2j + J0 + 2
)

Γ
(

2j − J0 + 2
))s/2

,

where f (j, Θ) and g(j, Θ) are smooth real-valued functions in T∗S2, J±, J0 are the com-
ponents of the covariant generators of the SO(3) group (A15) and we have rescaled the
variable j → 2j in accordance with (A8). In particular, for observables depending only on
the variable j one has,

f (j) ∗s g(j, Θ) = f
(

j + J0/2
)

g(j, Θ),

g(j, Θ) ∗s f (j) = f
(

j − J0/2
)

g(j, Θ).

The associativity of (22) follows directly from the associativity of the respective discrete
star-product (A18) and the relation (21).

It is worth noting that the above star-product does not contain any deformation
parameter (as, e.g., h̄ in the Heisenberg–Weyl case), but rather acquires the expected
asymptotic form

f (j, Θ) ∗s g(j, Θ) = f g +
i
2
{ f , g}P +

1 − s
2j

∂ψg ⊗ ∂ψg+

s
2j

(
cot2 θ∂ψ ⊗ ∂ψ + ∂θ ⊗ ∂θ −

1
sin2 θ

(
∂ψ ⊗ ∂ϕ + ∂ϕ ⊗ ∂ψ

)
+

1
sin2 θ

∂ϕ ⊗ ∂ϕ

)
f ⊗ g + O(j−2),

in the limit j ≫ 1, leading to the standard limit of any s-parametrized commutator,

[ f , g]s = f ∗s g − g ∗s f = i{ f , g}P + O(1/j2), (24)

where the Poisson brackets are defined in (15) with j → 2j. It will be shown below, that the
limit j ≫ 1 corresponds to the large amplitude of the classical angular momentum.

The crucial point consists of relating classical observables with the dynamical parame-
ters in T∗S2, while dependence on the angular variables is straightforward, the connection
with the parameter j, defining the classical amplitudes, requires imposition of additional
conditions.

Let us first observe that the quantization of coordinates r =(x, y, z) =(sin ϕ sin ψ −
cos ϕ cos θ cos ψ,− cos ϕ sin ψ− sin ϕ cos θ cos ψ, sin θ cos ψ) generated by (22) and (23) leads
to a commuting set

[rk, rl ]s = 0, (25)
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where k, l, m = x, y, z (i.e., rx = x, . . . etc.), only for s = 0, since the s-parametrized
commutator (24) formally gives,

[rk, rl ]s = −iεklm

(
4j(j + 1)

(2j + 1)2

)(1−s)/2(
1 −

(
(2j − 1)(j + 1)

j(2j + 1)

)s)
Lm.

In particular, it is fulfilled

x ∗0 x + y ∗0 y + z ∗0 z = 1. (26)

In order to establish a relation between the classical amplitude j0 of the angular
momentum,

Lk = j0nk,

where n = (cos ϕ sin θ, sin ϕ sin θ, cos θ) is a unitary vector parametrizing points of S2, and
the dynamical variable j appearing in the star-product (22) and (23) (e.g., for determining
j0 = j0(j)) we enforce the commutativity condition between the classical observables,

[Lk, rk]s=0 = 0, (27)

obtaining

0 = [Lk, rk]s=0 ∼
√

2j + 3
2j + 1

j0(j − 1/2)−
√

2j − 1
2j + 1

j0(j + 1/2),

which is satisfied only if

j0(j) =
√

j(j + 1).

In this case one also obtains,

L2 = Lx ∗0 Lx + Ly ∗0 Ly + Lz ∗0 Lz = j(j + 1), (28)

Lx ∗0 x + Ly ∗0 y + Lz ∗0 z = 0, (29)

[Lk, rl ]0 = iεklmrm, [Lk, Ll ]0 = iεklmLm, k, l, m = x, y, z, (30)

which are in accordance with the standard e(3) commutation relations (18), and in addition,

[j, Lk]0 = 0, (31)

as it can be expected. It is worth noting that different quantization schemes may lead to
different values of L2 [28].

Observe that the Hamiltonian of a free particle on the sphere

H =
p2

2
,

is equivalent to L2/2 in the classical manifold T∗S2, where the Casimir operators are fixed
according to (17).

In what follows we assign the index “0” to the observables quantized with (22)
and (23) at s = 0,

L(0) =
√

j(j + 1)n, r(0)= r. (32)
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In the case of quantization using the star-product (22) with an arbitrary s, the ob-
servables satisfying the relations (27)–(31) are connected to those with s = 0 according to
Equation (11) with W j(s)

f (Θ) → f (s)(j, Θ), in particular

L(s) =

(
j

j + 1

)−s/2
L(0),

r(s) =

(
j

j + 1/2

)−s/2
r(0).

It results that the star-product at s = 0 satisfies an additional condition characteristic
for self-dual, Wigner-like distributions: if ρ(j, Θ) is a normalized classical distribution
function, ∫

dj
2j + 1
4π2

∫
dΘρ(j, Θ) = 1, (33)

and f (j, Θ) a classical observable, the average value of f (j, Θ) is computed according to

⟨ f ⟩ =
∫

dj
2j + 1
4π2

∫
dΘρ(j, Θ) ∗0 f (j, Θ) =

∫
dj

2j + 1
4π2

∫
dΘρ(j, Θ) f (j, Θ), (34)

appearing in the same form as in classical statistical physics.
Following the same steps as Equation (A20) was obtained, we get for the

star-product (22) and (23) at s = 0∫
dj

2j + 1
4π2

∫
dΘρ(j, Θ) ∗0 f (j, Θ) =

=
∫ ∞

0
dj
∫

dΘ
2j − J0 ⊗ I + 1

4π2 e−J0∂j⊗I/2e−J0⊗∂j/2ρ(j, Θ)⊗ f (j, Θ),

which can be formally represented as

∫ ∞

0
dj
∫

dΘ
2j − J0 ⊗ I + 1

4π2

∫ ∞

0
dj1

∫ ∞

0
dj2δ

(
j1 − j +

J0

2

)
δ

(
j2 − j +

J0

2

)
ρ(j1, Θ) f (j2, Θ),

and immediately leads to (34).

4. Eigenfunctions of j and Lz

The eigenfunctions of the observable j(0) quantized with (22) and (23) at s = 0 can be
found by using the unitary trick, i.e., looking for the solution of the “evolution equation”

i∂tU (0)
j (j, Θ) = j(0) ∗0 U

(0)
j (j, Θ) =

(
j − i

2
∂ψ

)
U (0)

j (j, Θ), (35)

U (0)
j ((j, Θ|t = 0) = 1.

The expansion of the solution of Equation (35) in the basis of sinc-functions,

U (0)
j (j|t) = e−ijt =

∞

∑
L=−∞

π
(0)
L (j)e−iLt, (36)

π
(0)
L (j) =

sin(π(j − L))
π(j − L)

,
∞

∑
L=−∞

π
(0)
L (j) = 1, (37)

∞

∑
L=−∞

π
(0)
L (j)π(0)

L
(

j′
)

= δ(j − j′), (38)
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allows us to represent the auxiliary observable j and the total angular momentum (28) in
the spectral form,

j(0) =
∞

∑
L=−∞

Lπ
(0)
L (j), (39)

L(0)2 = ∑
k=x,y,z

L(0)
k ∗0 L(0)

k = j(j + 1) =
∞

∑
L=−∞

L(L + 1)π(0)
L . (40)

The formal expansions (39) and (40) should be considered in the sense of generalized
functions (distributions) as acting on normalizable functions (33). More precisely, the
eigenfunction equation,

j ∗ π
(0)
L (j) = Lπ

(0)
L (j), (41)

is fulfilled only asymptotically, when it is applied to compact support functions of widths
∼ σ0 localized at j0 ≫ 1 [73,74], so that∫

dj
[

j ∗ π
(0)
L (j)

]
f (j) ≈ L

∫
djπ(0)

L (j) f (j), (42)

where the error of the discrete sampling (39) is of order ∼erfc(πσ0) [75]. Loosely speaking,
the spectrum of the observable j is approximately {L, L ∈ Z+} and the corresponding
eigenfunctions are π

(0)
L (j) for large values of the total angular momentum.

The spectral problem for the observable L(0)
z is easier to solve in the parametrization

corresponding to s = −1 (and commonly associated with the so-called Q-distributions [76])
with L(−1)

z = j cos θ followed by the application of Equation (11). Then, the corresponding
“evolution” equation,

i∂tU (−1)
Lz

(j, Θ) = L(−1)
z ∗−1 U

(−1)
Lz

(j, Θ)

=
1
2
(
2j cos θ − sin θ∂θ − i∂ϕ

)
U (−1)

Lz
(j, Θ),

U (−1)
Lz

(j, Θ|t = 0) = 1,

possesses the solution,

U (−1)
Lz

(j, Θ|t)=
(

cos
t
2
− i cos θ sin

t
2

)2j
, (43)

which can be represented in terms of the Clebsch–Gordan series as,

U (−1)
Lz

(j, Θ|t) =
∞

∑
L=−∞

sin(π(j − L))
π(j − L)

L

∑
M=−L

′e−iMtπ
(−1)
L M (θ), (44)

π
(−1)
LM (θ) =

2L

∑
k=0

2k + 1
2L + 1

CLL
LLk0CLM

LMk0Pk(cos θ), (45)

∑
M

′π
(−1)
LM (θ) = 1, CLL

LLk0 =

√
(2L + 1)!(2L)!

(2L + k + 1)!(2L − k)!
, (46)

where Pk(cos θ) is the Legendre polynomial and ∑M
′ means that for negative values of L,

L ≤ −1, the index M runs between −L − 1 and L + 1. Equations (44) and (45) immediately
allow us to represent L(−1)

z as

L(−1)
z =

∞

∑
L=−∞

sin(π(j − L))
π(j − L) ∑

M

′Mπ
(−1)
LM (Θ),
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and applying Equation (11) finally arrive at the expansion,

L(0)
z =

∞

∑
L=−∞

sin(π(j − L))
π(j − L) ∑

M

′Mπ
(0)
LM(j, θ), (47)

π
(0)
LM(j, θ) =

2L

∑
k=0

2k + 1
2L + 1

CLL
LLk0

√
Γ(2j + k + 2)Γ(2j − k + 1)

Γ(2j + 1)
√

2j + 1
CLM

LMk0Pk(cos θ), (48)

where the sum (47) converges to the form (32) (see Appendix C). The eigenvalue equation

L(0)
z ∗

[
π
(0)
L (j)π(0)

LM(j, θ)
]
= M

[
π
(0)
L (j)π(0)

LM(j, θ)
]

(49)

is considered in the same sense as Equations (41) and (42).

5. Conclusions

We have introduced a star-product operation on T∗S2 that satisfies all the require-
ments for a deformed star-product, but does not contain a deformation parameter, leading,
however, to the Poisson algebra in the asymptotic limit corresponding to a large amplitude
of the classical angular momentum. The star-product (23) allows us to recover the standard
e(3) algebra relations (26), (28)–(30) by quantizing the classical dynamical variables describ-
ing a particle on the two-dimensional sphere. This is achieved by imposing the natural
commutativity conditions (25) and (27) on the observables L(0) and r(0), corresponding to
the Wigner-like quantization which satisfies the prescription (34) for computing of average
values. The equivalent s-parametrized set of quantized variables can be obtained by apply-
ing Equation (11). In addition, we have managed to solve the eigenvalue equations for the
angular momentum component L(0)

z and the auxiliary observable j, that determines the
classical amplitudes. Both the spectrum of those observables (41), (49), and their eigenfunc-
tions (37), (48) acquire a physical meaning in the asymptotic limit of large average angular
momentum. The proposed method can be directly applied to the problem of quantization of
a rigid rotor, which in spite of being widely discussed in literature still leaves several open
questions including, e.g., the spectral problem [77], a consistent quantization of canonical
variables [78,79], etc.

It is worth mentioning that the method developed in Section 2 is applicable to
half-integer spin systems, in the sense that the map (6) is formally extendible to j =
0, 1/2, 1, 3/2, . . . with 0 ≤ ψ < 4π, in such a way that the evolution equation for a specific
linear combinations of W j

ρ(Θ) acquires the form (14) and (15) in the limit of large average
spin [68–70]. However, its immediate application to a quantization of classical systems is
not quite transparent.
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Appendix A

In this Appendix we review in details the star-product operation for the discrete
symbols (8) and prove a relevant Theorem concerning the integration of the star-product of
two Wigner-like symbols.
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The SO(3) covariant quantization kernel has the form [68–70],

ω̂
(s)
j (Θ) = ∑

j
K=0 ∑K

q,q′=−K

√
2K+1
j+1

(√
j−q′+1

j+1 C
j+q′

2
j+q′

2
j−q′

2
j−q′

2 , Kq′

)−s

DK
qq′(Θ)T̂

j+q′
2

j−q′
2

Kq , (A1)

ω̂
(s)
j (Θ) = D̂(Θ)ω̂

(s)
j (0)D̂(Θ)†, D̂(Θ) = e−iϕl̂z e−iθ l̂y e−iψl̂z , (A2)

where l̂j, j = x, y, z are the angular momentum operators, DK
ql(Θ) is the Wigner D-function,

DK
ql(Θ) = ⟨K, q|D̂(Θ)|K, l⟩, Ccγ

aα, bβ are the Clebsch-Gordan coefficients and

T̂ J J′
Kq = ∑

m,m′

√
2K + 1
2J + 1

C Jm
J′m′ , Kq|J, m⟩

〈
J′, m′∣∣, (A3)

are the tensor operators [80]. The index q′ in (A1) has the same parity as the index j, so that

ω̂j(ϕ, θ, ψ) = (−1)jω̂j(ϕ, θ, ψ + π). (A4)

The kernels Equation (A1) are Hermitian, normalized

j + 1
8π2

∫
SO(3)

dΘω̂
(s)
j (Θ) = Îj+1, (A5)

with Ij+1 being the identity operator in the j+ 1 dimensional subspace, and trace orthogonal

Tr
(

ω̂
(s)
j (Θ)ω̂

(−s)
j′ (Θ′)

)
= δj,j′δj(Θ, Θ′), (A6)

where δj,j′ is the Kronecker symbol and δj(Θ, Θ′) is the δ-function on the manifold:∫
SO(3)

dΘ f̂ (Θ)δj(Θ, Θ′) = f̂ (Θ′). (A7)

The j-symbols of operator that mix SO(3) invariant subspaces necessarily depend on the
angle ψ.

For an operator f̂ acting in a single SO(3) irreducible 2S+ 1 dimensional subspace (S =
j/2), the mapping Equation (8) is reduced to the standard Stratonovich-Weyl form [21–26]
by averaging over the angle ψ,

ŵ(s)
S=j/2(θ, ϕ) =

∫ 2π

0

dψ

2π
ω̂
(s)
j (Θ) =

√
4π

2S + 1

2S

∑
K=0

K

∑
q=−K

(
CSS

SS,K0

)−s
Y∗

Kq(ϕ, θ) T̂S
Kq , (A8)

where YKq(ϕ, θ) are spherical harmonics and T̂L
Kq are the standard (diagonal) tensor

operators [81,82].
Examples of j-symbols
(a) the position operators, r̂,

W j(0)
rk (Θ) = rk ∑

n∈Z+

δj,2n+1, (A9)

where r = (sin ϕ sin ψ − cos ϕ cos θ cos ψ,− cos ϕ sin ψ − sin ϕ cos θ cos ψ, sin θ cos ψ).
(b) the angular momentum operators, l̂,

W j(0)
lk

(Θ) =

√
j
2

(
j
2
+ 1
)

nk ∑
n∈Z+

δj,2n, (A10)
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where n = (cos ϕ sin θ, sin ϕ sin θ, cos θ), in particular,

W j(0)
l2 (Θ) =

j
2

(
j
2
+ 1
)

∑
n∈Z+

δj,2n. (A11)

The star-product operator (12) has the form [68,69]

L (s)
j,j1 j2

=
∫ 2π

0

dφ′dφ

(2π)2

∞

∑
n=0

an
j1+j2−j

2

(
(j1 + 1)(j2 + 1)

j + 1

)(1−s)/2

×Fs−1
j (J2)

(
Γ(j − J0 + 2)Γ(j + J0 + 2)

)−s/2

×
[((

J+
)nF1−s

j1

(
J2
)

ei(j2−j+J0)φ′(
Γ(j1 − J0 + 2)Γ(j1 + J0 + 2)

)s/2
)

⊗
((

J−
)nF1−s

j2

(
J2
)

ei(j1−j−J0)φ
(

Γ(j2 − J0 + 2)Γ(j2 + J0 + 2)
)s/2

)]
,

where

an
J =

(−1)n

n!Γ(2J + n + 2)
, (A12)

Fj(J2)Dk
nm(Θ) =

√
Γ(j + k + 2)Γ(j − k + 1)Dk

nm(Θ); (A13)

and
(A ⊗ B)

(
W j1

f ⊗ W j2
g

)
=
(

AW j1
f

)(
BW j2

g

)
, (A14)

where A and B are differential operators;

J± = ie∓iψ
[

i
∂

∂θ
± cot θ

∂

∂ψ
∓ 1

sin θ

∂

∂ϕ

]
, J0 = −i

∂

∂ψ
, (A15)

are components of the covariant generators of the SO(3) group and

J2 = −
[

∂2

∂θ2 + cot θ
∂

∂θ
+

1
sin2 θ

(
∂2

∂ϕ2 − 2 cos θ
∂2

∂ϕ∂ψ
+

∂2

∂ψ2

)]
, (A16)

is the corresponding Casimir operator,

J2DK
QQ′(Θ) = K(K + 1)DK

QQ′(Θ), (A17)

J0DK
QQ′(Θ) = −Q′DK

QQ′(Θ).

The star-product operation is associative by construction, i.e.,

W j (s)
f gh = W j (s)

f ∗s W j (s)
gh = W j (s)

f ∗s

(
W j (s)

g ∗s W j (s)
h

)
=
(

W j (s)
f ∗s W j (s)

g

)
∗s W j (s)

h .

Applied to j-symbols, the star-product takes the form

W j (s)
f ∗s W j (s)

g = Fs−1
j (J2)

∞

∑
n=0

(
J+ ⊗ J−

)nan
j−J0⊗I+I⊗J0

2

(A18)

×Γs(j − J0 ⊗ I + I ⊗ J0 + 2)
(

Fj+I⊗J0

(
J2 ⊗ I

)
Fj−J0⊗I

(
I ⊗ J2

))1−s

×
((

j + I ⊗ J0 + 1
)(

j − J0 ⊗ I + 1
)

j + 1

)(1−s)/2

W j+I⊗J0 (s)
f ⊗ W j−J0⊗I (s)

g ,
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where the j-index is considered now as an operator according to the notation (A14) and the
form of the operational function an

j−J0⊗I+I⊗J0
2

is given in (A12).

Theorem A1. The star-product for self-dual symbols, s = 0, satisfies the relation common for the
Wigner-like distributions,

∞

∑
j=0,1...

j + 1
8π2

∫
dΘW j(0)

f (Θ) ∗ W j(0)
g (Θ) =

∞

∑
j=0,1...

j + 1
8π2

∫
dΘW j(0)

f (Θ)W j(0)
g (Θ), (A19)

where at least one of the symbols is normalized,

∞

∑
j=0,1,...

j + 1
8π2

∫
dΘW j(0)

f (Θ) = 1,

and one of the symbols is a periodic function in Θ.

Proof of Theorem A1. Integrating by parts

j + 1
8π2

∫
dΘW j(0)

f (Θ) ∗ W j(0)
g (Θ)

=
j + 1
8π2

∫
dΘF−1

j

(
J2
) ∞

∑
n=0

(
J+ ⊗ J−

)n (−1)n

n!(j + n − J0 ⊗ I + 1 ⊗ J0 + 1)!

×
((

j + I ⊗ J0 + 1
)(

j − J0 ⊗ I + 1
)

j + 1

)1/2

∑
j1,j2

∫ dφdφ′

(2π)2 ei(j2−j+J0⊗I)φei(j1−j−I⊗J0)φ′

×
(

Fj+I⊗J0

(
J2 ⊗ I

)
W j1(0)

f (Θ)
)(

Fj−J0⊗I

(
I ⊗ J2

)
W j2(0)

g (Θ)
)

,

and taking into account that under this operation it holds,

F−1
j

(
J2
)
(j + 1) = ((j + 1)!j!)−1/2(j + 1),

I ⊗ J2 → J2 ⊗ I, I ⊗ J0 → −J0 ⊗ I,(
J+ ⊗ J−

)n → (−1)n(J−
)n(J+

)n ⊗ I,

we obtain

j + 1
8π2

∫
dΘW j(0)

f (Θ) ∗ W j(0)
g (Θ) =

=
j + 1
8π2

∫
dΘ

∞

∑
n=0

1
n!

(
j − J0 ⊗ I + 1

)
j!

(j + n − 2J0 ⊗ I + 1)!
F2

j−J0⊗I

(
I ⊗ J2

)(
J−
)n(J+

)n

× ∑
j1,j2

∫ dφdφ′

(2π)2 ei(j2−j+J0⊗I)φei(j1−j−I⊗J0)φ′
W j1(0)

f (Θ)⊗ W j2(0)
g (Θ).

Considering that
J− J+ = J0

(
J0 − I

)
− J2,

and

J2 f (j, Θ) = ∑
k=0

k

∑
Q,Q′=−k

k(k + 1) f k
Q,Q′(j)Dk

Q,Q′(Θ),
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we have

(
J−
)n(J+

)n f (j, Θ) = (−1)n ∑
k

(
k + J0)!

(k + J0 − n)!

(
k − J0 + n

)
!

(k − J0)! ∑
Q,Q′

f k
Q,Q′(j)Dk

Q,Q′(Θ),

so that the sum on n is computed as

∞

∑
n=0

(−1)n

n!(j + n − 2J0 ⊗ I + 1)!

(
k + J0 ⊗ I

)
!

(k + J0 ⊗ I − n)!

(
k − J0 ⊗ I + n

)
!

(k − J0 ⊗ I)!
= j!F−2

j−J0⊗I ,

where we have used the summation rule

n

∑
k=0

(−1)k
(

n
k

)(
k + m

l

)−1
=

l
n + l

(
n + m
m − l

)−1
.

Finally, we arrive at the following simplification

∞

∑
j=0,1,..

j + 1
8π2

∫
dΘW j(0)

f (Θ) ∗ W j(0)
g (Θ) (A20)

=
1

8π2

∞

∑
j=0,1,..

∑
j1,j2

∫
dΘ

∫ dφdφ′

(2π)2 ei(j2−j+J0⊗I)φei(j1−j+J0⊗I)φ′
(A21)

×
[(

j − J0 ⊗ I + 1
)

W j1(0)
f (Θ)

]
⊗ W j2(0)

g (Θ). (A22)

After a formal integration over φ, φ′ and summing up on j1, j we attain Equation (A19).

Appendix B

In this Appendix we list some essential relations between the elements of e(3) algebra:
r = (x, y, z)

x = − cos θ cos ϕ cos ψ + sin ϕ sin ψ,

y = − cos θ sin ϕ cos ψ − cos ϕ sin ψ,

z = sin θ cos ψ;

p =
(

px, py, pz
)

px = j0(cos θ cos ϕ sin ψ + sin ϕ cos ψ),

py = j0(cos θ sin ϕ sin ψ − cos ϕ cos ψ),

pz = −j0 sin θ sin ψ;

L =
(

Lx, Ly, Lz
)

Lx = j0 sin θ cos ϕ,

Ly = j0 sin θ sin ϕ,

Lz = j0 cos θ,

where
L = r × p.

The Poisson brackets
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{ f , g} =
cot θ

j0

(
∂ f
∂θ

∂g
∂ψ

− ∂ f
∂ψ

∂g
∂θ

)
− 1

j0 sin θ

(
∂ f
∂θ

∂g
∂ϕ

− ∂ f
∂ϕ

∂g
∂θ

)
+

(
∂ f
∂j0

∂g
∂ψ

− ∂ f
∂ψ

∂g
∂j0

)
,

between elements of the algebra
{ri, rj} = 0,

{ f (j0), g} =
d f (j0)

dj0
∂g
∂ψ

, {Lz, g} =
∂g
∂ϕ

{j0, Lx} = 0,
{

j0, Ly
}
= 0 {j0, Lz} = 0.

{x, y} = 0, {y, z} = 0, {z, x} = 0;{
Lx, Ly

}
= −Lz,

{
Ly, Lz

}
= −Lx, {Lz, Lx} = −Ly;{

xi, Lj
}

= εijkxk,
{

pi, Lj
}
= εijk pk,

{pi, xi} =
p2

i + L2
i

j20
,

{
pi, xj

}
=

LiLj

j20
.

Appendix C

In this Appendix we prove that the sum (47) converges to L(0)
z =

√
j(j + 1) cos θ.

First, we separate (47) into positive and negative parts

∞

∑
L=−∞

=
∞

∑
L=0

+
−1

∑
L=−∞

,

and observe that as a consequence of the relations

D−k−1
mm′ (Θ) = (−1)m−m′

Dk
mm′(Θ), (A23)

C−c−1γ
−a−1α−b−1β = (−1)c−a−bCcγ

aαbβ, (A24)

one has

π
(0)
−L−1 M(θ) =

2L

∑
k=0

(−1)k 2k + 1
2L + 1

√
Γ(2j + k + 2)Γ(2j − k + 1)

Γ(2j + 1)
√

2j + 1
CLL

LLk0CLM
LMk0Pk(cos θ),

where Pk(cos θ) is the Legendre polynomial and CLL
LLk0 is given in (46). Then, for positive

values of L, we obtain
L

∑
M=−L

Mπ
(0)
L M(θ) =

√
j + 1

j
L cos θ,

while for L ≤ −1

L

∑
M=−L

Mπ
(0)
−L−1 M(Θ) = −

√
j + 1

j
(L + 1) cos θ,

where we have used the relation

L

∑
M=−L

M
2L + 1

CLM
LMk0 =

√
(L + 1)L

3
δk,1.
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Finally we have,

∞

∑
L=0

sin(π(j − L))
π(j − L)

L

∑
M=−L

Mπ
(0)
LM(θ) =

√
j + 1

j

∞

∑
L=0

sin π(j − L)
π(j − L)

L cos θ, (A25)

and

−1

∑
L=−∞

sin π(j − L)
π(j − L)

L

∑
M=−L

Mπ
(0)
LM(θ) = −

√
j + 1

j

∞

∑
L=0

sin π(j + L + 1)
π(j + L + 1)

(L + 1) cos θ. (A26)

Summing up (A25) and (A26) we arrive at

∞

∑
L=−∞

sin(π(j − L))
π(j − L)

L

∑
M=−L

Mπ
(0)
LM(θ) =

√
j + 1

j

∞

∑
L=−∞

sin π(j − L)
π(j − L)

L cos θ =
√

j(j + 1) cos θ.
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