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Abstract: We investigate the effect of time-dependent boundary conditions on the dynamics of a
quantum bouncer—a particle falling in a homogeneous gravitational field on a moving mirror. We
examine more particularly the way a moving mirror modifies the properties of the entire wavefunction
of a falling particle. We find that some effects, such as the fact that a quantum particle hitting a
moving mirror may bounce significantly higher than when the mirror is fixed, are in line with classical
intuition. Other effects, such as the change in relative phases or in the current density in spatial
regions arbitrarily far from the mirror are specifically quantum. We further discuss how the effects
produced by a moving mirror could be observed in link with current experiments, in particular with
cold neutrons.
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1. Introduction

The quantum bouncer—a quantum particle falling in a uniform gravitational field
bounded by a perfectly reflecting mirror—is one of the paradigmatic examples of quantum
mechanics. Mentioned in some textbooks [1,2], the quantum bouncer has been used as a
model to investigate wavepacket dynamics and the quantum-classical correspondence [3,4],
to derive semiclassical propagators [5,6], and, on the experimental side, to identify the
quantized eigenstates of cold neutrons falling on a mirror in the Earth’s gravitational
field [7,8].

In this work, we will be interested in the dynamics of a quantum particle obeying the
Schrödinger equation with a linear potential (due to a homogeneous gravitational field)
falling on a moving mirror. Such a problem belongs to the class of systems subjected to time-
dependent boundary conditions. Quantum systems with time-dependent boundary con-
ditions are interesting from a mathematical [9,10], foundational [11,12] or practical [13,14]
perspective. Analytical solutions are known only for some special systems [15]. Even the
simplest case—an infinite well with a moving wall—needs to be solved numerically [16,17].
Concerning experiments, setups with neutrons falling on a moving mirror have been im-
plemented in order to develop a gravity resonance spectroscopy technique [18] and test
exotic theories of gravity [19].

Our aim here will be to investigate some effects induced by moving boundary con-
ditions on the dynamics of a quantum bouncer. Indeed the Hamiltonian remains the
same, but the fact that boundary conditions change in a small spatial region imply that the
quantum-mechanical wavefunction is modified everywhere, not only in the neighborhood
of that small region. This implies that measurable effects (like the current density or the
difference in relative phases at a given point) due to moving boundaries can in principle
be observed everywhere as long as the wavefunction does not vanish. Such effects were
recently investigated in cavities with a moving wall [17] or in confined time-dependent
oscillators [12,20]. The original motivation from a fundamental point of view was to look
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for a novel type of single-particle non-locality [11]. In this paper we will be extending these
studies to a particle in free-fall bouncing on a mirror.

To this end, we will first briefly recall the basic features of the Schrödinger equation
with time-dependent boundary conditions (Section 2) as well as the main issues that appear
when dealing with free fall and moving boundaries (Section 3). We investigate in Section 4
the evolution of quantum properties in the presence of moving boundaries. This will
be done by comparing the dynamical evolution of a given initial state in the presence of
fixed and moving boundaries. We will compare the short-time as well as the long-time
dynamics (relative to the period of a bounce) for different types of initial states. We will
particularly focus on the evolution of the current density, the phase, and the probability
density of a bouncing wavepacket. We will discuss our results in Section 5, in particular on
the prospects for observing experimentally the effects investigated in this work. A short
Conclusion is provided in Section 6.

2. Schrödinger Equation with Time-Dependent Boundary Conditions

Before getting to the problem of a quantum particle bouncing on a moving mirror
(Section 3.2), let us briefly look at the simplest system with time-dependent boundary
conditions: a quantum particle placed in a box, i.e., an infinite well defined along the
horizontal x axis, with one of the walls (say the right edge) moving according to some
function L(t). Such a system is defined (see e.g., [21]) by the Hamiltonian

H =
P2

2m
+ V (1)

V(x) =
{

0 for 0 ≤ x ≤ L(t)
+∞ otherwise.

(2)

where m is the mass of the particle and L(t) the position of the moving boundary (here the
right edge of the cavity). The solutions Ψ(x, t) must obey the boundary conditions at x = 0
and at x = L(t), i.e., Ψ(0, t) = Ψ(L(t), t) = 0.

The simplest way to obtain the solutions to Equations (1) and (2) is to view the prob-
lem as a Hamiltonian without an explicit time-dependence but with time-dependent
boundary conditions. Alternatively one can map through a time-dependent unitary
transformation [10] Equations (1) and (2) to a problem with fixed boundary conditions
and a time-dependent Hamiltonian; in this case, the usual methods employed to solve
time-dependent Hamiltonians can be used.

Keeping to the former method, it is usual to define instantaneous eigenstates of H by

φn(x, t) =
√

2/L(t) sin[nπx/L(t)] (3)

that verify
H|φn(t)〉 = En(t)|φn(t)〉 (4)

where En(t) = n2h̄2π2/2mL2(t) are the instantaneous eigenvalues. Note that these instan-
taneous eigenstates obey the boundary conditions at x = 0 and x = L(t), but they are
not solutions of the Schrödinger equation. We define for that purpose functions ψn(x, t)
obeying the Schrödinger equation

ih̄∂tψn(x, t) = Hψn(x, t). (5)

If these functions are known, then the evolution of an initial wavefunction, say Ψ(x, 0),
can be expanded as Ψ(x, 0) = ∑n cnψn(x, 0), and by linear superposition the time-evolved
wavefunction will be obtained as

Ψ(x, t) = ∑
n

cnψn(x, t). (6)
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Unfortunately, the basis functions ψn(x, t) cannot be obtained in closed form except
for special choices of functions L(t); for example for a linear expansion L(t) = L0 + at the
functions ψn(x, t) have a particularly simple form [22]. For an arbitrary boundary motion
L(t), numerical methods need to be employed. One method is to look for an expansion

∑
n

cn(t)φn(x, t) (7)

in the eigenstate basis, but with time-dependent coefficients cn(t), that are obtained by
solving numerically a system of coupled first order differential equations [16]. This method
works efficiently if the coupled system matrix elements decrease to zero fast enough as the
basis size is increased; this essentially depends on the scalar products 〈φn(t)| φ̇m(t)〉 (the
overdot here and below labels the time-derivative). This is indeed the case [17] for the basis
states given by Equation (3).

3. Quantum Bouncer
3.1. Fixed Mirror

The quantum bouncer problem is defined by the Schrödinger equation of a particle of
mass m falling on a mirror in a homogeneous gravitational field,

ih∂tΨ(z, t) =

(
− h̄2

2m
∂2

z + V(z)

)
Ψ(z, t) (8)

where V(z) = mgz is the gravitational potential (g is the local free fall acceleration). Placing
the perfectly reflecting mirror at z = 0 implies the wavefunction must obey the boundary
condition Ψ(0, t) = 0. In order to obtain the energy eigenvalues of the time-independent
Schrödinger equation it is customary (e.g., Ref. [3]) to rescale the variables, z → z/lg,
E→ E/(mglg) yielding

d2φn

dz2 − (z− En)φn(z) = 0, (9)

whose solutions are well known to be given in terms of the regular Airy function Ai(z) by

φn(z) = NnAi(z− zn). (10)

The notation zn ≡ En is chosen because these are simply related to the zeros of the Airy
function by Ai(−zn) = 0. Nn is a normalization constant that can be obtained in closed
form [4]. The length in these units is given in terms of lg = (h2/(2gm2))1/3, while time is

given in terms of tg =
(
2}/

(
g2m

))1/3.
The quantized states φn(z) of a particle falling on a mirror have been observed ex-

perimentally with ultracold neutrons [7]. The dynamics of an arbitrary initial state can be
easily computed by expanding the initial wavefunction in terms of φn(z), from which it
follows that Ψ(z, t) = ∑n〈φn|Ψ〉e−iEnt/h̄φn(z). Several dynamical features of eigenstates or
wavepackets have been investigated theoretically [3,4].

3.2. Moving Mirror

We assume now the mirror is moving, with its position given by L(t). Equation (8), as
well as the Hamitonian (1) still hold with V now given by

V(z) =

{
+∞ z < L(t)
mgz z ≥ L(t)

. (11)
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This is similar to Equation (2) implying time-dependent boundary conditions: a solution
Ψ(z, t) of the Schrödinger equation must obey Ψ(z = L(t), t) = Ψ(z = ∞, t) = 0. The
instantaneous eigenstates analogous to Equation (3) are given here by

φn(z, t) = NnAi(z− zn − L(t)), (12)

but, as above, they are not solutions of the Schrödinger Equations (8)–(11). We have
found that their use in numerical schemes is not as reliable as in the infinite well case
mentioned in Section 2 due to the properties of the Airy functions: scalar products of the
type 〈φn(t)| φ̇m(t)〉 decrease very slowly with increasing m, so that hundreds of thousands
of terms would be needed in the expansion (7) for typical parameter values.

Closed-form solutions of the Schrödinger equation with the potential (11) with an
arbitrary function L(t) are unknown except in a handful of special cases [15,23]. One
particular case we will be using below is the parabolic motion

L(t) = at2 + bt + c. (13)

The solutions can be shown [15] to be given by

ψn(z, t) = Nne−
im
2}

(
2L̇(t)(z−L(t))+

∫ t
0 L̇(t′)2dt′−2g

∫ t
0 L(t′)dt′

)
e−

i
} Λnt Ai

(
z− L(t)

δ
− zn

)
, (14)

where

δ =

[
}2

2m2(g + 2a(t))

]1/3

, (15)

L̈ = 2a has to be such that g + 2a > 0, and Λn is related to the nth zero of the Airy
function through

Λn = mδ(g + 2a(t))zn. (16)

The normalization constant (not given in Ref. [15]) can be found to be given by

Nn =
(√

δAi′(zn)
)−1

. (17)

These functions ψn form a time-dependent basis over which any initial wavefunction can
be expanded through Equation (6).

As a consequence of applying the rescaling z → z/lg, E → E/(mglg), and t → t/tg
(Section 3.1), we get g = 2 and } = 2m when expressed in gravitational units. This will

give δ =
[

2
2+L̈(t)

]1/3
, and Λn = 2mzn/δ2. Consequently, ψn(z, t) can be written in scaled

units as

ψn(z, t) = Nne−
i
4

(
2L̇(t)(z−L(t))+

∫ t
0 L̇(t′)2dt′−4

∫ t
0 L(t′)dt′

)
e−iznt/δ2

Ai
(

z− L(t)
δ

− zn

)
. (18)

Note that these solutions can also be understood as resulting from a transformation to
an accelerated frame in which the potential has been eliminated. The apparently non-
trivial character of the phase in Equations (14) and (18) automatically follows from the
corresponding scale transformation [24].

4. Results

We compare in this section the evolution of a quantum particle prepared in a chosen
initial state with a fixed or moving mirror. The initial state will be set to be (i) a basis
function of the moving mirror, (ii) an eigenstate of a falling particle with a fixed mirror,
or (iii) a Gaussian wavepacket prepared above the mirror. In all cases considered we will
assume the mirror moves parabolically according to Equation (13).



Quantum Rep. 2023, 5 5

4.1. Initial Basis State of the Moving Mirror Bouncer

Let us choose as the initial state the ground basis state of the mirror with parabolic
motion, given by Equation (18), Ψ(z, 0) = ψ1(z, 0).

The subsequent evolution if the mirror follows the parabolic motion is then

ΨM(z, t) = ψ1(z, t) (19)

and can be read off from Equation (18): the modulus is an Airy function shifted by the
mirror’s motion, while the exponential includes a phase as well as a spatial dependent
term. If a and b in Equation (13) have opposite signs, there is a time t̄ for which L̇(t̄) = 0 at
which point the spatial dependence becomes real. This implies the current density should
vanish at this time, as can be confirmed by computing

jM
n (z, t) = L̇(t)

[
Ai
(

zn −
(c + t(b + at)− z)

δ

)]2

, (20)

and hence jM
n = 0 everywhere whenever L̇(t) = 0.

If we prepare the system in the same initial state ψ1(z, 0) but the mirror remains fixed,
the ensuing evolution is different. The wavefunction is of course not shifted. By expanding
ψ1(z, 0) = ∑n cnφn(z) in the basis of fixed mirror eigenstates (10), with cn = 〈φn|ψ1〉, we
obtain the evolution in the fixed mirror case as

ΨF(z, t) = ∑
n

cne−iEnt/h̄φn(z). (21)

Numerical results are shown in Figure 1. The intial wavefunction (Figure 1a) evolves
differently when the mirror is fixed or moving. Even for very short times, when the mirror
has barely moved, the wavefunction and the current density are appreciably different
(Figure 1b). When the mirror reaches its maximum (L̇(t) = 0), the current density jM

n
vanishes everywhere in the moving case, but not in the fixed case (Figure 1c). When the
mirror comes back at its initial position (at t = 2t̄), we have

∣∣ΨM(z, 2t̄)
∣∣2 =

∣∣ΨM(z, 0)
∣∣2 for

the probability density when the mirror moves, but this is seen not to be the case if the
mirror remains fixed (Figure 1d); note that the probability density in the fixed and moving
mirror cases flows in opposite directions.

4.2. Initial Eigenstate of the Fixed Mirror Bouncer

We now choose as the initial state an excited state (say the kth excited state) of the fixed
mirror problem, so that Ψ(z, 0) = φk(z) as given by Equation (10). If the mirror is fixed, the
system remains in the eigenstate and the evolution of ΨF(z, t) is trivial. If the mirror moves,
we need to expand the initial state in terms of the basis functions Ψ(z, 0) = ∑n dnψn(z, 0)
with dn = 〈ψn(t = 0)|φk〉, and the evolution becomes

ΨM(z, t) = ∑
n

dnψn(z, t). (22)

An illustration is given in Figure 2 for the k = 9th excited state. Even for short times,
there is a significant difference between the evolution in the fixed and moving mirror
cases, as the nodal structure of the moving case is pushed by the mirror at distances far
beyond the range of motion of the mirror. Although the highest position of the mirror is
z = 11.73 µm, the bouncing particle explores regions of space twice as high than in the
fixed mirror case, as basis states ψn with very high n are populated. Note that the current
density, that remains zero everywhere when the mirror is fixed, varies wildly if the mirror
moves, including for high values of z.
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Figure 1. Snapshots of the time evolution of the probability density and the current density (shown
in the insets) for a neutron prepared in the ground basis state of the moving mirror Ψ(z, 0) = ψ1(z, 0).
(a) shows the initial state (t = 0); (b–d): The probability density |ΨF|2 and corresponding current
when the mirror is fixed are shown in orange; the blue dotted lines represent |ΨM|2 and jM

1 (inset)
when the mirror is moving. The position of the mirror is indicated by a vertical red line. These
snapshots are taken (b) at t = t̄/10; (c) at t = t̄ (when the mirror reaches its maximum position); (d) at
t = 2t̄ (the mirror returns to its initial position). The parameters of the mirror in gravitational units
are a = −0.1, b = 1 and c = 0, which sets t̄ = 5tg. The values shown in the plots have been rescaled
from the gravitational unit values by using the neutron mass and the Earth’s surface gravitational
acceleration g, giving L(t̄) = 14.67 µm at t̄ = 5.47 ms.
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Figure 2. Similar to Figure 1 but when the initial state is prepared as the n = 9 excited eigenstate
of the fixed mirror (Ψ(z, 0) = φ9(z)) and for a different parabolic motion (a = −0.5, b = 2, c = 0 in
scaled units). (a) shows the initial probability density. (b) shows the probability and current densities
(in the insets) at t = t̄/4 when the mirror is fixed (dashed orange line) or moving (solid blue). The
vertical red line displays the position of the mirror in the moving case. (c): Same as (b) but for t = t̄,
when the mirror is at its maximum position. (d) shows the same quantities at t = 2t̄ when the mirror
returns to z = 0. The values shown in the plots are obtained by rescaling the gravitational units to SI
units for a neutron falling in the gravitational field at the surface of the Earth, giving a maximum
position of the mirror L(t̄) = 11.73 µm at t̄ = 2.18 ms.

4.3. Initial Gaussian Wavepacket

We finally consider the quantum particle is initially prepared as a Gaussian wavepacket
falling with zero average momentum towards the mirror. The initial wavefunction

Ψ(z, 0) =

√
2

πσ2 exp
(
− (x− z0)2

σ2

)
(23)

is expanded over the eigenstates of the fixed miror Hamitonian, in order to compute
ΨF(z, t), or on the basis function of the Hamiltonian with the moving boundaries, in order
to compute ΨM(z, t).

The results for a typical example are illustrated in Figure 3, comparing the wavepacket
dynamics for a particle initially in a Gaussian state bouncing on a fixed or moving mirror.
In this case the mirror moves upwards, kicking the wavepacket to higher altitude than for
the fixed mirror bouncer.
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Figure 3. Evolution of an initial Gaussian wave packet released at rest from a height z0 = 25lg, and
bouncing over a fixed mirror (left panel) or over a moving mirror (right panel). The initial Gaussian
is at the bottom (t increases from bottom to top); the red dotted line shows the average position
while the parabolic black curve on the right panel indicates the mirror’s position (the parameters
of the mirror are in gravitational units a = −0.00625, b = 0.25, and c = 0). The mirror returns to
its initial position at t = 2t̄. We have rescaled the gravitational units so that the numbers on the
axes correspond to a neutron falling in the gravitational field of the Earth, leading to z0 = 146.7 µm,
t̄ = 21.88 ms and L(t̄) = 14.67 µm.

5. Discussion
5.1. Dynamical Effects

We have seen for different types of initial states, that the dynamics of a quantum
bouncer falling on a moving mirror is different from the bouncer evolution when the mirror
is fixed. Some aspects of this behavior can be understood intuitively on classical grounds,
for example the fact that the bounce is higher when the particle is kicked upwards by
the moving mirror. However there are specific quantum features. These are due to the
existence of discrete energy levels of the particle in the gravitational field, and to the fact
that the wave needs to adapt globally to changing boundary conditions.

As a result, the effect of the mirror’s motion on the wavefunction and hence on
observable properties can be monitored at any point in space. For example the moving
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mirror populates eigenstates of the gravitational field with higher energies (see Section 4.2),
a process that is at the basis of recent proposals [13,14] aiming to implement a spectroscopic
method to induce transitions between states. Another striking effect is that the current
density may vanish everywhere when the mirror reaches an extremum position, when
the initial state is prepared in a basis function state (see Section 4.1). In this situation, we
also have

∣∣ΨM(z, 2t̄)
∣∣2 =

∣∣ΨM(z, 0)
∣∣2 when the mirror returns to its original position at

time t = 2t̄, but the argument of the wavefunction is almost opposite, i.e., arg ΨM(z, 2t̄) '
− arg ΨM(z, 0) as can be checked from Equation (18) (with L(2t̄) = L(0) and L̇(2t̄) =
−L̇(0)). The examples pictured in Figures 1 and 2 clearly indicate that boundary conditions
have an effect on the entire wavefunction well beyond the region of changing boundaries.

5.2. Non-Locality

The dynamical features produced by the moving mirror might give rise to non-local
effects. The idea that moving boundaries could induce non-locality was proposed by
Greenberger [11]. Although Greenberger’s original proposal (based on a wavepacket posi-
tioned far from the moving boundary) was disproved [12], it was realized that a quantum
state having non-zero probability in the moving boundary region could display non-local
features in the sense that an observer located far from the moving boundary region could
guess whether the mirror is moving or not before a light ray emitted from the moving
boundary region reaches the observer’s position. Note that this instantaneous reaction,
albeit small, of the wavefunction to changing boundary condition does not seem to be an
artifact of the non-relativistic framework, as it was also seen to be the case for relativistic
wavefunctions [25].

In the cases examined in Section 4, non-locality, as defined here, would be obtained
provided the dynamical features due to the moving mirror can be observed before a light
signal emitted from the position of the moving boundary reaches the point of observation.
For instance, when a basis function is chosen as the initial state (Section 4.1), one would
need to observe the current density at point z0, or check the relative phase between the inital
and time evolved quantum states at t = 2t̄ (by employing an interferometric setup [20]), in
a time shorter than z0/c. When the initial state is chosen to be an eigenstate φk(z), there are
positions z̃ for which |φk(z)|2 vanishes, while the time-evolved state ΨM(z, t) in case the
mirror moves will have a small but non-vanishing probability to be detected (see Figure 2);
such detections could in principle take place outside the light cone emanating from the
mirror position.

5.3. Experimental Observation

Effects produced by a moving mirror on a quantum particle in free fall in a ho-
mogeneous gravitational field have actually already been observed experimentally with
ultra-cold neutrons [18] when implementing a resonance spectroscopy method. Other
effects based on particle counting might be observable with the same technology. The
current density could be observed by coupling the neutron spin to the vertical velocity com-
ponent with a wedge-shaped magnetic field [26], linking the spin deflection to the velocity.
Quantities related to relative phases would require interferometry based techniques, the
most straightforward option (a neutron bouncing in a Mach-Zehnder interferometer with
different boundary conditions in each arm) appearing as hardly realizable.

The observation of non-local aspects appear also difficult to implement with present
day technologies (one would actually rather expect on physical grounds to see the break-
down of the wavefunction formalism rather than detection of non-local aspects that could
be signalling in certain cases, see Ref. [20]; still, a negative result would be extremely
valuable). In principle, the detection of sufficient neutrons (for example by simultaneously
measuring on a high number of identical systems the number of detections at a height
larger than z̃) in regions for which the fixed mirror case would lead to no detections would
be a signature of non-locality provided the detection takes place in a time shorter than it
would take a light pulse to reach z̃. However we can see that typical cold neutron eigen-
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states in the gravitational field, which extend over a few micrometers, would require time
delays in the picosecond regime. Not only are these delays minute in order to complete a
measurement, but moreover this would require the miror to move at a sizeable fraction
of the speed of light. Alternatively, the mirror should move on scales several orders of
magnitude below the micrometer regime, which is also unfeasible (and would lead to tiny,
probably undetectable effects anyway). The preparation of neutrons in extremely high
eigenstates (which would extend over large distances) does not appear to be realistic.

We can rescale the results displayed in Figures 1 and 2 in order to reach regimes
for which the moving mirror would give rise to non-local effects. Indeed, reverting the
numbers in these figures to gravitational units (see Section 3.1), we see that the light velocity
in gravitational units is given by c(tg/lg) = c(4m/h̄g)1/3 and decreases for low masses
and/or strong gravity fields. For the parameters chosen in Figures 1 and 2, a measurement
would have to be made in a time of the order of a gravitational unit tg, for an observer
positoned at a few gravitational units lg, so the light velocity would need to be of the order
1∼100 in gravitational units in order for measurements to take place outside the light cone
emanating from the mirror. This implies roughly that g/m should be of the order of c3/h̄,
so that for the parameters displayed in Figures 1 and 2 extremely low masses (compared
to the neutron mass) and high gravity fields (compared to the gravitational field on the
Earth’s surface) would lead to non-local effects.

6. Conclusions

To sum up, we have investigated the effects produced by a moving mirror on the
dynamics of a quantum bouncer. We have seen, for different choices of initial states, that a
moving mirror modifies the properties of the quantum bouncer, including for short times.
Some effects are readily understandable from classical considerations, while other effects
are purely quantum, coming form the fact that the wavefunction is modified everywhere by
the time-dependent boundary conditions. While in principle the moving mirror could—at
least formally—give rise to non-local effects, we have seen that such effects cannot be
observed in the regimes accessed by current experiments investigating the behavior of
neutrons in a gravitational field. It would be interesting to examine the implications of
moving mirrors in the context of the universality of free-fall [27–29] as well as in the current
experiments investigating the free-fall of anti-matter [30,31].
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