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Abstract: Scattering matrices that can be diagonalized by a rotation through an angle θ in 2× 2
blocks of independent scattering matrices of rank N, are considered. Assuming that the independent
scattering matrices are chosen from one of the circular ensembles, or from the Poisson kernel,
the 2N × 2N scattering matrix may describe the scattering through chaotic cavities with reduced
symmetry in the absence, or presence, of direct processes, respectively. To illustrate the effect of such
symmetry, the statistical distribution of the dimensionless conductance through a ballistic chaotic
cavity in the presence of direct processes is analyzed for N = 1 using analytical calculations. We make
a conjecture for N = 2 in the absence of direct processes, which is verified by numerical random-
matrix theory simulations, and the first two moments are calculated analytically for arbitrary N.
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1. Introduction

Blocky diagonalized scattering matrices has being of interest along the last three
decades due to their application in the description of transport properties through wave
systems with discrete symmetries. In particular, two-dimensional ballistic cavities with
specular (left–right) symmetry are described by diagonalizable scattering matrices by a
rotation through an angle π

4 [1–12]. For those cases, the general structure of the scattering
matrix is of the form of a 2× 2 matrix of blocks, each of rank N, whose blocks in the
diagonal, or in the off-diagonal, are identical. The same structure appears in the scattering
matrix associated with elliptically polarized electromagnetic waves scattered by a planar
interface between two dielectric media [13]; it becomes diagonal when it is written in the
basis of linear polarization. Additionally, we have found that the ensemble of scattering
matrices with block symmetry, associated with the set of locally periodic structures of
all sizes at the edge of the band, satisfies the same statistics as the one of chaotic cavities
with reflection symmetry in the presence of direct processes [14] that give rise to a prompt
response in complex scattering [15].

However, there could be chaotic systems in which the diagonalization of the associated
random scattering matrix S is obtained from a more general rotation by an angle θ. In the
rotated basis, the scattering matrix can be written as

S′ = Rθ S RT
θ =

(
S1 0
0 S2

)
, (1)

where Rθ is the 2N × 2N rotation matrix given by

Rθ =

(
IN cos θ IN sin θ
−IN sin θ IN cos θ

)
, (2)
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with IN being the identity matrix of dimension N. In Equation (1), S1 and S2 are N × N
scattering matrices that we will assume to be statistically independent; they belong to
one of the three symmetry classes introduced by Dyson [16]. Due to flux conservation,
Sj (j = 1, 2) is a unitary matrix (S†

j Sj = IN): in the absence of any other restriction, this

symmetry is the unitary one, labeled by β = 2; in addition, Sj is symmetric (Sj = ST
j ) in the

presence of time reversal invariance. This is the orthogonal symmetry labeled by β = 1.
Finally, Sj is a self-dual matrix of rank 2N in the presence of time reversal invariance but
has no spin-rotation symmetry; it is labeled by β = 4.

From Equation (1), the structure of S is of the form

S =

(
r t
t r′

)
, (3)

where

r = S1 cos2 θ + S2 sin2 θ, r′ = S1 sin2 θ + S2 cos2 θ, and t = (S1 − S2) sin θ cos θ. (4)

Here, r, r′, and t are N × N (or 2N × 2N) matrices for β = 1 and 2 (or β = 4). For bal-
listic cavities connected to two leads, r represents the reflection matrix when incidence is
from one side (left) and r′, the reflection matrix for incidence from the other side (right);
t is the transmission matrix. Although the structure of S in Equation (3) is similar to a
one with β = 1 symmetry, it is not the case. Moreover, the matrix S does not inherit the
properties of the constituents matrices S1 and S2. However, S is a unitary matrix because
the flux conservation condition should be satisfied; it is also symmetric for the β = 1 case
or self-dual for β = 4.

According to the optical model of nuclear physics [17,18], the wave amplitudes in
complex scattering processes contain two components: a rapid component that arises
from the direct processes and a delayed component resulting from the multiple scattering.
In chaotic scattering, the first component is described in terms of the ensemble average
of the scattering amplitudes, and the second one is a fluctuating part which is studied
using random-matrix theory techniques [15]. That is, in the absence of direct processes, Sj
belongs to one of the circular ensembles [1,19]: orthogonal (COE) for β = 1, unitary (CUE)
for β = 2, and symplectic (CSE) for β = 4. In the presence of prompt responses, the direct
processes are quantified by the ensemble average 〈Sj〉, known as the optical matrix, and the
statistical distribution of Sj is given by the Poisson kernel [19].

dP(β)
〈Sj〉

(Sj) =

[
det
(
IN − 〈Sj〉〈Sj〉†

)](βN+2−β)/2∣∣det
(
IN − Sj〈Sj〉†

)∣∣βN+2−β
dµβ(Sj), (5)

where dµβ(Sj) is the invariant measure, which defines the corresponding circular ensemble
for the symmetry β, which we assume to be normalized to unity (see Appendix A). Note
that in the absence of direct processes, 〈Sj〉 = 0, the statistical distribution of Sj is just the
invariant measure, which expresses the notion of equal a priori probabilities for Sj.

The main purpose of the present paper is to address the statistical properties of systems
whose scattering matrix has the structure of Equation (3), in the presence, and hence in the
absence, of direct processes. The ensemble average of S is given by

〈S〉 =
(
〈r〉 〈t〉
〈t〉 〈r′〉

)
, (6)

where

〈r〉 = 〈S1〉 cos2 θ + 〈S2〉 sin2 θ, 〈r′〉 = 〈S1〉 sin2 θ + 〈S2〉 cos2 θ, and 〈t〉 = [〈S1〉 − 〈S2〉] sin θ cos θ. (7)
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Since we are assuming that S1 and S2 are statistically independent, the statistical
distribution of S is given by the product of two independent Poisson kernel distributions;
that is,

dP(β)
〈S〉 (S) = dP(β)

〈S1〉
(S1)dP(β)

〈S2〉
(S2). (8)

The consequences of the distribution (8) can be illustrated for the transmission coef-
ficient (dimensionless conductance) T, defined by T = tr(tt†), which is directly related
to the conductance G in electronic devices through the Landauer formula; for each spin
polarization [20],

G =
e2

h
T. (9)

For that purpose, we determine the statistical distribution of T by analytical calcula-
tions for N = 1, which is of great interest and relevance to the experiments [21]. Numerical
calculations are used to verify a conjecture for the distribution of T for N = 2, in the
absence of direct processes. The average and variance of T are also obtained analytically
for arbitrary N, in the absence of direct processes.

2. Results
2.1. Statistical Distribution of T in the Presence of Direct Processes for N = 1

For N = 1, the scattering matrix of the system, S, is a 2× 2 unitary matrix, and S1 and
S2 are just complex numbers of modulus 1; that is, S1 = eiφ1 and S2 = eiφ2 , where φ1 and
φ2 are known as eigenphases. The optical matrices 〈S1〉 and 〈S2〉 are subunitary complex
numbers: for the sake of simplicity, without of generality, we assume that 〈S1〉 = 〈S2〉 = w,
with w being a real number smaller than one. Under this condition, 〈r〉 = 〈r′〉 = w and
〈t〉 = 0, according to Equation (7), such that the optical matrix of the system becomes

〈S〉 =
(

w 0
0 w

)
= w I2 . (10)

The statistical distribution of S is given by (see Equation (8))

dPw(φ1, φ2) =
1− w2∣∣1− eiφ1 w

∣∣2 1− w2∣∣1− eiφ2 w
∣∣2 dφ1

2π

dφ2

2π
, (11)

which is independent of the symmetry class β.
Theoretically, we predict that the statistical distribution of the transmission coefficient,

in the presence of direct processes, is given by (see Section 4)

Pθ,w(T) =
Θ
(
sin2 2θ − T

)
π
√

T
(
sin2 2θ − T

)
(
1− w4) sin2 2θ

(1 + w2)
2 sin2 2θ − 4w2

(
sin2 2θ − T

) , (12)

where Θ(x) is the Heaviside step function. Taking advantage of this result, the first two
moments of the distribution were determined: the ensemble average and variance of T are
given by

〈T〉θ,w =
1
2

(
1− w2

)
sin2 2θ, (13)

var(T)θ,w =
1
8

(
1− w4

)
sin4 2θ. (14)

Two cases are worth mentioning. First, for θ = π
4 , in the presence of direct processes:

Pw(T) =
1

π
√

T(1− T)
(1− w4)

(1 + w2)
2 − 4w2(1− T)

. (15)
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This case was obtained in reference [4] in connection with chaotic cavities with left-right
symmetry, in the presence of time reversal invariance and direct processes. The average and
variance of T are given by 〈T〉w = 1

2 (1− w2) and var(T)w = 1
8 (1− w4), respectively.

Second, the effect of the rotation angle can be observed by turning off the direct
processes by setting w = 0 in Equation (12); in this case, we obtain

Pθ(T) =
Θ
(
sin2 2θ − T

)
π
√

T
(
sin2 2θ − T

) . (16)

For this case, 〈T〉θ = 1
2 sin2 2θ and var(T)θ = 1

8 sin4 2θ. The effect of the angle is shown
in Figure 1, where we observe that the domain of T is reduced to [0, sin2 2θ]. The particular
case θ = π

4 reproduces the known result for chaotic cavities with left–right symmetry in
the absence of direct processes [1] (solid black curve in the left panel of Figure 1).

The combined effect of both θ and w is shown in the right panel of Figure 1 for
θ = 3

5 (π/4) and w = 0, 0.5, 0.75, and 0.9. While the angle affects the domain of T, higher
values of w increase the probability of lower values of T. What is interesting to note
is that all curves match the one that corresponds to θ = π

4 by scaling T as T/ sin2 2θ.
If τ = T/ sin2 2θ, its statistical distribution is given by

pw(τ) =
Θ(1− τ)

π
√

τ(1− τ)

(
1− w4)

(1 + w2)
2 − 4w2(1− τ)

, (17)

which is the same result as in Equation (15).

Figure 1. (Color online) Dimensionless conductance distribution Pθ,w(T) for N = 1. (Left panel)
Pθ,w(T) in the absence of direct processes (w = 0) for several values of θ. (Right panel) Pθ,w(T) for
θ = 3

5 (π/4), in the presence of direct processes: w = 0, 0.5, 0.75, and 0.9.

2.2. Statistical Distribution of T for N = 2 in the Absence of Direct Processes

The scaling that leads to Equation (17) could be predicted directly from the expression
of t in Equation (4). This means that the existing results for the distribution of T for N = 2
and θ = π

4 , in the absence of direct processes [1], are valid for an arbitrary value of θ,
but replacing T by τ. Therefore, we conjecture that the distribution of T is given by

P(1)
θ (T) =

Θ
(
2 sin2 2θ − T

)
π sin2 2θ

ln
sin2 2θ +

√
T
(
2 sin2 2θ − T

)∣∣sin2 2θ − T
∣∣ (18)

for β = 1 and

P(2)
θ (T) =

Θ
(
2 sin2 2θ − T

)
π sin2 2θ

T
sin4 2θ

(
2 sin2 2θ − T

)
F
(

1
2

,
3
2

; 2;
T

sin4 2θ

(
2 sin2 2θ − T

))
(19)

for β = 2, where F(· · · ) is the hypergeometric function.
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In Figure 2, we compare our conjecture to the results from numerical simulations
obtained from the circular ensembles of random-matrix theory (see Appendix A). The ex-
cellent agreement between the analytical expressions, Equations (18) and (19), and the
numerical simulations for β = 1, 2, verifies that our conjecture is correct. Additionally, we
present the distribution of T, obtained from the numerical simulation, for β = 4, which is
compared with the analytical results for β = 1, 2, in the right panel of Figure 2.

Figure 2. (Color online) Dimensionless conductance distribution for N = 2 and θ = 3
5 (π/4), in the

absence of direct processes. The histograms corresponds to random-matrix theory simulations for
each symmetry class; the continuous lines correspond to Equations (18) and (19) for β = 1 (left panel)
and β = 2 (middle panel), respectively.

2.3. Average and Variance of T in the Absence of Direct Processes for Arbitrary N

The first two moments of the distribution of T for arbitrary N, in the absence of direct
processes, are easily obtained from the known results for θ = π

4 .
For the β = 1 and β = 2 cases, the transmission coefficient can be written as

T =
1
4

[
2N − tr

(
S1S†

2 + S†
1S2

)]
sin2 2θ, (20)

where S1 and S2 are N × N scattering matrices; for β = 4

T =
1
8

[
4N − tr

(
S1S†

2 + S†
1S2

)]
sin2 2θ, (21)

where S1 and S2 are 2N × 2N self-dual scattering matrices.
Note that, except for the factor sin2 2θ, these expressions are the same as those for

θ = π
4 . Therefore, the existing results for the average and variance of τ = T/ sin2 2θ,

for β = 1 and β = 2, are still valid [1]. For β = 4, we calculate those quantities in
Appendix B. The results for all symmetries are expressed in a single equation for the
average and variance of T; those are

〈T〉θ =
N
2

sin2 2θ (22)

and
var(T)θ =

N
4(Nβ + 2− β)

sin4 2θ. (23)

3. Discussion

The statistical distribution of the scattering matrix of the system, S, expressed as the
product of two independent Poisson kernels in Equations (8) and (5) for arbitrary N, or
Equation (11) for N = 1, was proposed in reference [4] to describe chaotic scattering by
systems with reflection symmetry, in the presence of time-reversal invariance and direct
processes. There, also, the direct processes are quantified by an optical matrix of the form
of Equation (10). Similarly to that case, this optical matrix can be interpreted as physically
realized by two identical tunnel barriers added to our two lead system (diagonalizable
by a rotation θ) with no direct processes. This equivalence is not surprising because the
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scattering matrix of left–right symmetric systems in the presence of time reversal symmetry
are diagonalized by a rotation by an angle π

4 , which is a particular case of a rotation by an
angle θ.

The effect of the angle of rotation does appear in the distribution of the transmission
coefficient T because it is defined in the original (no rotated) basis. This is shown in
Equation (12) for the N = 1 case, where the dependence on the angle of rotation, and on the
strength w of the direct processes, is clear. Independently of w, the domain of T is restricted
to [0, sin2 2θ], as can be observed in Equations (12) and (16), and it is valid in the presence
and absence of direct processes, respectively. Equation (12) also reduces to Equation (15),
which is the known result for left–right symmetric systems in the presence of time reversal
symmetry. The effect on the rotation is also observed in the N = 2 case, in the absence of
direct processes. As can be seen in Equations (18) and (19), for the orthogonal and unitary
symmetries, and in Figure 2 for the three symmetry classes, the transmission coefficient
domain is restricted to [0, 2 sin2 2θ]. For arbitrary N, it is expected that T is restricted to
[0, N sin2 2θ]; in fact, according to Equation (22), the average of T scales as N.

Since the statistics of the transmission coefficient through disorderless lattices of all
sizes, at the band edge, also coincide with the one of the ensembles of chaotic cavities with
left–right symmetry in the presence of direct processes [14], it is left for future work to
investigate whether systems whose scattering matrix is diagonalizable by a rotation by an
angle θ, describe the fluctuations of the transmission coefficient of the disorderless lattices
inside the band.

4. Method

For N = 1, the scattering matrices S1 and S2 are just complex numbers of modulus
1: S1 = eiφ1 and S2 = eiφ2 . From Equation (4), we see that, for this case, the transmission
amplitude is given by

t(φ1, φ2) =
(

eiφ1 − eiφ2
)

sin θ cos θ, (24)

and the transmission coefficient is defined by T = |t(φ1, φ2)|2.
By definition, the statistical distribution of T can be determined by

Pθ,w(T) =
∫

δ
[

T − |t(φ1, φ2)|2
]

dPw(φ1, φ2), (25)

where δ(x) is the delta function. Explicitly, this definition can be expressed as

Pθ,w(T) =
(1− w2)2

4π2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

δ
{

T − 1
2 sin2 2θ[1− cos (φ1 − φ2)]

}
[1 + w2 − 2w cos φ1][1 + w2 − 2w cos φ2]

. (26)

To solve the integral, we define ψ = 1
2 (φ1 + φ2) and ψ′ = 1

2 (φ1 − φ2), such that the
limits of the integral change to ψ′ ∈ [−ψ, ψ] for ψ ∈ [0, π] and ψ′ ∈ [−(2π − ψ), 2π − ψ]
for ψ ∈ [π, 2π]. After some manipulations, the integral is reduced to

Pθ,w(T) =
(1− w2)2

π2

∫ π

0
dψ

∫ π

0
dψ′

δ
(
T − sin2 2θ sin2 ψ′

)
[1 + w2 − 2w cos (ψ + ψ′)][1 + w2 − 2w cos (ψ− ψ′)]

. (27)

Looking for the roots of the argument of the delta function in terms of the variable ψ′

we find two roots, ψ′1 and ψ′2, defined through the relation T = sin2 2θ sin2 ψ′j for j = 1, 2,
such that the integral can be written as

Pθ,w(T) =
(1− w2)2

2π2 sin2 2θ

∫ π

0
dψ

∫ π

0
dψ′

δ(ψ′ − ψ′1) + δ(ψ′ − ψ′2)

cos φ sin φ[1 + w2 − 2w cos (ψ + ψ′)][1 + w2 − 2w cos (ψ− ψ′)]
. (28)

The integration with respect to ψ′ leads to

Pθ,w(T) =
(1− w2)2

cπ2
Θ
(
sin2 2θ − T

)√
T
(
sin2 2θ − T

) ∫ π

0

1
a + b cos ψ + cos2 ψ

dψ, (29)
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where

a =
1
c

[
(1 + w2)2 − 4w2 T

sin2 2θ

]
, b =

4
c

w(1 + w2)

√
sin2 2θ − T

sin2 2θ
, c = 4w2, (30)

and Θ(x) is the Heaviside step function. The remaining integration was performed in
reference [4]; using such result, we finally arrive to the expression of Equation (12).

Once Pθ,w(T) has been obtained, it is interesting to calculate its first two moments and
the variance of T. The nth moment is defined by

〈Tn〉θ,w =
∫ 1

0
Tn Pθ,w(T)dT. (31)

Explicitly, the first moment is given by

〈T〉θ,w =
∫ sin2 2θ

0

1

π
√

sin2 2θ − T

√
T(1− w4) sin2 2θ

(1 + w2)
2 sin2 2θ − 4w2

(
sin2 2θ − T

) dT. (32)

If we make T = sin2 2θ cos2 z, the integral can be transformed to

〈T〉θ,w =
2(1− w2) sin2 2θ

π(1 + w2)

∫ π/2

0

cos2 z
σ2 sin2 z− 1

dz, with σ =
2w

1 + w2 . (33)

Using trigonometric identities which relate cos z and sin z with sec z and tan z, the last
integral can be written as

∫ π/2

0

cos2 z
σ2 sin2 z− 1

dz =
∫ π/2

0

sec2 z(
1 + tan2 z

)[
(σ2 − 1) tan2 z− 1

]dz. (34)

Now, changing to the variable v = tan z, we obtain that

∫ π/2

0

cos2 z
σ2 sin2 z− 1

dz =
∫ ∞

0

1
(1 + v2)[(σ2 − 1)v2 − 1]

dv

=
1
σ2

∫ ∞

0

1
1 + v2 dv− 1− σ2

σ2

∫ ∞

0

1
1 + (1− σ2)v2 dv. (35)

The integral in the first term of the right hind side is well known, whereas for the
integral in the second term, we change to the variable u =

√
1− σ2v; the sum of both

terms gives ∫ π/2

0

cos2 z dz
σ2 sin2 z− 1

=
π

2σ2

(
1−

√
1− σ2

)
. (36)

Therefore, by substituting this result into Equation (33) we finally arrive at the result
expressed in Equation (13).

Similarly, following the same procedure, the expression for the second moment can be
written as〈

T2
〉

θ,w
=

2(1− w2) sin4 2θ

π(1 + w2)σ2

[
1− σ2

σ2

∫ ∞

0

dv
1 + v2 −

(
1− σ2)2

σ2

∫ ∞

0

dv
1 + (1− σ2)v2 −

∫ ∞

0

dv

(1 + v2)
2

]
. (37)

The integrals in the first two terms on the right-hand side were previously solved, and
the integral in the last term is easily solved by the change of variables v = sin y. Then,〈

T2
〉

θ,w
=

1
8

(
1− w2

)(
3− w2

)
sin4 2θ. (38)

Using the results for the first and second moments, we can determine the variance of T
through the definition var(T)θ,w =

〈
T2〉

θ,w − 〈T〉
2
θ,w. The result is shown in Equation (14).
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5. Conclusions

We studied the statistics of the scattering and transport properties through systems
whose associated scattering matrices are diagonalizable, by a rotation by an arbitrary
but fixed angle, into two independent scattering matrices. Similarly to what happens for
left–right symmetric chaotic cavities in the presence of direct processes, the statistical distri-
bution of the scattering matrix of the system is given by the product of two independent
Poisson kernels. As a consequence, the statistical distribution of the dimensionless conduc-
tance is affected by the rotation angle and the direct processes intensity, but, in the absence
of direct processes, it reduces to well known results for left–right symmetric systems with
time reversal invariance. We expect that our investigation may help in the understanding
the fluctuations of the dimensionless conductance inside the band of disorderless lattices of
all sizes, as happened at the band edge.
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Appendix A. Parameterization of Circular Ensembles for N = 2

A useful parameterization of a unitary scattering matrix S′ is the polar parameteriza-
tion [22]

S′ =
(

U 0
0 V

)(
−
√

1− τ τ

τ
√

1− τ

)(
U′ 0
0 V′

)
, (A1)

where τ is a diagonal matrix whose diagonal elements are τ1, . . . , τN , for β = 1, 2, and
I2τ1, . . . , I2τN for β = 4, with 0 ≤ τ1, τ2, . . . , τN < 1. Here, U, V, U′, and V′ are arbitrary
unitary matrices of rank N for β = 2, U′ = UT and V′ = VT for β = 1. For β = 4, U′ = UR

and V′ = VR, where U and V are unitary matrices of rank 2N and [23]

UR = −ZUTZ, (A2)

being UT the transpose of U and Z is a block diagonal matrix with all the diagonal elements
equal to

Z2 =

(
0 1
−1 0

)
. (A3)

For the particular case N = 2, U = eiα, V = eiγ, U′ = eiα′ , and V′ = eiγ′ for β = 2,
where 0 ≤ α, α′, γ, γ′ < 2π; α′ = α and γ′ = γ for β = 1, 4. For β = 4, it is convenient to
use the Hurwitz parameterization of a 2× 2 unitary matrix [23], namely,

U = eiαE with E =

(
a b
−b∗ a∗

)
, (A4)

where
a = eiψ cos φ and b = eiχ cos φ, (A5)

with 0 ≤ φ < π
2 and 0 ≤ α, ψ, χ < 2π. Therefore, Equation (A1) is written as

S′ =

[
−
√

1− τei(α+α′) J
√

τei(α+γ′)D√
τei(α′+γ)D†

√
1− τei(γ+γ′) J

]
, (A6)
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where, J = D = 1 for β = 1, 2; J = I2 and D = EE′† for β = 4.
A circular ensemble is defined through the invariant measure dµβ(S′), which expresses

the equal a priori distribution for S′ [19]. The corresponding invariant measure for S′ of
Equation (A6) is given by [19,22]

dµβ(S′) =
β

2
τβ/2−1 dτ

dα

2π

dγ

2π
×


1 for β = 1,
dα′

2π

dγ′

2π
for β = 2,

dµ(E)dµ(E′) for β = 4,

(A7)

where dµ(E) and dµ(E′) are of the form

dµ(E) = sin (2φ) dφ
dψ

2π

dχ

2π
. (A8)

Numerical simulations of the circular ensembles can be implemented by generating
random numbers according to Equation (A7) for the scattering matrix S′ of Equation (A6).
In this sense, scattering matrix of Equation (3), is generated by two independent realizations
of S′, that represent S1 and S2 in Equations (3) and (4).

Appendix B. Calculation of the Average and Variance of T for β = 4, for Arbitrary N

For the symplectic symmetry the transmission coefficient is given by

T =
1
2

tr
(

tt†
)

, (A9)

where the factor one-half in front is due to Kramer degeneracy and S1 and S2 are 2N × 2N
self-dual matrices. Defining τ as τ = T/ sin2 2θ, we have that

τ =
1
8

[
4N − tr

(
S1S†

2 + S†
1S2

)]
=

N
2
− 1

8

2N

∑
i=1

[(
S1S†

2

)
ii
+
(

S†
1S2

)
ii

]
. (A10)

To calculate the average and variance of τ, it is convenient to parameterize S1 and S2
as S1 = UUR and S2 = VVR, where U and V are unitary matrices of rank 2N, that satisfy
Equation (A2). In this way, the average and variance of τ are reduced to averages over the
unitary group. The average of τ is given by

〈τ〉 = N
2
+

1
4

2N

∑
i,j,k,l,m,n=1

ZjkZmnQij,klQlm,in =
N
2

, (A11)

where [24]
Qa1α1,...,al αl

b1β1,...,bm βm
=
〈(

Ub1β1 · · ·Ubm βm

)(
Ua1α1 · · ·Ual αl

)∗〉, (A12)

where 〈· · · 〉 denotes the average on the unitary group. In the last equality of Equation (A11)
we have used that Qa1α1,...,al αl

b1β1,...,bm βm
is zero for m 6= l [24]. Similarly, the second moment of the

distribution of τ can be written as〈
τ2
〉
=

N2

4
+

1
32

2N

∑
i′ , j′ , k′ , l′ , m′ , n′ ,
i, j, k, l, m, n = 1

ZjkZmnZj′k′Zm′n′Q
l′m′ ,i′n′
ij , lk Qlm , in

i′ j′ ,l′k′ . (A13)

Here, we used the result [24]

Qaα , bβ
a′α′ ,b′β′ =

1
N2 − 1

(
∆a b

a′b′∆
α β
α′β′ + ∆b a

a′b′∆
β α
α′β′

)
− 1

N(N2 − 1)

(
∆a b

a′b′∆
β α
α′β′ + ∆b a

a′b′∆
α β
α′β′

)
, (A14)
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where ∆a b
a′b′ = δa

a′δ
b
b′ and δa

a′ is the Kronecker delta, to find

〈
τ2
〉
=

N2

4
+

N
4(4N − 2)

(A15)

and
var(τ) =

N
4(4N − 2)

, (A16)

which lead to the results expressed in Equations (22) and (23).
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