
Citation: Edet, C.O.; Osang, J.E.; Ali,

N.; Agbo, E.P.; Aljunid, S.A.; Endut,

R.; Ettah, E.B.; Khordad, R.; Ikot,

A.N.; Asjad, M. Non-Relativistic

Energy Spectra of the Modified

Hylleraas Potential and Its

Thermodynamic Properties in

Arbitrary Dimensions. Quantum Rep.

2022, 4, 238–250. https://doi.org/

10.3390/quantum4030016

Academic Editor: Gerald B. Cleaver

Received: 10 March 2022

Accepted: 8 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

quantum reports

Article

Non-Relativistic Energy Spectra of the Modified Hylleraas
Potential and Its Thermodynamic Properties in
Arbitrary Dimensions
Collins Okon Edet 1,2,* , Jonathan E. Osang 2, Norshamsuri Ali 1,* , Emmanuel Paul Agbo 2 ,
Syed Alwee Aljunid 1 , Rosdisham Endut 1 , Emmanuel B. Ettah 2, Reza Khordad 3 , Akpan Ndem Ikot 4

and Muhammad Asjad 1

1 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia;
syedalwee@unimap.edu.my (S.A.A.); rosdisham@unimap.edu.my (R.E.); asjad_qau@yahoo.com (M.A.)

2 Department of Physics, Cross River University of Technology, Calabar PMB 1123, Nigeria;
jonathanosang@yahoo.com (J.E.O.); emmanuelpaulagbo@gmail.com (E.P.A.);
emmanuelettah@gmail.com (E.B.E.)

3 Department of Physics, College of Sciences, Yasouj University, Yasouj 75918, Iran; rezakh2025@yahoo.com
4 Theoretical Physics Group, Department of Physics, University of Port Harcourt, East/West Road,

Choba PMB 5323, Nigeria; akpan.ikot@uniport.edu.ng
* Correspondence: collinsokonedet@crutech.edu.ng (C.O.E.); norshamsuri@unimap.edu.my (N.A.)

Abstract: In this study, the solutions of the Schrodinger equation (SE) with modified Hylleraas
potential in arbitrary dimensions was obtained using the asymptotic iteration method (AIM) to obtain
the energy and wave functions, respectively. The energy equation was used to obtain the thermal
properties of this system. The effect of the potential parameters and dimensions on the energy spectra
and thermal properties was scrutinized thoroughly. It was found that the aforementioned affects the
thermal properties and energy spectra, respectively. In addition, we also computed the numerical
energy spectra of the MHP for the first time and discussed it in detail. The results of our study can be
applied to molecular physics, chemical physics, etc.

Keywords: asymptotic iteration method (AIM); Schrodinger equation; Hylleraas potential

1. Introduction

Quantum mechanics (QM) is a tool required for the proper understanding of how
a particle behaves in a micro-physical domain [1–3]. QM gives a logical mathematical
framework that brings about a good understanding of areas of physics which includes
plasmas, superconductor and semiconductor devices, physics of solids, etc. [4]. In addition,
QM encompasses all disciplines that are contained in modern physics such as thermody-
namics, statistical physics, particle physics, optics, etc. Even beyond the areas of physics,
QM is very important in the investigation of the basic dynamics of biological and chemical
trends [5].

Erwin Schrodinger formulated the concept of wave mechanics in 1926 and thus
proved to be one of the major breakthroughs in the area, as his QM formulation was
widely accepted. His formulation has proven to be more insightful by being able to
properly explain the dynamics of microscopic matter with what is popularly known as the
Schrödinger equation (SE): a second-order differential equation [4].

The energy spectrum and wave function of a system is obtained when the SE equation
is being solved with a particular interaction potential [6]. The interactions of particles
within a system determine the form of the potential in use. The different forms of potentials
include harmonic, Coulomb, Kratzer potential [7], Cornell [8], perturbed Yukawa [9]
and pseudoharmonic [10], Morse potential [11], Deng–Fan–Eckart potential, etc.; some
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combinations of these potentials have been done as well as extensive research to solve the
SE (approximately and exactly) [12–15].

Reviewing a range of research work on the analytical solutions of the SE shows
that multiple forms of interaction potentials have been used to reveal the fundamental
dynamics of a variety of systems with varying degrees of success [16]. In the study of a
host of physical systems, confining potentials play a very important role. Its importance
spans across various areas of physics including atomic and molecular physics, solid state
physics, nuclear physics, particle physics, chemical physics, etc. [8,14].

Relating to this, the adoption of the SE for the solution of some potentials of interest for
which l 6= 0 is difficult or could be said to be quasi-impossible. Some potentials including
the Coulomb [17], Harmonic potential [18], Kratzer potential [7], etc., have an exception
to this, are they are easily solved by the SE equation. The s-wave (l = 0) case can only be
solved exactly [7]; in contrast, the cases where we have l 6= 0, we implement numerous
approximation schemes that eventually approximate the centrifugal term in the SE. This
process will lead to the approximation of the bound state solutions [19,20].

For quantum mechanical studies, an important thing to note is that the exact solutions
of the SE play a very significant role; one notable importance is that these quantum
mechanical studies offer a scope that is interesting to investigate regarding applications in
diverse areas of physics. As earlier buttressed, the SE is exactly solvable only for limited
interaction potentials including the Harmonic and Coulomb potentials. It remains an
enormous task to apply this for complex potentials such as the exponential-type potentials;
this has continued to remain an issue for diverse researchers and offers a good challenge for
the expansion of techniques that already exist and also for the proper exploration of new
methods to the end that the catalogue of exactly solvable problems can be enlarged [21–24].

On this note, there is a need to properly study the modified Hylleraas potential (MHP)
mainly because it has not been properly studied in the past. The aim of this kind of study
will be the enhancing of this MHP by solving with the SE and also the evaluation of its
thermodynamic properties.

To dive into history, mathematical and theoretical physicists have developed a wide
range of mathematical methods for aid in the solution of the SE; these methods ranged from
numerical to analytical techniques. The interesting fact is that irrespective of the techniques
that were being used for the solution (except for some algebraic configurations), the solu-
tions obtained are similar. Some of these techniques include the factorization method [4,25],
shape invariant supersymmetry quantum mechanics (SUSYQM) approach [26], asymp-
totic iteration method (AIM) [27–30], Nikiforov–Uvarov (NU) method [23,31,32], Para-
metric NU method [33], formula method [34], Wentzel, Krammers, Brullion and Jeffery
(WKBJ) method [35,36], exact quantization rule (EQR) [37,38], and proper quantization rule
(PQR) [20]. These techniques are utilized in both non-relativistic and relativistic equations
for diverse potentials.

In the present work, we consider a general form of a confining potential, which is the
MHP; this is with the goal of increasing the catalogue of analytically solvable potentials
and their possible adoption in studying physical systems.

Thermodynamics is a very important part of physics that has its applications in diverse
areas. In extension, it offers an analysis of macroscopic thermodynamic quantities at the
molecular level. It also goes further to investigate the thermodynamic activities of systems
which comprise a large number of particles by adopting the probability theory. One of the
most vital advances of physics in the early twentieth century has been the exposition of the
macroscopic theory of thermodynamics in terms of the more abstract microscopic statistical
mechanics [39–41].

Various researchers have carried out studies on the thermodynamic properties for a
quantum system. Okorie et al. [42] assessed the thermodynamic properties for the modified
Kratzer plus screened Coulomb potential. Ikot et al. [43] assessed the thermodynamic
functions of exponential-type molecular potential in D dimensions. Ikot et al. [44] acquired
the thermal properties of the improved screened Kratzer potential (ISKP) model.
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2. The Hylleraas Potential (HP) and the Modified Hylleraas Potential (MHP)

The solutions of wave equations in relativistic and non-relativistic QM have recently
received great attention. A variety of researchers have made progress in evaluating their
energy and that of the corresponding wave functions. Nevertheless, this is due to its
applications in studying several physical systems of interest. HP is one of those potentials
that cannot be solved exactly as earlier buttressed. The potential was proposed as an
intermolecular potential and is one of the best potential models considered to explain the
vibrational energy of diatomic molecules [45].

Ikot et al. [46] noted that the HP is a special case of the multiparameter exponential-
type potential. Since Hylleraas presented this potential, not much work has been reported
on the bound state solution, whether in a relativistic and non-relativistic regime. Again,
Ikot [23] presented a modified version of the Hylleraas potential, which is given by

V(r) =
V0

b
a− e−2αr

1− e−2αr . (1)

where α is the screening parameter. Ever since then, several adjustments have been pro-
posed, but the focus of this study will be on Equation (1). It is worthy to point out here that
since Hylleraas initiated this potential, very minute research has used it.

3. Solutions of the Schrodinger Equation with Modified Hylleraas Potential

The motion of a particle in a spherically symmetric potential in D dimensions is written
as [32,43,47]

d2Rnl(r)
dr2 +

2µ

h̄2

[
Enl −V(r)− h̄2(D + 2l − 1)(D + 2l − 3)

8µr2

]
Rnl(r) = 0. (2)

Due to the fact that the above equation cannot be solved analytically for l 6= 0 due to the
centrifugal term, the Greene and Aldrich approximation scheme [19] to the centrifugal term
is used; this is given as

1
r2 =

4α2e−2αr

(1− e−2αr)2 . (3)

It is convenient to point out here that for a short-range potential, the relation
Equation (3) is a good approximation to 1/r2, implying that it is not a good approxi-
mation to the centrifugal barrier when the screening parameter α becomes large. Thus,
the approximation is valid when αr << 1 [19]. By subsituting Equation (1) in Equation (2)
and using the Greene and Aldrich Approximation in Equation (3), one obtains

d2Rnl($)

d2$
+

1
$

dRnl($)

d$
− (εnl + ς)$2 + (2εnl + ς + ς̄− γ)$− (εnl + ς̄)

$2(1− $)2 Rnl($) = 0, (4)

where we have used the following dimensionless notations εnl = −
µEnl

2h̄2α2
, ς =

µV0

2h̄2bα2
,

ς̄ = ςa and γ = (D + 2l− 1)(D + 2l− 3)/4. In the above equation, we have used $ = e−2αr.
In order to solve Equation (4) using AIM [27], we propose the following physical radial
wavefunction Rnl($) = $ν(1− $)δ fnl($) where ν =

√
εnl + ς̄ and δ = 1/2 +

√
γ + 1/4.

Now, by substituting the ansats in Equation (4), we obtain

d2 fnl($)

d2$
− λ0($)

d fnl($)

d$
− s0($) fnl($) = 0, (5)

where

λ0($) =
(2ν + 2δ + 1)$− (2ν + 1)

$(1− $)
and s0($) =

(ν + δ)2 − (εnl + ς)

$(1− $)
.
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With the aid of the quantization condition as discussed in Ref. [27], we arrive at the
following eigenvalues expressions

θ0 =

∣∣∣∣ λ0($) s0($)
λ1($) s1($)

∣∣∣∣ = 0⇔ ν0 = −δ±
√

εnl + ς,

θ1 =

∣∣∣∣ λ1($) s1($)
λ2($) s2($)

∣∣∣∣ = 0⇔ ν1 = −1− δ±
√

εnl + ς,

: =

∣∣∣∣ : :
: :

∣∣∣∣ = 0⇔:=:, (6)

θn =

∣∣∣∣ λn($) sn($)
λn+1($) sn+1($)

∣∣∣∣ = 0⇔ νn = −n− δ±
√

εnl + ς,

and then the explicit forms of εnl and Enl , respectively, are given by

εnl = −ς̄ +
[ς− ς̄− (n +

√
γ + 1/4 + 1/2)2]2

4(n +
√

γ + 1/4 + 1/2)2

and

Enl = a
V0

b
− h̄2α2

2µ

(
ς(1− a)− (n +

√
γ + /1/4 + 1/2)2

n +
√

γ + /1/4 + 1/2

)2

. (7)

Figure 1 shows the variation of energy Enl values of the MHP against various potential
parameters. In Figure 1a, we plot Enl as a function of V0/b for different values of D = 1
(red curve), 2 (green curve), 3 (black curve), 4 (blue curve) and 5 (purple curve). We notice
that the value of Enl decreases as the ration V0/b increases. The value of Enl increases
as function of the parameter a at a fixed value of the ration V0/b = 0.2, where the color
scheme is the same as in Figure 1a, as shown in Figure 1b. In Figure 1c, we show that the
value of Enl increases as the screening parameter α increases.
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Figure 1. Variation of Enl energy values of the MHP versus (a) ratio V0/b (b) parameter a (c) screening
parameter α for different values of D, D = 1 (red curve), 2 (green curve), 3 (black curve), 4 (blue
curve) and 5 (purple curve).

In this study, the bound state solution of the modified Hylleraas potential has been
found in an arbitrary D-dimension via the asymptotic iteration method (AIM). From
Equation (7) and Table 1, it is clear that the two inter-dimensional states are degenerate
whenever (n, l, D)→ (n, l± 1, D∓ 2)⇒ ED

nl = ED∓2
n,l±1. Thus, a knowledge of ED

n,l for D = 2
to 5 provides the information necessary to find ED

n,l for other higher dimensions. It is also
observed that the energy increases as the screening parameter increases.
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Table 1. Numerical non-relativistic energy spectra of the MHP.

State α D = 1 D = 2 D = 3 D = 4 D = 5

1s 0.025 −7.7003100 −31.8003000 −7.7003100 −3.2225300 −1.6503100
0.050 −1.7012500 −7.8012500 −1.7012500 −0.5568060 −0.1512500
0.075 −0.5917010 −3.3583700 −0.5917010 −0.0645409 0.1249650
0.100 −0.2050000 −1.8050000 −0.2050000 0.1061110 0.2200000

2s 0.025 −1.6503100 −3.2225300 −1.6503100 −0.9203130 −0.5225350
0.050 −0.1512500 −0.5568060 −0.1512500 0.0387500 0.1431940
0.075 0.1249650 −0.0645409 0.1249650 0.2149650 0.2650890
0.100 0.2200000 0.1061110 0.2200000 0.2750000 0.3061110

2p 0.025 −7.7003100 −3.2225300 −1.6503100 −0.9203130 −0.5225350
0.050 −1.7012500 −0.5568060 −0.1512500 0.0387500 0.1431940
0.075 −0.5917010 −0.0645409 0.1249650 0.2149650 0.2650890
0.100 −0.2050000 0.1061110 0.2200000 0.2750000 0.3061110

3s 0.025 −0.5225350 −0.9203130 −0.5225350 −0.2819450 −0.1253130
0.050 0.1431940 0.0387500 0.1431940 0.2069130 0.2487500
0.075 0.2650890 0.2149650 0.2650890 0.2960540 0.3166320
0.100 0.3061110 0.2750000 0.3061110 0.3256120 0.3387500

3p 0.025 −1.6503100 −0.9203130 −0.5225350 −0.2819450 −0.1253130
0.050 −0.1512500 0.0387500 0.1431940 0.2069130 0.2487500
0.075 0.1249650 0.2149650 0.2650890 0.2960540 0.3166320
0.100 0.2200000 0.2750000 0.3061110 0.3256120 0.3387500

3d 0.025 −1.6503100 −0.9203130 −0.5225350 −0.2819450 −0.1253130
0.050 −0.1512500 0.0387500 0.1431940 0.2069130 0.2487500
0.075 0.1249650 0.2149650 0.2650890 0.2960540 0.3166320
0.100 0.2200000 0.2750000 0.3061110 0.3256120 0.3387500

4s 0.025 −0.1253130 −0.2819450 −0.1253130 −0.0175965 0.0596875
0.050 0.2487500 0.2069130 0.2487500 0.2777620 0.2987500
0.075 0.3166320 0.2960540 0.3166320 0.3310700 0.3416320
0.100 0.3387500 0.3256120 0.3387500 0.3480860 0.3550000

4p 0.025 −0.5225350 −0.2819450 −0.1253130 −0.0175965 0.0596875
0.050 0.1431940 0.2069130 0.2487500 0.2777620 0.2987500
0.075 0.2650890 0.2960540 0.3166320 0.3310700 0.3416320
0.100 0.3061110 0.3256120 0.3387500 0.3480860 0.3550000

4d 0.025 −0.5225350 −0.2819450 −0.1253130 −0.0175965 0.0596875
0.050 0.1431940 0.2069130 0.2487500 0.2777620 0.2987500
0.075 0.2650890 0.2960540 0.3166320 0.3310700 0.3416320
0.100 0.3061110 0.3256120 0.3387500 0.3480860 0.3550000

4f 0.025 −0.5225350 −0.2819450 −0.1253130 −0.0175965 0.0596875
0.050 0.1431940 0.2069130 0.2487500 0.2777620 0.2987500
0.075 0.2650890 0.2960540 0.3166320 0.3310700 0.3416320
0.100 0.3061110 0.3256120 0.3387500 0.3480860 0.3550000

For completeness sake, the wave function of the system is given as

Rnl($) = (−1)nNnl
Γ(2ν + n + 1)

Γ(2ν + 1)
$ν(1− $)δ

2F1(−n, 2(ν + δ) + n; 2ν + 1; $) (8)

where Nnl is the normalization constant and 2F1(−n, 2(ν + δ) + n; 2ν + 1; $) is the hyper-
geometric function.
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4. Thermal and Magnetic Properties of Modified Hylleraas Potential (MHP)

In this section, we study the thermal properties of the modified Hylleraas potential.
Using a direct summation over all possible vibrational energy levels that are assessable to
the system, we can compute the vibrational partition function. Given the energy spectrum
in Equation (7), the partition function Z(β) of the MHP at finite temperature T is obtained
with the Boltzmann–Gibbs statistics as [14,29,48–50].

Z(β) =
nmax

∑
n=0

e−βEn (9)

where β = 1/kBT, kB is the Boltzmann constant and n = 0, 1, 2, 3, . . . , nmax is the vibrational
quantum number with nmax as the upper bound of the viberational quantum number, and

it is obtained by setting
dEn

dn
= 0 and is given by

nmax = −
(

1
2
+
√

γ + 1/4
)
±
√

ς(1− a). (10)

The summation in Equation (9) can be replaced by an integral. Therefore, Equation (9)
can be written as

Z(β) =
∫ nmax+σ̃

σ̃
e
−β

(
η0

ρ2 +η1ρ2+η2

)
dρ, (11)

where ρ = n + σ̃ and the integral is evaluated in the region σ̃ < ρ < nmax + σ̃, and the
following notations have been introduced for mathematical simplicity: η0 = h̄2α2Q2/(2µ),
η1 = η0/Q2 and η2 = −(P + 2Q)η1. On evaluating the integral in Equation (11), we obtain
the partition function of the modified Hylleraas potential as follows

Z(β) =
eβ sinh(β

√
η0η1)

2
√
−βη1

{
Erf[

√
−β(
√

η0 − t2
1
√

η1)/t1]− Erf[
√
−β(
√

η0 + t2
2
√

η1)/t2]
}

, (12)

where t1 = σ̃ and t2 = nmax + σ̃. This expression represents the classical partition function.
The reason is that Equation (12) does not contain quantum corrections.

In Figure 2, we show plots of the partition function Z(β) as a function of V0/b (a), a
(b), parameter D (c), and screening parameter α for different values of the β = 0.01 K−1

(red curve), 0.02 K−1 (green curve), 0.05 K−1 (black curve). Figure 2a clearly shows that the
partition function decreases with increasing V0/b. Figure 2b displays the partition function
as a function of a for different values of β. It is seen that the partition function first decreases
and then increases with increasing a. Figure 2c displays the partition function as a function
of dimensional parameter D for different values of β. It is seen that the partition function
decreases with increasing dimension D and then increases with rising D. Figure 2d shows
the plot of partition function as a function of screening parameter α with different values of
β. We notice that in the region 0 < α < 0.01, the partition function first decreases and then
rises as the screening parameter α rises.

In what follows, all thermodynamic properties of the MHP, such as the free energy,
mean energy, the entropy and specific heat, can be obtained from the partition function Z(β).
These thermodynamic functions for the MHP will be scrutinized in the following sections.
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Figure 2. Partition function Z(β) as a function of; (a) V0/b, (b) parameter a, (c) D and (d) screening
parameter α for different values of β = 0.01 K−1 (red curve), 0.02 K−1 (green curve), β = 0.05 K−1

(black curve).

4.1. Free Energy

In this subsection, the free energy F(β, D, a, b, V0) = − 1
β

ln(Z(β)) for MHP is stud-

ied. Figure 3 shows plots of the free energy F(β, D, a, b, V0) versus V0/b, (b) parameter a,
(c) dimensions D and (d) screening parameter α for different values of β = 2.0 K−1 (red
curve), 4.0 K−1 (green curve), 6.0 K−1 (black curve). Figure 3a clearly shows that the free
energy first increases and then decreases with increasing V0/b for different values of β. We
show the plot of the free energy as a function of a different values of β. The free energy
decreases with increasing a. Figure 3c displays the free energy as a function of dimension,
D for different values of β. It is seen that the free energy increases monotonically with
increasing D. Figure 3d shows the plot of free energy as a function of screening parameter
α with different values of β. In this figure, we see that the free energy first rises with the
rising screening parameter and then decreases, as shown in Figure 3d.
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Figure 3. (a) Plots of free energy F(β, D, a, b, V0) versus V0/b, (b) parameter a, (c) D and (d) screen-
ing parameter α for different values of β = 2.0 K−1 (red curve), 4.0 K−1 (green curve), 6.0 K−1

(black curve).

4.2. Mean Energy

In this subsection, the mean energy U(β, D, a, b, V0) = −dlnZ(β)

dβ
of the MHP is

analyzed. In Figure 4, we show plots of the mean energy U(β, D, a, b, V0) as a function of
β, dimensions-D and other potential parameters. Figure 4a clearly shows that the mean
energy increases and then decreases with V0/b for different values of β = 1.0 K−1 (red
curve), 2.0 K−1 (green curve), and 3.0 K−1 (black curve). Figure 4b shows the plot of the
mean energy as a function of a different values of β. The mean energy decreases with
increasing a. Figure 4c displays the mean energy as a function of D for different values
of β. It is seen that the mean energy first increases and then decreases with increasing
D. Figure 4d shows the plot of mean energy as a function of α with different values of β.
In this figure, we see that in the region 0 < α < 0.005, the mean energy first rises with
rising screening parameters and then decreases.
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Figure 4. (a) Mean energy U(β, D, a, b, V0) as a function of V0/b, (b) parameter a, (c) D and (d)
screening parameter α for β = 1.0 K−1 (red curve), 2.0 K−1 (green curve), and 3.0 K−1 (black curve).

4.3. Spacific Heat Capacity

An analysis of the specific heat capacity C(β, D, a, b, V0) = β2 d2lnZ(β)

dβ2 of the system

is extensively carried out in Figure 5. Figure 5 shows plots of the specific heat capacity
as a function of β, dimensions D, and other potential parameters. Figure 5a shows that
the plot of the specific heat capacity as a function of V0/b for β = 0.01 K−1 (red curve),
0.02 K−1 (green curve), and 0.05 K−1 (black curve). The specific heat capacity decreases
with increasing the ration V0/b. Figure 5b shows the plot of the specific heat capacity as a
function of a with different values of β. The specific heat capacity decreases with increasing
the value of a. Figure 5c displays the specific heat capacity as a function of dimension D
for different values of β. It is seen that the specific heat capacity increases with increasing
D. Figure 5d shows the plot of specific heat capacity as a function of screening parameter
α with different values of β. It noticed that the specific heat capacity increases and then
decreases as the screening parameter increases.
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Figure 5. (a) Plots of specific heat capacity C(β, D, a, b, V0) as a function of V0/b, (b) parameter a,
(c) dimension D, and (d) screening parameter α for β = 0.01 K−1 (red curve), 0.02 K−1 (green curve),
and 0.05 K−1 (black curve).

4.4. Entropy

Here, the entropy S(β, D, a, b, V0) = lnZ(β)− β
dlnZ(β)

dβ
of MHP is studied. Figure 6

shows plots of the entropy S(β, D, a, b, V0) as a function of V0/b, (b) parameter a, (c) D
and (d) screening parameter α for β = 0.01 K−1 (red curve), 0.02 K−1 (green curve), and
0.05 K−1 (black curve). Figure 6a clearly shows that the entropy decreases with increasing
V0/b and decreases with increasing parameter a, as shown in Figure 6b. Figure 6c displays
the entropy as a function of D for different values of β. It is seen that the entropy increases
first and then decreases with increasing dimension D. Figure 6d shows the plot of entropy
as a function of α with different values of β. We see that the entropy increases first and then
decreases with rising screening parameter α.
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Figure 6. (a) Entropy S(β, D, a, b, V0) versus V0/b, (b) parameter a, (c) D and (d) screening parameter
α for β = 0.01 K−1 (red curve), 0.02 K−1 (green curve), 0.05 K−1 (black curve).

5. Conclusions

In this paper, we obtained the bound state solutions of the Schrodinger equation with
the modified Hylleraas potential in arbitrary dimensions using the asymptotic iteration
method (AIM). The energy and wave functions were obtained, respectively. With the
energy obtained, we evaluated the partition function, which was used to analyze the
thermodynamic properties of the model. From our graphical analysis, we show that the
thermal properties and energy spectra of the MHP depend on the potential parameters.
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