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Abstract: In Newtonian physics, the equation of motion is invariant when the direction of time
(t→ −t) is flipped. However, in quantum physics, flipping the direction of time changes the sign of
the Schrödinger equation. An anti-unitary operator is needed to restore time reversal in quantum
physics, but this is at the cost of not having a consistent definition of time reversal applicable to
all fundamental theories. On the other hand, a quantum system composed of a pair of entangled
particles behaves in such a manner that when the state of one particle is measured, the second particle
‘simultaneously’ acquires a determinate state. A notion of absolute simultaneity seems to be inferred
by quantum mechanics, even though it is forbidden by the postulates of relativity. We aim to point
out that the above two problems can be overcome if the wavefunction is defined with respect to
proper time, which in fact is the real physical time instead of ordinary time.
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1. Introduction

Time reversal and simultaneity are time-dependent concepts. In Newtonian physics,
the equation of motion is second order in time; thus, if x(t) is a solution, then so is x(−t).
The equation of motion is said to be time-reversal invariant.

In quantum physics, Schrödinger’s equation is first order in time, and thus flipping
the direction of time (t→ −t) changes the sign of the equation. However, if the wavefunc-
tion ψ(x, t) satisfies Schrödinger’s equation, then ψ∗(x,−t) is a solution of the complex
conjugate of Schrödinger’s equation. The complex conjugation compensates for the change
in the sign of time (t → −t). Specifically, time reversal in quantum physics is defined by
an anti-unitary operator [1] that maps a wavefunction ψ(x, t) into its complex conjugate
ψ∗(x,−t) with an opposite sign of time. The anti-unitary operator restores the invariance
of time reversibility but at the cost of not having a general definition of time reversal
applicable to all fundamental theories [2].

Some authors [2–4] have questioned the standard definition of time reversal in quan-
tum mechanics. For these authors, time reversal should normally be represented by simply
flipping the sign of time (t → −t). In particular, according to Albert [3], the fact that
Schrödinger’s equation is first order in time entails that the evolution of quantum states
cannot possibly be invariant under time reversal; otherwise, it would be a theory where
nothing ever happens.

On the other hand, the laws of physics are invariant under Lorentz transformation.
In particular, simultaneity has no meaning in special relativity, independent of any frame
of reference, and there should be no preferred frame of reference [5,6]; thus, absolute
simultaneity has no sense.

However, a quantum system composed of a pair of entangled particles behaves in such
a manner that the quantum state of one particle cannot be described independently of that
of the other [7]. Standard quantum mechanics postulates that neither of the particles has a
determinate state until it is measured. Because both particles are correlated, it is necessary
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that when the state of one particle is measured, the second particle should ‘simultaneously’
acquire a determinate state.

Time reversal and simultaneity have been widely debated in the different interpreta-
tions and candidate theories of quantum mechanics, including the Copenhagen interpreta-
tion [8], Everett many-world theory [9], de Broglie–Bohm pilot-wave theory [10,11], and
GRW spontaneous collapse theory [12].

The Copenhagen interpretation considers standard quantum mechanics as only an
instrument that allows us to determine the effects of microscopic objects belonging to an
unknowable quantum realm on macroscopic instruments.

Everett’s many-world theory claims [13] that when a measurement is conducted on a
particle in a superposition state, deterministic branching takes place where, on one branch,
a first detector detects the particle while a second detector does not, and at the ‘same
instant’, but on the other branch (i.e., another world), the first detector does not detect
the particle while the second detector detects it. Unfortunately, there seems to be no clear
meaning of a ‘same instant’ for a multitude of disconnected worlds.

The de Broglie–Bohm theory considers that a corpuscle, such as an electron, always
has a well-determined position on a definite trajectory through physical space. However, its
movement is influenced by an associated wave function, giving rise to wave-like properties.
For a multi-particle system, the theory explicitly formulates the non-local dependence of
a particle’s evolution at a given instant on the positions of all other particles at the same
instant, implying absolute simultaneity. This would be acceptable if the de Broglie–Bohm
theory were Lorentz invariant, but unfortunately, it is not [14].

The GRW spontaneous collapse theory [12] modifies Schrodinger’s equation with
stochastic terms that have the effect of making a wavefunction obey Schrodinger’s equation
most of the time, except for exceedingly rare and random instants when it undergoes a
spontaneous collapse. The collapse modifies instantaneously and simultaneously all the
spatial arguments of the wavefunction. However, an instantaneous collapse in one Lorentz
frame may not be instantaneous in another.

The basic problem that remains is the inconsistency [15] of almost all of the above
models with relativity, and in particular, nonlocality [16] and simultaneity. The notion of
simultaneity is related to nonlocality, a notion that has been addressed in [17], and that we
keep for future research. In this study, we concentrate on simultaneity and time reversibility.

This paper aims to point out that the above two problems seem to emanate from not
choosing the appropriate notion of time in quantum mechanics. In Section 2, we review the
formalism of Minkowski spacetime and, in particular, the geometrical representation of
proper time. In Section 3, we define the wavefunction with respect to proper time, leading
to a notion of ‘proper-time-simultaneity’. We also propose deriving the corresponding
equations of motion with respect to proper time and discuss the proper-time-reversal
invariance with respect to these equations. In Section 4, we consider the non-relativistic
limit and aim to restore a general definition of time reversal that simply consists of flipping
the sign of time. In Section 5, we propose the derivation of the continuity equation with
respect to proper time. Section 6 presents a simple example illustrating the evolution of a
particle in a box according to the equations of motion with respect to proper time.

2. Invariant Spacetime Structure

We propose considering the evolution of a quantum system (a particle or a collection
of particles) from the perspective of proper time τ, by using the hyperbolic spacetime
structure inside a light cone associated with the particle. Specifically, we use the formalism
of Minkowski spacetime [18] as defined in a geometrical manner by Gourgoulhon [19].

The Minkowski spacetimeM is an affine space of four dimensions on R endowed with
a bilinear metric tensor g defined in an underlying vector space E of signature (+,−,−,−).
In vector space E, a set C composed of all null vectors forms a light cone C composed of
two sheets, C+ and C−, defining the future and past light cones, respectively.
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Given the above-defined spacetimeM and an arbitrary origin O ∈ M, a family of
affine subspaces (Sτ)τ∈R is defined such that each subspace Sτ corresponds to the set of

points of E that can be connected to the origin O by a time-like vector
−→
ON of modulus τ,

where τ ∈ R:

Sτ = {N ∈ M,
−→
ON ·
−→
ON = −τ2 < 0} (1)

Henceforth, we are interested in physical systems that follow time-like or null world-
lines and do not consider the set of space-like vectors. In spacetime (E, g), a point N ∈ E is

said to belong to the subspace Sτ iff
−→
ON ·
−→
ON = −τ2. Each set of points Sτ consists of two

subsets or two sheets, S+
τ and S−τ belonging to the interiors of the future C+ and past C−

light cones, respectively.
S+

τ = {N ∈ Sτ , τ ≥ 0 } (2)

S−τ = {N ∈ Sτ , τ < 0 } (3)

Let
(

x0, x1, x2, x3) be the coordinates of N ∈ Sτ in the affine frame defined by origin O

and an appropriate basis. Then,
−→
ON ·
−→
ON = −τ2 can be expressed as follows:

− (x0)
2
+ (x1)2 + (x2)2 + (x3)2 = −τ2 (4)

where xo = t, x1 = x/c, x2 = y/c, x3 = z/c.
Equation (4) is a three-dimensional hyperboloid of the two sheets S+

τ and S−τ spanned

by the free extremities of the time-like vectors
−→
ON .

The algebraic value τ of the time-like vector
−→
ON is the proper time for the physical

system. It generates a family of affine subspaces, (Sτ)τ∈R, defined by Equation (1). This
family consists of three-dimensional hyperboloids associated, on one hand, with future-
directed proper times τ ≥ 0 and, on the other hand, with past-directed proper times
τ < 0.

The sheet Sτ of each hyperboloid forms a ‘spatial-hypersurface’ that we shall simply
call a ‘slice’ associated with a corresponding proper time τ ∈ R. All points on any given slice
Sτ are associated with the same proper time τ, which is indeed invariant to all observers
from the perspective of any corresponding inertial frame of reference.

Using Equation (4), the proper time τ can be expressed as:

τ = ±||
−→
ON ||/c = ±

√
t2 − (x2 + y2 + z2)/c2 = ±

√
t2 − (

→
x )2/c2 (5)

where the ‘+’ sign corresponds to a future-directed proper time and the ‘−’ sign corresponds

to a past-directed proper time with respect to the origin (i.e., event) O, ||
−→
ON || is the

modulus of the vector
−→
ON , and

→
x is the three-dimensional space coordinate.

For each proper time τ, the free extremity N of the vector
−→
ON spans the hyperbolic

slice Sτ . The hyperbolic slice Sτ is a piecewise twice continuously differentiable curve of
Minkowski spacetime (EI , g) composed of a set of hyperbolic points (u, τ). The hyperbolic
coordinate u represents the orientation of a ray Ru (i.e., a straight line) passing through the
point O ∈ M. All points (u, τ) on the same ray Ru share the same hyperbolic coordinate u.
On the other hand, all points (u, τ) on the same slice Sτ share the same invariant proper
time coordinate τ.

Thus, the rays (Ru)u and hyperbolic slices (Sτ)τ define a hyperbolic frame of reference
(O; Ru, Sτ) where a given hyperbolic point (u, τ) is the intersection between the corre-
sponding ray Ru and the slice Sτ . Therefore, each slice Sτ can be defined by the following
set of points:

Sτ = {uτ = (u, τ)} (6)



Quantum Rep. 2022, 4 327

As each slice Sτ is associated with a corresponding proper time τ, all points u belonging
to that slice Sτ may be considered to be ‘simultaneous’ in the sense of proper time. In other
words, each slice Sτ is a class of ‘proper-time-simultaneity’ made up of a set of points that
are associated with the same proper time instant τ.

The passage from one slice Sτ1 into a subsequent slice Sτ2 represents the ‘transition’
from a first proper time τ1 to a consequent proper time τ2. Thus, proper time provides an
invariant time ordering of the set of slices with respect to the event O.

We note that the hyperbolic slice Sτ can be parameterised by a bijective function ϕ
from parameter λ into the points on that slice Sτ such that any point u on slice Sτ is given by
u = ϕ(λ) ≡ u(λ). Parameter λ can be chosen as the standard time coordinate t or standard
space position

→
x = (x, y, z). Therefore, for simplicity, each slice Sτ can be expressed

as follows:
Sτ = {→x τ = (

→
x , τ)} (7)

3. Wavefunction and Its Evolution through Proper Time

A quantum system composed of a pair of entangled particles is represented by a
wavefunction that simultaneously defines both particles such that when the state of one
particle is measured, the second particle should acquire a determinate state at the same
time. However, in special relativity, there is no meaning of a ‘same time instant’ for spatially
separated positions.

This inconsistency between quantum mechanics and special relativity may be solved
by postulating “the existence of an underlying temporally invariant wavefunction such
that the standard wavefunction is but an approximation of the former”. According to this
hypothesis, the standard wavefunction can be deduced from the hypothetical temporally
invariant wavefunction and not vice versa. In other words, it is necessary to first define a
temporally invariant wavefunction and then deduce a standard wavefunction.

In Section 2, it is shown that all the points on a given hyperboloid slice Sτ are equidis-
tant from the origin O of a Lorentz coordinate system and are thus invariant with respect
to proper time for all inertial observers. Proper time is generally defined with respect to the
world line, followed by a particle. However, here, we take advantage of the geometrical
representation of proper time, as outlined in the preceding section, to provide invariant
time ordering of the set of hyperboloid slices for particles moving freely from a central
origin O. That is, the worldlines of free-moving particles connecting the origin O to different
points on a given hyperboloid slice Sτ have the same value of proper time. In this case,
an invariant ‘flow of physical time’ can be represented by a continuous and subsequent
ordering of different hyperboloid slices with respect to a central event O. Furthermore,
each hyperboloid slice Sτ can be used to represent a class of ‘proper-time-simultaneity’. It
should be clear that this invariant flow of proper time is restricted to free-moving systems
within a light cone defined with respect to an origin O and should not be confused with the
concept of absolute time, which is banished by relativity.

In view of the above, it seems straightforward to suppose that the temporally invari-
ant wavefunction (or, for short, ‘invariant wavefunction’) for a given quantum system
composed of free-moving particles should be associated to a hyperboloid slice Sτ refer-
enced with respect to proper time. An invariant wavefunction defined with respect to
proper time τ would then be relativistically invariant for all corresponding inertial ob-
servers. Hereafter, the expression ‘quantum system’ refers to a physical system composed
of free-moving particle(s).

First, we define an invariant unit state vector | ϕ(τ)〉 as a function of proper time
τ ∈ R related to the corresponding slice Sτ . Each slice Sτ can be defined using Equation (7)
by the set of points or events {→x τ = (

→
x , τ)} that lie at the same proper time value τ from

some central event O (origin of a Lorentz coordinate system). Then, slice Sτ is considered
to represent a position basis {|→x τ , 〉}, which can be associated with a corresponding Hilbert
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space H with elements |→x τ〉 labelled by a continuous variable
→
x τ normalized using the

Dirac δ-function:
〈→x
′
τ |
→
x τ〉 = δ(

→
x
′
τ −

→
x τ) (8)

The invariant unit state vector | ϕ(τ)〉 in the Hilbert spaceH associated with slice Sτ

can then be expanded as an integral function of the base elements |→x τ〉 as follows:

| ϕ(τ)〉 =
∫

d
→
x τ ϕ(

→
x τ)|

→
x τ〉 ≡

∫
d
→
x ϕ(

→
x , τ)|→x , τ〉 (9)

In Equation (9), the invariant state vector | ϕ(τ)〉 of a physical system is described as
a superposition of position basis elements |→x τ〉, each of which corresponds to a definite
point (

→
x , τ) on slice Sτ , where τ is a constant. The expanding coefficients or ‘weights’

ϕ(
→
x τ) ≡ ϕ(

→
x , τ) represent a complex-valued invariant wavefunction where all the

arguments are defined at the same proper time value τ with respect to a central event O.
The state vector |ϕ(τ)〉 belongs to the Hilbert spaceH and represents the vector sum

or resultant of the decomposed position states. As all the superposed arguments are defined
at the same invariant proper time instant τ, there is a sense of calculating their resultant.

The arguments
→
x τ of the invariant wavefunction ϕ(

→
x τ) are associated with points

(
→
x , τ) of the corresponding slice Sτ . Thus, the position state of a physical system at any

given proper time instant τ is represented by an invariant wavefunction ϕ(
→
x , τ) that has a

corresponding relativistic energy E(
→
x , τ) at that specific proper time τ.

As indicated above, the standard wavefunction is considered an approximation of
the invariant wavefunction, and thus the latter cannot be derived from the former; that is,
applying a relativistic transformation to the arguments of the standard wavefunction does
not lead to an invariant wavefunction. In fact, had we started from a standard wavefunction
ψ
(→

x , t
)

and transformed the standard time into proper time according to the relativistic
expression of Equation (5), we would have simply obtained a wavefunction equivalent to
the standard wavefunction, but dependent on different values of proper time, as follows:

ψ(
→
x , t) = ψ(

→
x ,±

√
τ2 + (

→
x )2/c2) = ψ(

→
x , τ(

→
x )) (10)

Proper time in Equation (10) depends on
→
x , and therefore there is no unique proper

time value for all arguments of the wavefunction. This clearly shows that a temporally in-
variant wavefunction cannot be deduced from a standard wavefunction. Thus, as indicated
above, it must first be defined.

In fact, what is proposed in this paper is not a relativistic transformation of a wave-
function from standard time into proper time, but a change of perspective in which the
arguments of the invariant wavefunction ϕ(

→
x τ) ≡ ϕ(

→
x , τ) of Equation (9) are defined

immediately from the start as arguments associated to elementary events that lie at the
same proper time value τ from a central event O. On the other hand, as the invariant
wavefunction ϕ(

→
x , τ) depends on proper time τ, its evolution should also be defined

with respect to proper time τ instead of ordinary time t. In other words, the evolution of
the invariant wavefunction ϕ(

→
x , τ) should be defined with respect to subsequent hyper-

boloid slices. This may be achieved by associating relativistic energy E(
→
x , τ) to the system

represented by the invariant wavefunction ϕ(
→
x , τ).

In particular, the relativistic energy E(
→
x , τ) of a system with a definite momentum P

(or velocity v) with respect to an inertial frame of reference (Lorentz coordinate system) is
defined as follows:

E =
√

m2c4 + P2c2 = mc2/
√

1− v2/c2 (11)
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Equation (11) can also be expressed as:√
1− v2/c2 = mc2/E (12)

Momentum and energy operators are generators of translations in space
→
x and time t,

respectively, and they operate on the wavefunction to quantify the rate of change of their
states. Thus, even though the momentum and energy operators are defined as functions of
differentials in space

→
x and time t, respectively, the corresponding momentum and energy

observables do not necessarily depend explicitly on the space and/or time variables. For
example, momentum and energy observables are stationary for free particles.

On the other hand, the differential quantum operator associated with energy E is
given by:

i}∂/∂t ≡ E (13)

To define the energy operator for a system with respect to proper time, we use
Equation (5) to express the differential of proper time δτ as a function of the differentials of
ordinary time δt and space δ

→
x as follows:

δτ = ±
√

δt2 − δ
→
x

2
/c2 (14)

The ‘+/−’ signs designate vectors inside the upper/lower light cones with respect to
a central event O. In the upper light cone, δτ ≥ 0, whereas in the lower light cone, δτ < 0.

Using relation (14), the differential δτ can be expressed as follows:

δτ = ±δt
√

1− (δ
→
x /δt)2/c2 = ±δt

√
1− v2/c2 (15)

Injecting Equation (12) into Equation (15), we obtain

δτ = ±δt(mc2/E) (16)

By substituting Equation (16) into Equation (13), we obtain the following energy
operator with respect to proper time:

i}∂/∂τ ≡ ±E2/mc2 (17)

The term E2/mc2 represents a ‘characteristic proper energy’ of the system associated
with the evolution of the invariant wavefunction through proper time. In the absence of
potential energy, the characteristic proper energy is equal to mc2 + P2/m. The operator
of this characteristic proper energy may be called the ‘proper Hamiltonian’ Ĥ defined as
follows:

Ĥ = Ê2/mc2 (18)

To describe the evolution of the invariant wavefunction ϕ(
→
x , τ) with respect to proper

time, we apply Equations (17) and (18) to the invariant wavefunctions ϕ(
→
x , τ), as follows:

i}∂ϕ(
→
x , τ)

∂τ
= ±Ĥϕ(

→
x , τ) = ±(Ê2/mc2)ϕ(

→
x , τ) (19)

The solutions of the above system of equations are:

ϕ(τ, x) = ϕ0e±i(E2/}mc2)τ (20)

where ϕ0 is an initial distribution and where the ‘+’ sign (respectively, ‘−’ sign) desig-
nates a future-directed (respectively, past-directed) proper time evolution of the invariant
wavefunction ϕ(

→
x , τ) with respect to a central event O.
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For simplicity, we exclude the writing of a hat on top of the operators. By expanding
the expression in Equation (19) into a system of two equations while using the relativistic
energy E of Equation (11), we obtain:

i}
∂ϕ
(→

x , τ
)

∂τ = +
(
mc2 + P2/m

)
ϕ
(→

x , τ
)

τ ≥ 0 f uture− directed (21)

i}
∂ϕ
(→

x , τ
)

∂τ = −
(
mc2 + P2/m

)
ϕ
(→

x , τ
)

τ < 0 past− directed (22)

Equations (21) and (22) describe the evolution of the invariant wavefunction ϕ(
→
x , τ)

according to two different dynamics: Equation (21) corresponds to future-directed dynam-
ics taking place within a future-light cone, while Equation (22) corresponds to past-directed
dynamics taking place within a past-light cone. It is important to note that the above
system is composed of two separate equations applicable in opposite directions of proper
time. Strictly speaking, the predictive equation is not identical to the retrodictive equation,
implying inherent dissymmetry between the two directions of time. However, the system
of equations as a whole may be considered to be time-reversal invariant in the sense that if
we reverse the direction of proper time in any one of the two equations, we directly obtain
the other equation.

In fact, the above system of equations can be expressed as follows:

i} ∂ϕ(
→
x , |τ|)

∂|τ| = +(mc2 + P2/m)ϕ(
→
x , |τ|) f uture− directed (23)

−i} ∂ϕ(
→
x ,−|τ|)
∂|τ| = −(mc2 + P2/m)ϕ(

→
x ,−|τ|) past− directed (24)

Where |τ| denotes the absolute value of τ. Because τ ≥ 0 in the first equation and
τ < 0 in the second equation, they have been replaced by +|τ| and −|τ|, respectively.

Wavefunction ϕ(
→
x , |τ|) is the solution of Equation (23). If we reverse the time direc-

tion of proper time (|τ| → −|τ|) in the first equation, we consistently obtain Equation (24),
with the wavefunction ϕ(

→
x ,−|τ|) as a solution. Each equation is, in the conventional

sense, the time reversal of the other, and thus the system of equations as a whole may
reasonably be considered time-reversal invariant. Normally, each equation by itself cannot
be time-reversal invariant because it is only applicable in a unique direction of time.

In fact, the system of Equations (23) and (24) can be expressed as a single equation.
This can be achieved by first expressing Equation (17) as a product of the two terms before
applying it to the invariant wavefunction ϕ(

→
x , τ), as follows:(

i} ∂

∂τ
+ E2/mc2

)(
i} ∂

∂τ
− E2/mc2

)
ϕ
(→

x , τ
)
= 0 (25)

Developing Equation (17) we obtain the following equation of motion:(
−}2 ∂2

∂τ2 −
(

E2/mc2
)2
)

ϕ
(→

x , τ
)
= 0 (26)

The above Equation (26) is second order in time and is thus time-reversal invari-
ant. However, we lose the refinement of the different dynamics defined in the system of
Equations (23) and (24) with respect to the opposite directions of proper time.

4. Time Reversal in the Non-Relativistic Limit

Equation (5) can be expressed as follows:

τ =
√

t2 − x2/c2 = t
√

1− v2/c2 ≈ t(1− v2/2c2) (27)
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For a free particle in the non-relativistic limit, proper time can roughly be approxi-
mated by ordinary time τ ≈ t. Thus, the invariant wavefunction ϕ(

→
x , τ) can roughly be

approximated by the standard wavefunction ϕ(
→
x , τ) ≈ ϕ(

→
x , t) ≡ ψ(

→
x , t), at least within

a small spatial extension. By introducing these approximations into Equation (19) and the
fact that δτ = ±δt(mc2/E), we obtain:

i}
∂ψ
(→

x ,t
)

∂t = +Eψ
(→

x , t
)

f utur− directed (28)

i}
∂ψ
(→

x ,t
)

∂t = −Eψ
(→

x , t
)

past− directed (29)

The energy E for a free particle in the nonrelativistic limit can be expressed as follows:

E =
√

m2c4 + P2c2 = mc2
√

1 + v2/c2 ≈ mc2 + mv2/2 (30)

By introducing the approximation of Equation (30) into the above system of
Equations (28) and (29), we obtain

i}
∂ψ
(→

x ,t
)

∂t =
(
mc2 + mv2/2

)
ψ
(→

x , t
)

f or t ≥ 0 (31)

i}
∂ψ
(→

x ,t
)

∂t = −
(
mc2 + mv2/2

)
ψ
(→

x , t
)

f or t ≤ 0 (32)

The term mc2 is a constant that corresponds to the rest energy. This has no con-
sequences for the evolution of the physical system and can be omitted. Moreover, the
nonrelativistic kinetic energy mv2/2 can be expressed as p2/2m, leading to the following
system of equations:

i}
∂ψ
(→

x ,t
)

∂t = (p2/2m)ψ
(→

x , t
)

f or t ≥ 0 (33)

i}
∂ψ
(→

x ,t
)

∂t = (p2/2m)ψ
(→

x , t
)

f or t ≥ 0 (34)

The system of Equations (33) and (34) concerns two separate Schrödinger equations
describing the evolution of the wavefunction ψ(

→
x , t) according to the future and past

directed dynamics, respectively. This system may be considered as time-reversal invariant
in the conventional sense, insofar as the system in its globality is concerned. Reversing the
direction of time in any one of the two equations directly leads to the other equation.

This system of Equations (33) and (34) seems to restore a general definition of time
reversal in terms of a simple unitary operator consisting of flipping the sign of time (t→ −t),
which is applicable to classical as well as quantum dynamics.

5. Invariant Continuity Equation

Injecting the momentum operator p = −i}
→
∇ into Equations (23) and (24), we obtain

i}
∂ϕ
(→

x , τ
)

∂τ = +
(

mc2 − }2

m∇2
)

ϕ
(→

x , τ
)

τ ≥ 0 f uture− directed (35)

i}
∂ϕ
(→

x , τ
)

∂τ = −
(

mc2 − }2

m∇2
)

ϕ
(→

x , τ
)

τ < 0 past− directed (36)

To derive the continuity equation, we consider the future-directed evolution accord-
ing to Equation (35) Multiplying Equation (35) by the conjugate invariant wavefunction
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ϕ∗
(→

x , τ
)
≡ ϕ∗ and multiplying the complex conjugate of Equation (35) by the invariant

wavefunction ϕ
(→

x , τ
)
≡ ϕ gives:

i}ϕ∗
∂ϕ

∂τ
= +ϕ∗

(
mc2 − }2

m
∇2
)

ϕ (37)

− i}ϕ
∂ϕ∗

∂τ
= +ϕ

(
mc2 − }2

m
∇2
)

ϕ∗ (38)

Subtracting the second Equation (38) from the first Equation (37) yields the following
result:

i}∂ϕ∗ϕ

∂τ
=

}2

m

(
ϕ∇2 ϕ∗ − ϕ∗∇2 ϕ

)
(39)

The above Equation (39) can be simplified, as follows:

∂|ϕ|2
∂τ

= − i}
m

→
∇ ·

(
ϕ
→
∇ϕ∗ − ϕ∗

→
∇ϕ

)
(40)

Equation (40) can be written as a continuity equation:

∂ρ

∂τ
+
→
∇ ·

→
j = 0 (41)

where
→
j =

i}
m

(
ϕ
→
∇ϕ∗ − ϕ∗

→
∇ϕ

)
(42)

Note that the above expression for current
→
j is twice the value of the standard current.

The continuity Equation (41) is proper-time-reversal invariant. When proper time is

reversed, the velocity, and thus the current
→
j , is reversed. Thus, the continuity equation is

invariant under time reversal because both sides of the equation change their signs.
Integrating the continuity equation (41) over the volume of the entire space, we obtain

the following:

d
dτ

∫
ρdxdydz =

∫
∂ρ

∂τ
dxdydz = −

∫ →
∇ ·

→
j dxdydz =

∫ →
j d2s (43)

In the last equality, Gauss’s theorem is used to transform the volume integral into a

surface integral over s. The last integral is equal to zero as the current
→
j vanishes at the

boundary of surface s at infinity. Thus, Equation (43) becomes:

d
dτ

∫
ρdxdydz = 0 (44)

Therefore, the integral of ρ = ϕϕ∗ over the entire space is conserved at each proper
time instant τ.

The continuity Equation (41), as well as the equations of motion Equations (21) and (22)
can be applied to all existing quantum theories, such as many-world theories, de Broglie–
Bohm theories, and collapse theories.

For example, in the case of the de Broglie–Bohm theory, let X(τ) be the actual position
of the particle. The invariant wavefunction ϕ(

→
x , τ) can be expressed as a function of its

amplitude R(
→
x , τ) and phase S(

→
x , τ) as follows:

ϕ
(→

x , τ
)
= R

(→
x , τ

)
eiS(

→
x , τ)/} (45)
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We introduce the above formulation into the current
→
j of Equation (42), and we obtain:

→
j =

2}
m

R2
→
∇S =

2}
m

ρ
→
∇S (46)

The current
→
j can be expressed as the density multiplied by the velocity

→
U of the

particle, which is related to the phase S(τ, x, y, z) of the wavefunction according to the
following equation:

→
U =

d
→
x

dτ
=

(
dx
dτ

;
dy
dτ

;
dz
dτ

)
=

2}
m

→
∇S
∣∣∣∣
X(τ)

(47)

The gradient of the phase
→
∇S is evaluated at the actual location of the particle X(τ).

Here,
→
U is an invariant velocity corresponding to the spatial components of the 4-relativistic

velocity.
It is to be noted that the above formulation is not restricted to a single particle. The

origin of a Lorentz coordinate system used to construct the slices may be a central event
O corresponding to the emission of a plurality of entangled particles sent off in different
directions and at different speeds. In this case, the quantum system is composed of n
entangled particles defined by an n-particle wavefunction ϕ

(→
x 1, . . . ,

→
x i, . . . ,

→
x n, τ

)
with

respect to the slices constructed out of the original central event common to all these
particles.

Thus, for an n-particle wave function ϕ
(→

x 1, . . . ,
→
x i, . . . ,

→
x n, τ

)
where

→
x i represents

the position of the ith particle, Equation (47) can be generalised as follows:

→
Ui =

d
→
x i

dτ
=

2}
m

→
∇iS

(→
x 1, . . . ,

→
x i, . . . ,

→
x n, τ

)∣∣∣∣
Xi(τ)

(48)

Equation (48) is Lorentz invariant, and it defines the velocity
→
Ui of an ith particle at a

given proper time, τ, with respect to the positions of all other particles at the same proper
time τ. Thus, it makes sense that the motion of the ith particle at a given proper time τ
depends on the positions of all other particles at the same proper time τ. In fact, at any
given proper time τ, the positions of all the particles are associated to the same slice no
matter what the distance is between these particles.

6. Simple Application

We shall consider here a simple example with respect to the future-directed evolu-
tion of the invariant wavefunction ϕ(x, τ) in two dimensions (x, τ)εR2 according to the
following equation:

i}∂ϕ(x, τ)

∂τ
= Hϕ(x, τ) =

(
E2/mc2

)
ϕ(x, τ) (49)

For an isolated system, we suppose that the energy operator H = E2/mc2 does not
explicitly depend on proper time. The eigenfunctions of the energy operator may be defined
independently of proper time, as follows:

Hϕn(x) ≡
(

E2/mc2
)

ϕn(x) =
(

E2
n/mc2

)
ϕn(x) (50)

The solutions of Equation (50) defines a set
{

E2
n/mc2, ϕn(x)

}
of real eigenvalues

E2
n/mc2 representing the energy levels of the system and eigenfunctions ϕn(x).

On the other hand, the proper time solution of the future-directed evolution
Equation (49) is:

ϕ(τ, x) = ϕ0e−i(E2/}mc2)τ (51)
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where ϕ0 represents the initial invariant wavefunction at τ = 0.
A given invariant wavefunction ϕ(x, τ) at τ = 0 is defined as the superposition of

stationary states:
ϕ0 = ϕ(x, 0) = ∑n an ϕn(x) (52)

Expressions of Equations (51) and (52) show that the proper time evolution of an
arbitrary invariant wavefunction ϕ(x, τ) can be expressed as

ϕ(x, τ) = ∑n ane−i(E2/}mc2)τ ϕn(x) (53)

Thus, the evolution with respect to proper time of an isolated system can be obtained
after determining the eigenvalues and eigenfunctions of the proper energy.

As a simple example, we consider a particle that moves within a square potential
well [20] with the following evenly defined potential V(x):

V(x) =
{

0 f or |x| < a
V0 > 0 otherwise

(54)

In the position representation, the governing equation is:

Hϕ(x) =
(

E2/mc2
)

ϕ(x) (55)

where

H = mc2 + P2/m + V(x) ≡ mc2 +
(
−}2/m

) d2

dx2 + V(x) (56)

By introducing the expression of Equation (56) into Equation (55), we obtain

d2 ϕ

dx2 = −
(

E2 −m2c4 −Vmc2

}2c2

)
ϕ (57)

By considering the definition of V(x), Equation (57) is reduced to the following pair of
equations:

d2 ϕ

dx2 = −
(

E2−m2c4

}2c2

)
ϕ f or |x| < a (58)

d2 ϕ

dx2 = −
(

E2−m2c4−V0mc2

}2c2

)
ϕ otherwise (59)

The solutions of the first Equation (58) are:{
ϕ(x) = Bcos(kx) f or even parity
ϕ(x) = Bsin(kx) f or odd parity

(60)

where
k =

√
(E2 −m2c4)/}2c2 = P/} (61)

In the nonrelativistic limit, P ≈ mv, and thus we obtain the nonrelativistic expression
of k:

k ≈
√

m2v2/}2 =
√

2mE/}2 (62)

where E = mv2/2.
The second Equation (59) can be written as:

d2 ϕ

dx2 =

(
V0mc2 + m2c4 − E2

}2c2

)
ϕ (63)
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The particle is bounded by the potential well, E2 < V0mc2, and thus:(
V0mc2 + m2c4 − E2

}2c2

)
> 0 (64)

Then, the solutions to the second Equation (59) are

ϕ(x) = Ae±Kx (65)

where
K =

√
(V0mc2 + m2c4 − E2)/}2c2 (66)

In the case of even parity, by considering the continuity of dϕ
dx and ϕ(x) at x = a, we

obtain:
ktan (ka) = K =

√
(V0mc2 + m2c4 − E2)/}2c2 =

√
(V0m/}2)− k2 (67)

The expression of Equation (67) can be rewritten as:

ktan (ka) = K =
√
(W2/k2a2)− 1 (68)

where
W =

√
V0ma2/}2 (69)

W and k are dimensionless variables.
The square well traps the particle regardless of how small V0 and a are. The number

of solutions increases as W increases.
In the case of odd parity:

kcot (ka) = −K = −
√

V0m
}2 − k2 (70)

The solutions are W = (2r + 1)π/2 for r = 1, 2, . . .
In the case of an infinitely narrow potential well, W tends to infinity; therefore, tan (ka)

tends to zero.
For example, for odd parity states, we have:

cot (ka) = ∞ (71)

Thus, the distinct solutions are:

kn = nπ/a where n ∈ N∗ (72)

Thus, using equation (5.13), we get

En =

√
}2n2π2c2

a2 + m2c4 = mc2

√
1 +

}2n2π2

a2m2c2 (73)

In the non-relativistic limit

En ≈ mc2
(

1 +
}2n2π2

2a2m2c2

)
= mc2 +

}2n2π2

2ma2 (74)

The term mc2 is a constant; thus, we obtain the classical expression:

En =
}2n2π2

2ma2 (75)
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Inside the well, the solutions are:

ϕ(x) =

√
2
a

sin
(nπ

a
x
)

(76)

The example above describes the proper-time evolution of a particle in a box. In the
non-relativistic limit, the evolution becomes identical to that of the standard formalism [20].

7. Conclusions

Proper time is considered to be the only real physical time. Each proper time instant is
associated with a specific hyperboloid slice. The ‘flow’ of proper time is thus represented
by subsequent hyperboloid slices with respect to a central event. The quantum state of a
physical system is defined with respect to proper time, which is relativistically invariant
to all corresponding inertial observers. For a quantum system composed of a pair of
entangled particles, it makes sense to define the state of spatially separated particles at the
same proper time instant. The evolution of the wavefunction is then described with respect
to the subsequent hyperboloid slices. It should be stressed that the invariant wavefunction
representing the quantum state is hypothetically constructed right from the beginning
with respect to the proper time, and not as a result of a relativistic transformation of the
arguments of a standard wavefunction.

In the non-relativistic limit, the dynamics of the invariant wavefunction yield two
separate Schrödinger equations according to future- and past-directed dynamics, thus
restoring a universal definition of time reversal in terms of a simple unitary operator
consisting of flipping the sign of time. This suggests that the original hypothesis of defining
the wavefunction with respect to proper time is reasonable.

In a future work, we shall consider the applicability of the above formalism defined
in a configuration space to other types of quantum representations, such as the Wigner
distribution, which is defined in a phase space.
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