# The Ontology of the Many-Worlds Theory

## Abstract

**:**

## 1. Introduction

…there can be no question of an immediate connection with our ordinary conceptions because the “geometrical” problem represented by the wave equation is associated with the so-called co-ordinate space, the number of dimensions which is equal to the number of degrees of freedom of the system, and, hence, in general, greater than the number of dimensions of ordinary space.

## 2. The Configuration Space for N Point Particles and the Wavefunction

## 3. The Wavefunction Description of What Is Going on in 3-Space

## 4. Proposed Ontology

## 5. Spacetime State Realism

#### Albert’s Narration Paradox

## 6. Summary

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bacciagaluppi, G.; Valentini, A. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bohr, N. The Philosophical Writings of Niels Bohr; Cambridge University Press: Cambridge, UK, 1934; Volume 1. [Google Scholar]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev.
**1952**, 85, 166. [Google Scholar] [CrossRef] - Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev.
**1952**, 85, 180. [Google Scholar] [CrossRef] - Goldstein, S. Bohmian Mechanics. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Everett, H., III. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys.
**1957**, 29, 454. [Google Scholar] [CrossRef] - Vaidman, L. Many-Worlds Interpretation of Quantum Mechanics. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Wallace, D. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ghirardi, G.; Bassi, A. Collapse Theories. In The Stanford Encyclopedia of Philosophy, Summer 2020 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Maudlin, T. Can the world be only wavefunction. In Many Worlds? Everett, Quantum Theory, & Reality; Saunders, S., Barrett, J., Adrian, K., Wallace, D., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 121–143. [Google Scholar]
- Maudlin, T. Philosophy of Physics: Quantum Theory; Princeton University Press: Princeton, NJ, USA, 2019; Volume 33. [Google Scholar]
- Albert, D.Z. Elementary quantum metaphysics. In Bohmian Mechanics and Quantum Theory: An Appraisal; Cushing, J.T., Fine, A., Goldstein, S., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 277–284. [Google Scholar]
- Ney, A. The World in the Wave Function: A Metaphysics for Quantum Physics; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Lewis, P.J. Life in Configuration Space. Br. J. Philos. Sci.
**2004**, 55, 713–729. [Google Scholar] - Ney, A. Ontological Reduction and theWave Function Ontology. In The Wavefunction; Albert, D., Ney, A., Eds.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Chen, E.K. Realism about the wave function. arXiv
**2018**, arXiv:1810.07010. [Google Scholar] - Forrest, P. Quantum Metaphysics; Blackwell Publisher: Hoboken, NJ, USA, 1988. [Google Scholar]
- Hubert, M.; Romano, D. The wave-function as a multi-field. Eur. J. Philos. Sci.
**2018**, 8, 521–537. [Google Scholar] - Stoica, O.C. Why the wavefunction already is an object on space. arXiv
**2021**, arXiv:2111.14604. [Google Scholar] - Arve, P. Everett’s Missing Postulate and the Born Rule. Found. Phys.
**2020**, 50, 665–692. [Google Scholar] - Vaidman, L. On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of
quantum theory. Int. Stud. Philos. Sci.
**1998**, 12, 245–261. [Google Scholar] - Greaves, H. Understanding Deutsch’s probability in a deterministic multiverse. Stud. Hist. Philos. Mod. Phys. Part B
**2004**, 35, 423–456. [Google Scholar] - Wallstrom, T.C. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A
**1994**, 49, 1613. [Google Scholar] - Wallace, D.; Timpson, C.G. Quantum mechanics on spacetime I: Spacetime state realism. Br. J. Philos. Sci.
**2010**, 61, 697–727. [Google Scholar] - Swanson, N. How to be a relativistic spacetime state realist. Br. J. Philos. Sci.
**2020**, 71, 933–957. [Google Scholar] - Albert, D.Z. Physics and narrative. In Reading Putnam; Baghramian, B., Ed.; Routledge: Abingdon, UK, 2012; pp. 235–249. [Google Scholar]

**Figure 1.**$\overline{\mathbf{x}}={\mathbf{x}}_{1},{\mathbf{x}}_{2},{\mathbf{x}}_{3},{\mathbf{x}}_{4},{\mathbf{x}}_{5}\in \mathrm{C}\left(5\right)$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Arve, P.
The Ontology of the Many-Worlds Theory. *Quantum Rep.* **2023**, *5*, 228-236.
https://doi.org/10.3390/quantum5010015

**AMA Style**

Arve P.
The Ontology of the Many-Worlds Theory. *Quantum Reports*. 2023; 5(1):228-236.
https://doi.org/10.3390/quantum5010015

**Chicago/Turabian Style**

Arve, Per.
2023. "The Ontology of the Many-Worlds Theory" *Quantum Reports* 5, no. 1: 228-236.
https://doi.org/10.3390/quantum5010015