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Abstract: A method is proposed for describing the dynamics of systems of interacting particles in
terms of an auxiliary field, which in the static mode is equivalent to given interatomic potentials, and
in the dynamic mode is a classical relativistic composite field. It is established that for interatomic
potentials, the Fourier transform of which is a rational algebraic function of the wave vector, the
auxiliary field is a composition of elementary fields that satisfy the Klein-Gordon equation with
complex masses. The interaction between particles carried by the auxiliary field is nonlocal both in
space variables and in time. The temporal non-locality is due to the dynamic nature of the auxiliary
field and can be described in terms of functional-differential equations of retarded type. Due to the
finiteness mass of the auxiliary field, the delay in interactions between particles can be arbitrarily
large. A qualitative analysis of the dynamics of few-body and many-body systems with retarded
interactions has been carried out, and a non-statistical mechanisms for both the thermodynamic
behavior of systems and synergistic effects has been established.
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1. Introduction

Currently, theoretical studies of both thermodynamic properties and kinetic processes
of many-body systems are carried out mainly on the basis of statistical mechanics in the
framework of the non-relativistic approximation. In this approximation, the interaction
between particles is determined by the potential energy, which depends on the instanta-
neous configuration of the system. As a result, a system consisting of a finite number of
particles has a finite number of degrees of freedom. The microscopic dynamics of such a
system is described by the deterministic equations of classical mechanics, in which there
is no difference between the past and the future. However, such a picture fundamentally
contradicts the thermodynamic behavior of systems observed in reality.

A variant of resolving this fundamental contradiction by introducing the concept of
probability was proposed by Maxwell [1–3] and Boltzmann [4,5] within the framework of
the kinetic theory of gases.

The decisive contribution to the creation of statistical mechanics was made by Gibbs [6],
who introduced probability measures in the phase space of many-particle Hamiltonian sys-
tems. The construction of the molecular-kinetic theory of Brownian motion by Einstein [7]
and Smoluchowski [8] and its triumphant experimental confirmation cast aside “almost”
all doubts about the applicability of the concept of probability in physics. However, here
it is appropriate to mention the work [9], in which Ritz and Einstein expressed mutually
exclusive hypotheses about the nature of the irreversibility phenomenon: “Ritz considers
the limitation in the form of retarded potentials as one of the sources of the second law of
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thermodynamics, while Einstein suggests that irreversibility based solely on probabilistic
grounds”. An encyclopedic article by P. Ehrenfest and T. Ehrenfest [10] played an excep-
tional role in the development of the statistical approach in mechanics. In this work, the
methods for calculating probabilities and distribution functions were not so much justified
as illustrated using a large number of examples.

Note that the introduction of probabilistic representations into classical dynamics
means that the solution of the Cauchy problem for a system of particles is not unique,
which contradicts the well-known existence and uniqueness theorem for the Hamiltonian
equations of motion of the system. To eliminate this contradiction, it is necessary to
introduce an external source that has a non-mechanical nature and affects the dynamics of
the system. At the end of the 19th–beginning of the 20th century, there were two mutually
irreconcilable concepts containing such a source:

• molecular-kinetic mechanistic theory, in which probabilistic assumptions serve as such
a source (Maxwell, Boltzmann, Gibbs);

• the concept of energeticism, in which the very existence of atoms was denied, and
the real world is various manifestations of a single hidden substantial and dynamic
fundamental principle of the world, called energy (Helm [11], Mach [12], Ostwald [13],
Duhem [14]).

Note that both the probability in the kinetic theory and the mysterious unified energy
in the concept of energeticism are equally hidden non-mechanical sources, and only the
experimental proof of the existence of atoms [15] was the reason for the hasty rejection of
the probability-free versions of the microscopic foundation of thermodynamics. Indeed,
the existence of atoms does not in any way remove the contradiction between the exact
results of classical mechanics (the invariance of dynamics with respect to time reversal
t→ −t, the Liouville theorem on the conservation of phase volume, the Poincaré recurrence
theorem) and the laws of thermodynamics. Therefore, deterministic classical mechanics
and the concept of probability without establishing the physical mechanism of system
stochastization mutually exclude each other. In this regard, it is appropriate to note the
words of R. Newton [16]: “It should be clear by now that Maxwell’s introduction of
probabilities had opened a can of worms, but there was no way of getting them back into
the can”.

The classical notion that interactions between particles can be described in terms of
potential energy depending on the instantaneous positions of the particles is limited to the
realm of non-relativistic physics. In the framework of the relativistic theory, the interaction
between particles is carried out through the field, so the system of interacting particles
actually consists of two substances: both particles and the field. Therefore, the dynamics of
a system of interacting particles must contain:

1. equations of motion of particles immersed in a field;
2. equations of the dynamics of the field created by these particles.

An example of a theory of this type is classical electrodynamics, in which the interac-
tion between charged particles is carried out through a vector (electromagnetic) field: the
field dynamics is described by Maxwell’s equations, and the particle dynamics is described
by relativistic dynamics [17–19].

The dynamics of a system of particles interacting through a field is fundamentally
different from the dynamics of a system of particles with direct instantaneous interactions
between them. The reasons for this difference are as follows.

1. Particles and the field are two interconnected subsystems, within each of which there
are no interactions. In the general case, a subsystem of a Hamiltonian system is
non-Hamiltonian [20]. Although trajectories in the phase space of a subsystem of
particles certainly exist, but both the Liouville theorem on the conservation of phase
volume and the Poincaré recurrence theorem for a subsystem of particles do not hold.

2. Due to the limited velocity of the field propagation, the instantaneous forces acting
on each of the particles of the system are determined by the positions of all other



Quantum Rep. 2021, 4 535

particles at earlier times. Therefore, the dynamics of the system depends not only
on its initial state, but also on its prehistory. Thus, the field character of interactions
between particles leads to the phenomenon of heredity.

Starting from 1900 and until recently, several papers have appeared that investigate
the dynamics of few-body model systems with signs of thermodynamic behavior. First
of all, Lamb proposed a model of an oscillator attached to an infinite string [21,22] and
showed that the oscillations of this oscillator are damped. From a modern point of view, the
Lamb model is an oscillator immersed in a scalar field with an infinite number of degrees
of freedom. The oscillator energy is irreversibly absorbed by this field.

Further, in the papers [23–27], several models of two-body systems with delayed
interactions between particles are investigated. The dynamics of such systems is described
by functional-differential equations of retarded type. In all the studied models, the irre-
versibility of the dynamics was established.

Finally, it was established in the paper [28] that the delay in interactions between
particles leads to the impossibility of stationary free vibrations of a one-dimensional crystal
lattice. Depending on the type of the model potential, only two variants of free vibrations
of a one-dimensional lattice are possible.

• Damping of oscillations of all atoms and transition of the system to the state of rest
at large times t → ∞. In this case, in the presence of an alternating external field,
stationary forced oscillations arise in the system and a dynamic equilibrium is reached
between the system of atoms and the external field. In essence, such a state is nothing
but a thermodynamic equilibrium between atoms and the field they create.

• The amplitude of at least part of the oscillations increases indefinitely with time. This
means the destruction of the lattice.

Within the framework of this model, the relativistic effect of interaction delay is a
non-statistical mechanism for establishing dynamic equilibrium in the system “particles +
field created by them”. This state is identical to thermodynamic equilibrium.

Thus, the dynamics of a classical system of particles within the framework of the field
concept of interactions between particles contains the fundamental possibility of describing
thermodynamic behavior without using probabilistic assumptions that cannot be verified
in any way.

The problem of studying condensed systems within the framework of the non-
relativistic physics consists of two parts.

1. Finding interatomic potentials describing the interaction between resting atoms. The
results of many years of intense efforts to calculate interatomic potentials are system-
atized in the papers [29–34]. However, the direct use of these results to calculate the
thermodynamic and kinetic properties of matter within the framework of statistical
mechanics, kinetic theory, and in approaches such as the molecular dynamics method
encounters practically insurmountable obstacles. Therefore, in theoretical studies,
instead of more or less real interatomic potentials, one has to restrict oneself to simple
model potentials, which qualitatively correspond to intuitive physical concepts.

2. Calculation of the partition function of a system of particles interacting through a
given interatomic potential. Exact solutions to this problem have been obtained only
for the simplest one- and two-dimensional models.

We will assume that the interaction between particles at rest can be represented in
terms of the scalar central two-particle potential v(r). This potential will serve as a starting
point for the transition from static interatomic potentials to an auxiliary relativistic dynamic
field, which is equivalent to interatomic potentials only in the static regime.
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2. Field-Theoretical Representation of Interatomic Interactions

As is known, interatomic interactions are of electromagnetic origin and only in the
case of rest they can be described using instantaneous interatomic potentials. Let us assume
that the static scalar interatomic potential v(r) can be represented as a Fourier integral:

v(r) =
∫ dk

(2π)3 ṽ(k) ei k r, (1)

where r = |r|, k = |k|.

2.1. Rational-Algebraic Model of Interatomic Potentials

Assume that the function ṽ(k) for real values of k is bounded and is a rational algebraic
function of k2.

ṽ(k) =
Q2m(k)
P2n(k)

, (m < n), (2)

where Q2m(k) and P2n(k) are polynomials of degree 2m and 2n, respectively:

P2n(k) =
n

∑
s=0

Cs k2s, Q2m(k) =
m

∑
s=0

Ds k2s, (3)

Cs, Ds are real coefficients.
Since the function ṽ(k) is bounded for all k, it follows that the polynomial P2n(k) has

no real roots. We restrict ourselves to the case when the multiplicity of each of the complex
roots of this polynomial is equal to one. Then the expansion of the function ṽ(k) into partial
fractions has the form

ṽ(k) =
n

∑
s=1

gs

k2 + µ2
s

, (4)

where gs and µs are, generally speaking, complex parameters, and ±iµs are the roots of the
polynomial P2n(k).

The function (4) corresponds to the potential of the form

v(r) =
1

4πr

n

∑
s=1

gs e−µsr, Re µs > 0. (5)

The simplest special case, when all µs are real, was studied in [35]. In this case, all
the coefficients gs of the expansion (5) are also real and the corresponding interatomic
potentials v(r) can be represented as a linear combination of Yukawa potentials.

Consider the general case when the imaginary parts of at least some of the µs are nonzero

µ±s = αs ± iβs, βs 6= 0. (6)

Note that the reality of the potential v(r) implies that each pair of mutually conjugate
parameters µ+

s , µ−s corresponds to a pair of mutually conjugate parameters g+s , g−s that
satisfy the condition

Im
{

g+s e−µ+
s r + g−s e−µ−s r

}
= 0. (7)

Thus, the total contribution of each pair of mutually complex conjugate parameters
µ+

s and µ−s to the total interatomic potential is real and has the form

vs(r) =
1

4πr
e−αsr(As cos(βsr) + Bs sin(βsr))

=

√
A2

s + B2
s

4πr
e−αsr sin(βsr + ψs),

(8)
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where As and Bs are real parameters related to g±s by the relation

g±s =
1
2
(As ± iBs). (9)

In this case, at least some of the contributions to the total interatomic potential are oscil-
lating (sinusoidal) potentials whose amplitudes Cs decrease according to the Yukawa law:

Cs =

√
A2

s + B2
s

4πr
e−αsr. (10)

Thus, the total static interatomic potential v(r), whose Fourier transform ṽ(k) is a
rational algebraic function of the square of the wave vector k2 = |k|2, can be represented as
a linear combination of elementary potentials vs(r):

vs(r) =
gs

4πr
e−µsr, Re µs > 0. (11)

For Im µs = 0 the corresponding elementary potential vs(r) is a Yukawa potential. For
Im µs 6= 0 the corresponding contribution to the total interatomic potential consists of pairs
of mutually complex conjugate elementary potentials of the form

v±s (r) = g±s e−(αs±iβs)r, g+s =
(

g−s
)∗. (12)

Each of the elementary potentials satisfies the equation(
∆− µ2

s

)
vs(r) = 0. (13)

2.2. Transition from Interatomic Potentials to Field Equations

In the paper [35] the notion of an auxiliary field ϕ(r, t) is introduced, which in the
static case (i.e., for particles at rest) coincides with the interatomic potential v(r), and
in the dynamic case describes the interaction between particles in terms of the classical
relativistic field.

The transition from the static field v(r) to the dynamic relativistic field ϕ(r, t) is
carried out in the field equations by replacing the Laplace operator ∆ to the d’Alembert
operator � [35–37]

∆ =⇒ � = ∆− 1
c2

∂2

∂t2 . (14)

Applying this procedure to elementary potentials vs(r) leads to the Klein-Gordon-Fock
equation for elementary auxiliary fields ϕs(r, t)(

�− µ2
s

)
ϕs(r, t) = 0. (15)

Thus, the real auxiliary relativistic field, in terms of which the interaction between
particles is described, is a linear combination of, generally speaking, complex elementary
fields ϕs(r, t), each of which is characterized by the complex parameter µs and is described
by the corresponding Equation (15).

As a result, the system of interacting particles is a union of two subsystems.

1. Subsystem consisting of particles between which there is no direct interaction. The
impact of some particles on others is carried out only through the field created
by them.

2. A subsystem consisting of an auxiliary composite field without direct self-action. The
influence of the field at some points on the field at other points is carried out only
through particles. Regardless of the number of particles in the system, the auxiliary
field has infinitely many degrees of freedom.
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2.3. Green’S Functions of Elementary Fields and an Abundance of Interaction Retardations

The green function of the Klein-Gordon operator L̂s = �− µ2
s is defined by the equation(

�− µ2
s

)
Gs
(
r− r′, t− t′

)
= −δ

(
r− r′

)
δ
(
t− t′

)
(16)

and has the well-known form [38,39]

Gs
(
r− r′, t− t′

)
=

δ
(

t− t′ − |r−r′ |
c

)
4π|r− r′|

−θ

(
t− t′ − |r− r′|

c

)
cµs

J1

(
µs

√
c2(t− t′)2 − |r− r′|2

)
4π

√
c2(t− t′)2 − |r− r′|2

,

(17)

where θ(t) is the Heaviside step function, J1(x) is the Bessel function.
Hence follows the retarded potential of the Klein-Gordon field [39]

ϕs(r, t) =
∫

dr′
[

ρ
(

r′, t− |r−r′ |
c

)
4π|r− r′|

−µs

∞∫
0

ρ

(
r′, t− 1

c

√
ξ2 + |r− r′|2

)
J1(µsξ)

4π

√
ξ2 + |r− r′|2

dξ

]
,

(18)

where ρ(r, t) is the instantaneous microscopic density of the number of particles (atoms):

ρ(r, t) = ∑
a

δ(r− ra(t)). (19)

The Formula (18) contains two types of interaction delays between the points r and r′.

1. A uniquely defined delay that corresponds to a wave propagating at the speed of
light c

τ1 =
|r− r′|

c
. (20)

2. An infinite set of delays

τ2(ξ) =

√
ξ2 + |r− r′|2

c
≥ τ1, (0 < ξ < ∞), (21)

depending on the parameter ξ and corresponding to Klein-Gordon waves propagating
with all velocities from 0 up to c. Note that the delay τ2(ξ) can take on arbitrarily
large values, which means that the arbitrarily distant past of the system has a direct
influence on its evolution at the current time.

Thus, the connection between the evolution of the relativistic auxiliary field ϕ(r, t)
and the dynamics of the system of particles generating this field is nonlocal both in space
variables and in time. Therefore, the interaction between particles carried through the
auxiliary field is also nonlocal. Temporal nonlocality is due to the dynamic nature of the
auxiliary field and can be described in terms of functional-differential equations of retarded
type. It is essential that, according to the formula (21), the delay time of interactions
between particles can be arbitrarily large.

Note that the system of particles with delayed interaction is not Hamiltonian. There-
fore, many exact results of Hamiltonian mechanics (for example, the Liouville theorem
on the conservation of the phase volume, the recurrence Poincaré theorem, etc.), which
greatly simplify the qualitative analysis of Hamiltonian systems, do not take place in the
dynamics of systems with retarded interactions. Moreover, even the Cauchy problem for
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the equations of dynamics of systems with delayed interactions is generally not correct,
since the solution of this problem depends not only on the state of the system at the initial
moment of time, but also on its entire prehistory (the hereditary effect). In this regard, it is
relevant to analyze the qualitative properties of solutions to the equations of dynamics of
systems with delayed interactions between particles.

3. Qualitative Analysis of System Dynamics within the Framework of the Field Form
of Interactions between Particles
3.1. Two Body Problem

Consider a model of a system consisting of two particles interacting through the
Klein-Gordon field ϕ(r, t) with parameters

µ± = α± iβ. (22)

The static potential in this case has the following form

v(r) =
A

4πr
e−αr sin(βr + ψ) (23)

and has infinitely many minimum points separated from each other by maximum points.
We restrict ourselves to an analysis of the one-dimensional dynamics of this system

along the straight line connecting the particles.
In the framework of the non-relativistic theory, each of the minimum points of the

potential is a point of stable equilibrium. Near each of the minimums of the potential, the
dynamics of the system is close to stationary harmonic oscillations, which can last for an
arbitrarily long time.

In the framework of the relativistic theory, there are also infinitely many static equilib-
rium states in which the distances between particles coincide with the minimum points of
the static potential defined by Equation (23). However, as shown in paper [27], in a system
of two particles with delayed interactions between them, all equilibrium states are unstable.
The fact is that the delay in the interaction between particles leads to the impossibility
of stationary harmonic oscillations in the vicinity of a minimum point: infinitely many
non-stationary oscillations appear in the system. In this case, the amplitude of at least part
of these oscillations increases with time. Thus, the minimum point of the static interparticle
potential, which in the framework of non-relativistic dynamics is a point of stable equi-
librium, ceases to be such in the framework of the relativistic theory: an arbitrarily small
initial perturbation at small times leads to the excitation of multiple harmonics with both
increasing and decreasing amplitudes.

The picture of the dynamics of a two-particle system with a multi-well static potential
is incomparably more varied than that of a system with one minimum. Let, at the initial
moment of time, the system be in the vicinity of some point of minimum of the multi-
well static potential. In the vicinity of this point, there are infinitely many non-stationary
oscillations with both increasing and decreasing amplitudes. In the case, the system
inevitably leaves the vicinity of the initial minimum point and ends up in the vicinity of
the neighboring minimum.

Note that the amplitude of spatial oscillations of the static potential in Equation (23)

C(r) =
A

4πr
e−αr (24)

is a monotonic function of the coordinate r, and the distances between the points of
neighboring minima of the potential differ little from each other. Therefore, there is a
predominant direction of jumps of the system between the points of minima of the static
potential v(r): this is the removal of particles from each other, i.e., r → ∞.

However, the situation changes significantly if the total static potential contains the
sum of at least two potentials with complex parameters µ±1 and µ±2 (µ±1 6= µ±2 ), respectively.
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In this case, the distribution of points of minima of the static potential becomes rather
irregular, and jumps between neighboring minima become chaotic-like. As an example,
Figure 1 shows a qualitative view of a static potential, which is the sum of two elementary
potentials with complex parameters µ±1 and µ±2 . The set of potential minima in this figure
is divided into groups separated from each other by relatively high barriers.

1 2 3 4 5

- 2

- 1

0

1

2
v(r

)

r
Figure 1. Qualitative representation of a static potential, which is the sum of two elementary potentials
with complex parameters µ±1 and µ±2 .

All jumps of the two-body system between the minima of one group occur more
frequently than jumps between different groups. This leads to the appearance of a hierarchy
of times in the dynamics of even a two-particle system and has signs of a synergistic effect.

3.2. Dynamics of a One-Dimensional Crystal and the Establishment of (Thermo)
Dynamic Equilibrium

Similar phenomena take place in the dynamics of the harmonic model of a one-
dimensional crystal with retarded interactions between particles [28]. In this crystal model,
all frequencies of oscillations are complex, and therefore stationary free oscillations of the
system are impossible. Therefore, within the framework of the relativistic dynamics of a
harmonic crystal at t→ ∞, only two scenarios of system evolution are possible.

1. The amplitudes of all free oscillations tend to zero with time. In this case, the energy
of the oscillating particles is transferred to the field through which the particles
interact. In the absence of a boundary, the field vanishes to infinity, taking energy
with it. All free vibrations stop. If the system of particles is placed in a box with
impenetrable boundaries for the field, then the field returns to the particles as a force
leading to forced stationary oscillations of the particles. This example illustrates a
probability-free dynamic mechanism for establishing thermodynamic equilibrium in
a system.

2. Amplitudes of at least part of oscillations of the crystal increase. In this case, the crystal
structure is rearranged, the description of which inevitably requires going beyond the
limits of the harmonic model. This phenomenon has signs of a synergistic effect.



Quantum Rep. 2021, 4 541

3.3. A Rather Amusing Example: Is Confinement Possible in Classical Relativistic Dynamics?

Note that a function vs(r) in the formula (11) formally satisfies the Equation (13) not
only under the condition Re µs > 0, but also under the opposite condition Re µs < 0. The
second option is usually not considered, assuming that the static inter-particle potential
vs(r) must tend to zero as r → ∞.

Nevertheless, let us consider a static potential of the type (11) for Re µs < 0 as applied
to the field form of interactions in classical systems

v(r) =
C

4πr
eαr, α > 0. (25)

This potential tends to infinity both at r → +0 and at r → +∞, and reaches its
minimum value r = α−1. Within the framework of classical mechanics, such a potential cor-
responds to the mutual entrapment of particles and the impossibility of dividing the system
of particles into constituent parts. This situation is formally analogous to the phenomenon
of quark confinement described in the framework of quantum chromodynamics.

We note the attractive properties of this potential.

• The dynamic field corresponding to this static potential satisfies the Klein-Gordon
equation and is therefore relativistic.

• This field is capable of ensuring the stability of a complex consisting of a finite number
of particles within the framework of the non-relativistic approximation.

However, the direct use of this potential encounters very significant and yet unsur-
mounted difficulties, which are as follows.

• When studying the oscillations of a two-particle system in the framework of the
relativistic theory, as is known, the complexity of the roots of the characteristic equa-
tion leads to the impossibility of stationary oscillations and the loss of stability of
the system.

• On the other hand, the infinite distance of particles from each other is hindered
by the unlimited growth of the potential at r � α−1. Unfortunately, a qualitative
analysis of the behavior of the system under the condition r & α−1 encounters obvious
fundamental difficulties.

4. Discussion and Conclusions

The main principles underlying this work are as follows.

1. A rigorous microscopic substantiation of both thermodynamics and kinetic theory,
based only on classical Newtonian mechanics, does not currently exist.

2. Interatomic interactions are of field origin. Therefore, any real system consists of
particles and a field generated by these particles and transmitting interactions between
these particles.

3. In the case of atoms at rest, the interaction between them can be described by inter-
atomic potentials. But in the case of moving atoms, the interaction is described in
terms of an auxiliary scalar relativistic field.

4. The auxiliary scalar field is a superposition of elementary fields, each of which is
characterized by its own generally speaking complex mass and satisfies the Klein-
Gordon equation. Parameters of elementary fields are uniquely expressed through
the characteristics of static interatomic potentials.

5. Due to the finiteness of the masses of elementary fields, the propagation velocity of the
Klein-Gordon fields can take on any values that are less than the speed of light. This
leads to the fact that the delay of interactions between particles can reach arbitrarily
large values.

6. Retardation of interactions between particles is a real physical mechanism leading to
the irreversibility of the dynamics of both many-body and few-body systems. Thus,
there is no need to use any probabilistic assumptions for the microscopic justification
of both thermodynamics and kinetics.
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Thus, the following are planned as future areas of research:

• The development of a non-statistical dynamic mechanism of irreversible thermody-
namic equilibrium in three-dimensional crystal structures is a generalization of our
results [28] obtained for one-dimensional lattices.

• Development of a mathematical apparatus for the theoretical study of the processes of
restructuring of the structure of microheterogeneous condensed systems.

• Search for methods for constructing microscopic thermodynamics and kinetics of
small systems.
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