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Abstract: Distributed Denial-of-Service (DDoS) attacks are a significant issue in classical networks.
These attacks have been shown to impact the critical infrastructure of a nation, such as its major
financial institutions. The possibility of DDoS attacks has also been identified for quantum networks.
In this theoretical work, we introduce a quantum analogue of classical entropic DDoS detection
systems and apply it in the context of detecting an attack on a quantum network. In particular, we
examine DDoS attacks on a quantum repeater and harness the associated entanglement entropy for
the detection system. Our results extend the applicability of quantum information from the domain
of data security to the area of network security.
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1. Introduction

A central aim of quantum information science is to design quantum systems that per-
form information tasks [1]. Prominent examples of such work involved deriving quantum
analogues of classical information technologies and demonstrating an advantage by utiliz-
ing the quantum resource. For instance, the property of superposition is used by quantum
models of computation to drastically outperform the best classical supercomputers on
certain tasks [2,3]. Another example is the quantum analogues of classical communication
networks which are simply referred to as quantum networks [4]. In such networks, quan-
tum information can be teleported [5], notably to distances exceeding 1000 km [6]. Further
protocols include secure key distribution which are predicated on the impossibility to copy
quantum information [7].

Beyond this established work, a direction ahead is to design novel quantum informa-
tion technologies by harnessing our understanding of the classical case. Our main result is
to demonstrate progress in this area.

Distributed Denial-of-Service (DDoS) attacks are a significant issue in network se-
curity [8,9], and various methods have been developed to detect the attacks in classical
networks. The possibility of DDoS attacks has also been identified for quantum net-
works [7,10–12]. In our theoretical work, we designed a detection system for such attacks
that occur in this quantum setting.

2. Classical DDoS

In classical networks, information is transmitted in the form of data packets, and the
role of directing this traffic is performed by routers. To initiate a DDoS flooding attack,
many routers would direct packets from multiple attack nodes to a victim node. The intent
behind this flood of traffic is to overload the victim node so that it becomes unresponsive
to legitimate traffic.

DDoS attacks are rather frequent events [8,9], and their reach can extend into the
critical infrastructure of a nation [13]. These include attacks on major financial institutions,
such as banks [14,15] and exchanges [16].
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Preventing a DDoS attack requires most essentially the ability to identify the attack
traffic as early as possible [17]. To achieve this capability, detection systems have been
designed using the Shannon entropy:

H(X) ≡ −∑
i

pi log pi, (1)

where pi are the probabilities associated with random variable X, and logarithms are taken
to base 2.

Reviews of such entropic approaches can be found in [9,17,18]. We briefly outline one
of these methods [19].

A flow at a router is group of packets categorized as

fij(ui, dj, t) ≡ {< ui, dj, t > |ui ∈ U, dj ∈ D}, (2)

where i, j ∈ Z+, U is the set of the upstream routers, D denotes the set of destination
addresses from the router, and t is the time stamp. Let | fij(ui, dj, t)| represent the number
of packets of flow fij at time t. For a given time interval ∆T, the variation of the number of
packets for a given flow is defined as

Nij(ui, dj, t + ∆t) ≡ | fij(ui, dj, t + ∆T)| − | fij(ui, dj, t)|. (3)

If | fij(ui, dj, t)| = 0, then Nij(ui, dj, t + ∆T) is the number of packets of flow fij that went
through the router during time interval ∆T. The quantity

pij(ui, dj, t + ∆T) =
Nij(ui, dj, t + ∆T)

∑∞
i=1 ∑∞

j=1 Nij(ui, dj, t + ∆T)
, (4)

gives the probability of the flow fij over all flows at the router with

∞

∑
i=1

∞

∑
j=1

pij(ui, dj, t + ∆T) = 1. (5)

The computation of the Shannon entropy (1) at the router is obtained through

H(F) = −∑
i,j

pij(ui, dj, t + ∆T) log pij(ui, dj, t + ∆T), (6)

where F is the associated random variable with respect to flows during ∆T. If the total
number of flows is constrained to N, then (6) is rather simply

H(F) = H(p1, p2, . . . , pN) = −
N

∑
i=1

pi log pi, (7)

with 0 ≤ H(F) ≤ log N. The lower bound occurs when there is only one flow.
In order to model a DDoS attack, a number of assumptions are made. These are that

there is no extraordinary change of traffic in a very short time for the non-attack case, the
number of attack packets is at least an order of magnitude higher than that of normal
flows, there is only one attack ongoing at a time, and the number of flows is stable for both
non-attack and attack cases.

Suppose attack flows start passing through the router at t = (n + 1)τ; hence, t = nτ
signifies the time at the router just before the attack. The respective distributions are

{p(n+1)τ
1 , p(n+1)τ

2 , . . . , p(n+1)τ
N }, (8)

{pnτ
1 , pnτ

2 , . . . , pnτ
N }. (9)
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A consequence of the assumptions is that pnτ
k � p(n+1)τ

k for some k. Further reasoning
with Jensen’s inequality leads to

−
N

∑
i=1

pnτ
i log pnτ

i � −
N

∑
i=1

p(n+1)τ
i log p(n+1)τ

i . (10)

Expressing this in terms of the entropy (7) gives

H(Fnτ)� H(F(n+1)τ). (11)

The entropy at the router drops dramatically as soon as attack flows are passing through,
thereby allowing for an ability to detect an attack as early as possible.

3. Quantum Networks

Quantum networks [4] generate entanglement over long distances. These entangle-
ment flows are routed through devices known as repeaters [20,21], which perform entan-
glement swapping to connect two spatially entangled links into a longer entangled link.

To illustrate an instantiation of this task, we will utilize Bell states

|βxy〉 =
|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |ȳ〉√

2
, (12)

where the bar denotes negation and we have a choice between xy = 00, 01, 10, or 11. With
respect to the computational basis states, the quantum information in the Bell state (12)
takes the form (

ȳ√
2

,
y√
2

,
(−1)xy√

2
,
(−1)x ȳ√

2

)
. (13)

Consider a quantum network which has to perform a routing task between two nodes.
A request node needs to share a Bell state with a receiver node, with the constraint that
the request node is unable to directly communicate with the receiver node. Despite the
apparent difficulty, this task can be accomplished through the use of a quantum repeater
located at another node.

We start by generating Bell pairs at both the request node (qubits A and B) and the
repeater node (qubits C and D). One qubit (B) of the request pair reaches the repeater to be
Bell projected with a qubit (C) at the repeater.

The joint state can be written as

|Request〉 ⊗ |Repeater〉 ≡ |β00〉A,B ⊗ |βxy〉C,D

= 1
2 (|βxy〉A,D ⊗ |β00〉B,C)

+ |βx̄y〉A,D ⊗ |β10〉B,C (14)

+(−1)x |βxȳ〉A,D ⊗ |β01〉B,C

+(−1)x |βx̄ȳ〉A,D ⊗ |β11〉B,C .

The repeater performs a Bell state projection on BC. This returns one of four possible
outcomes with consequences for AD:

|β00〉B,C → |βxy〉A,D

|β01〉B,C → (−1)x |βxȳ〉A,D

|β10〉B,C → |βx̄y〉A,D (15)

|β11〉B,C → (−1)x |βx̄ȳ〉 .
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Depending on the outcome, the repeater applies a particular unitary operator to
qubit D:

(I⊗ I) |βxy〉A,D ,

(I⊗ (−1)xσ̂1)(−1)x |βxȳ〉A,D ,

(I⊗ (−1)yσ̂3) |βx̄y〉A,D , (16)

(I⊗ (−1)x+yσ̂3σ̂1)(−1)x |βx̄ȳ〉A,D ,

where σ̂1 = |0〉 〈1|+ |1〉 〈0| , σ̂2 = −i |0〉 〈1|+ i |1〉 〈0| and σ̂3 = |0〉 〈0| − |1〉 〈1|. Afterwards,
the non-projected qubit (D) of the repeater pair leaves towards the destination node. This
results in the desired output of having state |βxy〉A,D shared between the request node
and receiver.

We want to view this procedure in terms of the von Neumann quantum entropy [1],
which is defined as

S(ρ) ≡ −Tr(ρ log ρ), (17)

where ρ is a density operator. The entropy is zero if and only if it is a pure state. For an
arbitrary composite system with subsystems K and L, the joint and conditional entropy are

S(ρKL) ≡ −Tr(ρKL log ρLK), (18)

S(ρK|ρL) ≡ S(ρKL)− S(ρL), (19)

where ρK = TrL(ρKL) and ρL = TrK(ρKL). Suppose ρKL is a pure state; then, ρKL is
entangled if and only if

S(ρK|ρL) < 0. (20)

In this case, the entropy of either subsystem, S(ρK) or S(ρL), is referred to as the entangle-
ment entropy.

In the repeater, the density operator is

ρC,D = |βxy〉B,C 〈βxy|B,C , (21)

and the associated conditional entropy is

S(ρC|ρD) = S(ρC,D)− S(ρD) = 0− 1 = −1, (22)

which indicates entanglement (20) as expected. Note that at the time before projection,
qubits A and D are not entangled

S(ρA|ρD) = S(ρA,D)− S(ρD) = 2− 1 = 1. (23)

For the output state, the density operator takes the form

ρA,D = |βxy〉A,D 〈βxy|A,D , (24)

and the associated conditional entropy is

S(ρA|ρD) = S(ρA,D)− S(ρD)

= 0− 1 = −1, (25)

signifying entanglement, with a loss of it in

S(ρC|ρD) = S(ρC,D)− S(ρD)

= 2− 1 = 1. (26)
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In terms of the joint entropy, just before projection (22), we see that S(ρC,D) = 0, which
specifies a pure state. After projection (26), we have that S(ρC,D) = 2, which signifies
missing information in CD. Part of that missing information moved, as described by the
updated entropy S(ρA,D) = 0 in the output |βxy〉A,D.

4. Quantum DDoS

Quantum networks can also experience DDoS attacks [10,22], which poses a significant
threat to its quantum key distribution protocols [7,11]. Given that quantum repeaters have
a maximum session capacity [23], we consider DDoS attacks on a repeater where service
requests exceed that maximum capacity.

The entanglement entropy will be used to formulate a DDoS detection system anal-
ogous to the classical case (11). To derive this, we utilize various aspects of the material
in [24] towards our specific application.

Our model starts with the request node generating |β00〉A,B, with qubit B being sent
to the repeater. The repeater generates |β00〉C,D, which can be viewed as an instantiation
of |βxy〉C,D.

We consider the quantities before the projection. The total system is ρA,B,C,D,
which denotes

|β00〉A,B |β00〉C,D 〈β00|A,B 〈β00|C,D , (27)

and the subsystem held at the repeater is ρB,C,D, as it excludes ρA. Given qubits C and D
are jointly in a pure state, we have that

S(ρB,C,D) = S(ρB) = 1. (28)

The qubit B is maximally mixed, since it is entangled with qubit A in a Bell state. Thus, the
entanglement entropy of qubit A before the projection equates to

S(ρA) = S(ρB,C,D). (29)

We take the partial trace to obtain the density operator for qubit D

ρD = TrABC(ρA,B,C,D). (30)

We have that S(ρD) = 1, since it is entangled with ρC.
The entanglement entropy forms a crucial role for a repeater session. A successful

session occurs when the entanglement is swapped (15). The swapping is successful only if
the repeater uses some rank-one orthogonal projectors Πi such that no matter what outcome
occurs at the repeater on qubits B and C, the value of the entanglement entropy of ρA before
projection must equal the value of the entanglement entropy of ρA after projection.

We proceed to examine the quantities after the projection. If the repeater obtains
outcome i, then the density operator of D is

ρDi =
1
pi

TrABC(ΠiρA,B,C,D), (31)

where pi is the associated Born probability. Given

∑
i

Πi = I, (32)

we have that
ρD = ∑

i
piρDi . (33)
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After measurement, qubits A and D are in a pure entangled state. The entanglement
entropy of D equates to the entanglement entropy of A after projection

S(ρDi ) = S(ρA). (34)

Using the crucial condition that a successful session requires the entropy before projection
and entropy after projection of ρA to equate, we can formulate relationships between the
quantities before and after projection. Specifically, using (29) and (34), we obtain

S(ρDi ) = S(ρB,C,D), (35)

and furthermore
S(ρB,C,D) = S(ρDi ) = ∑

i
piS(ρDi ). (36)

Applying the concavity inequality [24] to (33) results in

S(ρD) ≥∑
i

piS(ρDi ). (37)

Combining (36) and (37) gives

S(ρB,C,D) = ∑
i

piS(ρDi ) ≤ S(ρD). (38)

Therefore, before the projection, one can predict that a successful session is possible when
and only when

S(ρB,C|ρD) = S(ρB,C,D)− S(ρD) ≤ 0. (39)

A failed session will occur when S(ρB,C|ρD) > 0. For our specific case (27), we have that
S(ρB,C|ρD) = 0, which implies a successful session ahead.

The capacity of the repeater is defined as the maximum number of sessions it can
facilitate simultaneously, and this is directly related to the number of Bell pairs that can
be stored in memory [23]. In our case, this would be the maximum number of copies of
ρC,D generated at a time to keep the service at full capacity. After that time, any unused
Bell pairs get destroyed, and the system regenerates to full capacity at the next time point.

With respect to capacity, we modify our previous analysis to N copies of system
ρA,B,C,D for a large N. The repeater would perform a complete projective measurement on
(ρB,C)

⊗N . In this case, all the entropies are multiplied by N. Hence, the condition (39) for
sessions is maintained, and we can interpret it in terms of capacity.

In [24], it was shown that a negative conditional entropy in an entanglement-swapping
protocol equals the number of left Bell pairs. Harnessing this reasoning in our quan-
tum repeater scenario implies that if we have S(ρB,C|ρD) < 0 before the projection,
then −S(ρB,C|ρD) is the number of Bell pairs left afterwards in the memory. It can be
viewed as quantifying the unused capacity after the session requests have been fulfilled. If
S(ρB,C|ρD) > 0, it not possible to carry out a session to begin with, and the system predicts
an unresponsive service due to requests exceeding the capacity. Therefore, (39) can be used
to model a DDoS attack.

To design a detection system, suppose a flood of attack requests reaches a repeater
at specific time t = (n + 1)τ. We make the same assumptions about the network traffic
of the attack requests as in the previous classical case. For example, here we also assume
the number of attack requests is at least an order of magnitude higher than that of normal
requests. The entropy of the requests at the repeater is quantified as

S(ρnτ
B )� S(σ(n+1)τ

B ), (40)
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where ρ is used to label the systems involved prior to attack, and σ denotes the systems
involved in the attack (the superscripts signify the respective times). The repeater generates
the same full capacity at each time point; hence,

S(ρnτ,nτ
C,D ) = S(σ(n+1)τ,(n+1)τ

C,D ), (41)

and with (40), we obtain

S(ρnτ,nτ,nτ
B,C,D )� S(σ(n+1)τ,(n+1)τ,(n+1)τ

B,C,D ). (42)

From (41), we have that
S(ρnτ

D ) = S(σ(n+1)τ
D ). (43)

Combining this with (42) produces an entropic DDoS detection formula at the repeater

S(ρnτ,nτ
B,C |ρ

nτ
D )� S(σ(n+1)τ,(n+1)τ

B,C |σ(n+1)τ
D ). (44)

The conditional entropies in (44) encode both the requests and the capacity, thereby provid-
ing a mechanism for early detection of a DDoS attack. In an attack, this entropy increases
dramatically at the repeater, signifying a drastic reduction in capacity.

It is important to note that in this attack scenario, the capacity for service may still be
available, in that (39) is still satisfied. What is of importance to the detection system (for
early detection) is that there has been a drastic change in capacity, as expressed through (44).
Hence, we use (44) to detect the attack. This line of reasoning follows from the classical
system, and thus, in this work we have provided a quantum DDoS detection system that is
analogous to the classical case (11).

5. Discussion

To address implementation, a large number of low-level design features need to be
addressed. One issue is for the node to compute the quantum entropy using some subset
of the network traffic. Various quantum algorithms for calculating entropy have been
developed [25–27], and future work would involve integrating these methods for a refined
detection system.

In classical networks, after detecting a DDoS attack, it is common to employ a mitiga-
tion method [8]. As a result, the service capacity is unaffected, leaving service available
to legitimate traffic. Future work on our quantum DDoS case could involve developing
mitigation methods based on quantum resources.

We illustrate this with a simple method that could be used to develop a more sophisti-
cated strategy. Suppose we have attack Bell states |β00〉

(n+1)τ,(n+1)τ
A1B1

and |β00〉
(n+1)τ,(n+1)τ
A2B2

.
The labels A1 and A2 refer to the qubits at the respective attack nodes, and labels B1 and
B2 are the qubits that reach the repeater at t = (n + 1)τ (see Appendix A). Under nor-
mal conditions, the repeater would perform a projection with the Bell pairs generated at
the repeater.

Given that the attack has been detected, the repeater performs a joint projective
measurement on the attack qubits themselves, B1 and B2 at t = (n + 1)τ. We can write
this as

|β00〉
(n+1)τ,(n+1)τ
A1B1

⊗ |β00〉
(n+1)τ,(n+1)τ
A2B2

(45)

= 1
2 (|β00〉

(n+1)τ,(n+1)τ
A1 A2

⊗ |β00〉
(n+1)τ,(n+1)τ
B1B2

)

+ |β01〉
(n+1)τ,(n+1)τ
A1 A2

⊗ |β01〉
(n+1)τ,(n+1)τ
B1B2

(46)

+ |β10〉
(n+1)τ,(n+1)τ
A1 A2

⊗ |β10〉
(n+1)τ,(n+1)τ
B1B2

+ |β11〉
(n+1)τ,(n+1)τ
A1 A2

⊗ |β11〉
(n+1)τ,(n+1)τ
B1B2

.
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This joint measurement would swap the entanglement to qubits A1 and A2, which are
at the attack nodes. Consequently, the Bell pairs generated at the repeater are not used,
thereby leaving the repeater’s capacity available for legitimate traffic.

In a large classical network, it is advantageous to devise a traceback method [19] so to
identify the source of the attack. Both classical and quantum networks can be modelled
as a directed acyclic graphs, where the upstream routers could be viewed as parent nodes
and the downstream routes as children nodes. Hence, an interesting direction would be
to employ quantum causal models [28] to provide a traceback model for DDoS attacks on
a quantum network. The attacks could be formulated in terms of do-interventions and
would allow the ability to apply a quantum do-calculus or a quantum causal discovery
algorithm to carry out successful traceback for a DDoS attack on a quantum network.

There are a number of ways in which this research could be extended for more practical
scenarios. One direction would be to investigate how this entropic detection system could
be modified for near-term quantum networks, such as trusted relay networks.

Another research direction would be to explore how this work translates into repeater
scenarios involving mixed states. Such cases are of practical importance for quantum
networks given channel noise and the imperfections of local devices. One possibility for
such modeling is to utilize Werner states for the entanglement swapping protocol and to
derive analogous results.

Furthermore, one can consider cases involving multiple repeaters to generate entan-
glement over farther and farther distances. For such practical cases and where mixed states
are employed, the entanglement decreases exponentially with the number of swappings.
Finding potential DDoS attacks within such scenarios and designing the associated entropic
DDoS detection systems is left for future work.

6. Conclusions

DDoS attacks are a central topic in classical network security and have been identified
to be significant threat tp quantum networks. In this work, we designed a quantum
analogue of a classical DDoS detection system and applied it in the context of a quantum
network. We hope that our design contributes to extending the applicability of quantum
information from the domain of data security to area of network security.
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Appendix A

Derivation of equations in main text:

|β00〉A,B |βxy〉C,D =

(
|00〉A,B + |11〉A,B√

2

)
⊗
(
|0y〉C,D + (−1)x |1ȳ〉C,D√

2

)
(A1)

=
1
2
(|00〉A,B |0y〉C,D + (−1)x |00〉A,B |1ȳ〉C,D (A2)

+ |11〉A,B |0y〉C,D + (−1)x |11〉A,B |1ȳ〉C,D) (A3)

=
1
2
(|0y〉A,D |00〉B,C + (−1)x |0ȳ〉A,D |01〉B,C (A4)

+ |1y〉A,D |10〉B,C + (−1)x |1ȳ〉A,D |11〉B,C) (A5)

=
1
4

[
2 |0y〉A,D |00〉B,C + 2(−1)x |1ȳ〉A,D |11〉B,C (A6)

+ 2(−1)x |0ȳ〉A,D |01〉B,C + 2 |1y〉A,D |10〉B,C

]
(A7)

=
1
2

[
1
2
(|0y〉A,D |00〉B,C + |0y〉A,D |11〉B,C (A8)

+ (−1)x |1ȳ〉A,D |00〉B,C + (−1)x |1ȳ〉A,D |11〉B,C) (A9)

+
1
2
(|0y〉A,D |00〉B,C − |0y〉A,D |11〉B,C (A10)

+ (−1)x̄ |1ȳ〉A,D |00〉B,C − (−1)x̄ |1ȳ〉A,D |11〉B,C) (A11)

+
1
2
((−1)x |0ȳ〉A,D |01〉B,C + (−1)x |0ȳ〉A,D |10〉B,C (A12)

+ |1y〉A,D |01〉B,C + |1y〉A,D |10〉B,C) (A13)

+
1
2
((−1)x |0ȳ〉A,D |01〉B,C − (−1)x |0ȳ〉A,D |10〉B,C (A14)

− |1y〉A,D |01〉B,C + |1y〉A,D |10〉B,C)

]
(A15)

=
1
2

[(
|0y〉A,D + (−1)x |1ȳ〉A,D√

2

)(
|00〉B,C + |11〉B,C√

2

)
(A16)

+

(
|0y〉A,D + (−1)x̄ |1ȳ〉A,D√

2

)(
|00〉B,C − |11〉B,C√

2

)
(A17)

+

(
(−1)x |0ȳ〉A,D + (−1)2x |1y〉A,D√

2

)(
|01〉B,C + |10〉B,C√

2

)
(A18)

+

(
(−1)x |0ȳ〉A,D + (−1)x+x̄ |1y〉A,D√

2

)(
|01〉B,C − |10〉B,C√

2

)]
(A19)

=
1
2
(|βxy〉A,D ⊗ |β00〉B,C + |βx̄y〉A,D ⊗ |β10〉B,C) (A20)

+ (−1)x |βxȳ〉A,D ⊗ |β01〉B,C + (−1)x |βx̄ȳ〉A,D ⊗ |β11〉B,C .

We also applied the following operators to the respective states to obtain the
outcome |βxy〉A,D:
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(I⊗ (−1)xσ̂1)(−1)x |βxȳ〉A,D = (I⊗ (−1)xσ̂1)

(
(−1)x |0ȳ〉A,D + |1y〉A,D√

2

)
(A21)

=
1√
2
(|0〉A ⊗ (−1)x(−1)xσ̂1 |ȳ〉D) (A22)

+
1√
2
(|1〉A ⊗ (−1)xσ̂1 |y〉D) (A23)

=
1√
2
(|0〉A ⊗ (−1)x+x |y〉D) (A24)

+
1√
2
(|1〉A ⊗ (−1)x |ȳ〉D) (A25)

=
1√
2
(|0〉A ⊗ |y〉D) (A26)

+
1√
2
((−1)x |1〉A ⊗ |ȳ〉D) (A27)

=

(
|0y〉A,D + (−1)x |1ȳ〉A,D√

2

)
(A28)

= |βxy〉A,D (A29)

(I⊗ (−1)yσ̂3) |βx̄y〉A,D = (I⊗ (−1)yσ̂3)

(
|0y〉A,D + (−1)x̄ |1ȳ〉A,D√

2

)
(A30)

=
1√
2
(|0〉A ⊗ (−1)yσ̂3 |y〉D) (A31)

+
1√
2
(|1〉A ⊗ (−1)y(−1)x̄σ̂3 |ȳ〉D) (A32)

=
1√
2
(|0〉A ⊗ (−1)y(−1)y |y〉D) (A33)

+
1√
2
(|1〉A ⊗ (−1)y(−1)x̄(−1)ȳ |ȳ〉D) (A34)

=
1√
2
(|0〉A ⊗ (−1)y+y |y〉D) (A35)

+
1√
2
(|1〉A ⊗ (−1)y+ȳ(−1)x̄ |ȳ〉D) (A36)

=
1√
2
(|0〉A ⊗ |y〉D) (A37)

+
1√
2
(|1〉A ⊗ (−1)(−1)x̄ |ȳ〉D) (A38)

=
1√
2
(|0〉A ⊗ |y〉D) (A39)

+
1√
2
(|1〉A ⊗ (−1)x |ȳ〉D) (A40)

=

(
|0y〉A,D + (−1)x |1ȳ〉A,D√

2

)
(A41)

= |βxy〉A,D (A42)
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(I⊗ (−1)x+yσ̂3σ̂1)(−1)x |βx̄ȳ〉A,D = (I⊗ (−1)x+yσ̂3σ̂1)

(
(−1)x |0ȳ〉A,D − |1y〉A,D√

2

)
(A43)

=
1√
2
(|0〉A ⊗ (−1)x(−1)x+yσ̂3σ̂1 |ȳ〉D) (A44)

− |1〉A ⊗ (−1)x+yσ̂3σ̂1 |y〉D) (A45)

=
1√
2
(|0〉A ⊗ (−1)x(−1)x+y(−1)y |y〉D) (A46)

− |1〉A ⊗ (−1)x+y(−1)ȳ |ȳ〉D) (A47)

=
1√
2
(|0〉A ⊗ (−1)x+y+x+y |y〉D) (A48)

− |1〉A ⊗ (−1)x+y+ȳ |ȳ〉D) (A49)

=
1√
2
(|0〉A ⊗ |y〉D) (A50)

− |1〉A ⊗−(−1)x |ȳ〉D) (A51)

=
1√
2
(|0〉A ⊗ |y〉D) (A52)

+ (−1)x |1〉A ⊗ |ȳ〉D) (A53)

=

(
|0y〉A,D + (−1)x |1ȳ〉A,D√

2

)
(A54)

= |βxy〉A,D (A55)
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