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Abstract: The emerging field of quantum simulation of many-body systems is widely recognized
as a very important application of quantum computing. A crucial step towards its realization in
the context of many-electron systems requires a rigorous quantum mechanical treatment of the
different interactions. In this pilot study, we investigate the physical effects beyond the mean-field
approximation, known as electron correlation, in the ground state energies of atomic systems using
the classical-quantum hybrid variational quantum eigensolver algorithm. To this end, we consider
three isoelectronic species, namely Be, Li−, and B+. This unique choice spans three classes—a neutral
atom, an anion, and a cation. We have employed the unitary coupled-cluster ansätz to perform a
rigorous analysis of two very important factors that could affect the precision of the simulations of
electron correlation effects within a basis, namely mapping and backend simulator. We carry out
our all-electron calculations with four such basis sets. The results obtained are compared with those
calculated by using the full configuration interaction, traditional coupled-cluster and the unitary
coupled-cluster methods, on a classical computer, to assess the precision of our results. A salient
feature of the study involves a detailed analysis to find the number of shots (the number of times a
variational quantum eigensolver algorithm is repeated to build statistics) required for calculations
with IBM Qiskit’s QASM simulator backend, which mimics an ideal quantum computer. When more
qubits become available, our study will serve as among the first steps taken towards computing other
properties of interest to various applications such as new physics beyond the Standard Model of
elementary particles and atomic clocks using the variational quantum eigensolver algorithm.

Keywords: variational quantum eigensolver algorithm; atomic systems; electron correlation; precision

1. Introduction

Recent advances in quantum information science and technology have heralded the
second quantum revolution [1]. These developments have led to new pathways to tackle
the challenging quantum many-body problem using quantum computers and simula-
tors [1–8]. The interest in many-body aspects of electronic structure using quantum comput-
ers/simulators stems from the potential speed-up that a quantum computer promises to of-
fer [9–11] over a classical computer in calculating properties such as energies. An overview
of the developments in this field can be found in Ref. [2]. Among the algorithms that
calculate the ground state energy of a quantum many-body system, approaches such as
the quantum phase estimation algorithm [10,12] may produce energy estimates with high
accuracy, but require long coherence times [13–15]. An alternative that promises to alleviate
this problem, especially in the noisy-intermediate scale quantum era that we are now in,
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is the Variational Quantum Eigensolver algorithm [16,17]. The underlying principle of
the variational quantum eigensolver is to minimize the ground state energy of a system
through a quantum-classical hybrid approach by tuning the variational parameters in the
appropriate quantum circuit. It has been experimentally realized in platforms such as
photonic processors [17], superconducting qubits [18], ion traps [19], and so forth.

Precise quantum many-body calculations in atoms and molecules are based on a
rigorous treatment of the electron correlation effects. Although simulations of electronic
structures have been performed using quantum algorithms, not much emphasis has been
placed on obtaining the correct correlation trends, mostly owing to the proof-of-principle
nature of the calculations [20]. Moreover, energies of a whole host of molecular systems,
such as H2O [21], H2 [13,20] (also see Ref. [22] for an excited state treatment using an
extended version of the variational quantum eigensolver), HeH+ [17,23], LiH, BeH2 [20],
and H4 [24], have been calculated, but atomic systems have received little attention, ex-
cept for one work on H−, which is a relatively simple system [25], despitefinding many
applications [26–32]. Atomic systems, in our view, merit separate study, since they have
been and are still being used in testing new physics, such as parity violation [28,30,33,34]
and electric dipole moments of quarks [35,36]. Atoms can provide insights on a variety
of physics problems such as those mentioned in the previous sentence, via many-body
calculations of relevant properties (for example, see Ref. [37]). Atomic systems are still
considered the most suitable candidates for making accurate clocks [38–43], probing nuclear
structures by studying isotope shifts [44,45], investigating fundamental physics such as
new physics beyond the standard model of particle physics by analysing atomic parity
violation and precise values of gj factors [46], and many more. All these studies entail
the performance of high-accuracy atomic calculations (even less than 1% level). Many
such studies are performed in heavier atomic systems, for which quantum computers
will be more appropriate than classical ones, when more qubits will be available in the
future. At this point, we will comment on evaluating properties other than energy using
the variational quantum eigensolver algorithm, and their importance when more qubits
become available. The converged parameters from a variational quantum eigensolver
calculation are used in constructing the wave function, which is used in calculating the
energies. One then evaluates a property of interest with the converged amplitudes and
appropriate property integrals. These include atomic properties of interest such as the
hyperfine structure constants. With appropriate modifications, this approach can be used
to calculate properties of interest to fundamental physics (such as probing the electric
dipole moment of the electron), and properties such as dipole polarizabilities for atomic
clocks. Atoms cannot be viewed as subsets of molecules, in that the correlation effects and
trends in a molecule and its constituent atoms can be quite dissimilar. Atomic systems have
shown to display their own unique features in this regard, in particular the conservation of
orbital angular momentum in these systems [47]. Moreover, atoms are better platforms than
molecules for testing the dependence of properties on the number of qubits, since the latter
is composed of two or more atoms, and hence the required number of qubits, in general,
grow much faster when one goes from lighter to heavier systems. In this work, we conduct
a study on carefully chosen atomic systems, in which we strive to understand the precision
with which the all-important electron correlation effects are captured by quantum simu-
lations using the variational quantum eigensolver algorithm. Specifically, within a given
basis set, we check with different combinations of fermionic to qubit operator mapping
and backend simulator if our quantum simulation results lie within the neighborhood of
the best possible result within that basis, thus setting a measure for the precision of our
results. In summary, we study the trends in the ground state energies, and in particular
the correlation part of the energies, of the chosen systems with respect to choice of bases,
fermionic to qubit mapping schemes, and backends both within an atomic system and
across the considered systems. In addition, we compare our results with those obtained
from a traditional computation by using several many-body methods. Since this is the first
study of this kind on atomic systems, we strongly believe that the results and conclusions
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from this work will pave the way for further works on atoms. This will be a new and
refreshing addition to the otherwise common approach of going up in the length scale,
from diatomics to polyatomics and aimed at eventually moving to drug design on complex
molecules etc, to moving in the opposite direction to atomic systems, which we reiterate
has somehow received little attention.

On physical grounds, many-body effects are expected to behave differently in ions
and neutral atoms of isoelectronic systems. Among them, electron correlation effects in the
negative ions are vastly different [48,49] owing to the short-range potentials that bind the
outer valence electron in these ions [50]. Negative ions find several applications, which
is evident from the sheer volume of literature on them [50–52]. Atomic calculations from
earlier works have also shown that electron correlation effects in the alkaline earth-metal
atoms are very prominent due to strong repulsion between the outer two valence electrons
in these atoms [53–55]. For these reasons and keeping in mind the steep cost of simulation in
the noisy-intermediate scale quantum era, we consider here isoelectronic neutral beryllium
(Be), lithium anion (Li−), and boron cation (B+) as representative systems to investigate
roles of electron correlation effects in the determination of their ground state energies.
We also stress on the fact that the study undertaken in this work is general in nature,
and should be applicable to other heavier atomic systems in higher quality basis sets,
when such simulations become feasible. It is also worth adding that the systems that have
been investigated in this work find many applications. For example, light systems such
as Be can serve as excellent systems in probing roles of different kinds of electromagnetic
interactions [56,57], as well as obtaining nuclear charge radii from measurements of isotope
shifts [58]. Moreover, Be is a very interesting system from a many-body theoretic viewpoint,
as it is well known that its ground state has a multireference character [47]. Systems
such as Li− may find applications in plasma diagnostics [59]. Group IIIA ions have been
known to hold great promise for atomic clocks [60]. Specifically, B+, holds promise, since
the transition of interest has an extremely long lifetime in its excited state. Moreover,
because the 10B+ ion’s mass is closer to that of 9Be+, there would be efficient state exchange
for quantum logic detection [61].

The accuracy of the calculated ground state energy of a system using a variational
quantum eigensolver algorithm depends upon several factors, including the crucial aspect
of choosing a variational form, as it dictates the form of the wave function. The other
elements that need special attention are the choice of mapping technique used to convert
the second quantized fermionic operators describing the Hamiltonian and wave function
to their spin counterparts, the backend simulator for running quantum circuits, and the
classical optimizer, besides the more intuitive and traditional features such as the choice of
single-particle basis in the many-body calculations. We focus extensively on the required
number of shots for obtaining reliable results using Qiskit’s QASM simulator backend. Em-
ploying the QASM simulator marks a significant departure from the otherwise common use
of the statevector backend (for example, see Refs. [62–65]. Some works such as Ref. [66] use
QASM, but with much fewer shots (4096) than possibly required). While both the backends
are used for the same variational quantum eigensolver algorithm, the latter relies on matrix
manipulations whereas the former is measurement-based. Our investigation is especially
necessary, as it explicitly provides estimates for expected error from a measurement-based
scheme. This sets the ground for future analyses where one may include noise models
and error mitigation, which then would be more realistically comparable to a calculation
performed on a real quantum computer.

2. Theory
2.1. The Variational Quantum Eigensolver Algorithm

The ground state energy functional of an atomic system within the classical-quantum
hybrid variational quantum eigensolver algorithm is given as:
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E0(θ) =
〈Ψ0(θ)|Ha|Ψ0(θ)〉
〈Ψ0(θ)|Ψ0(θ)〉

= 〈Φ0|U†(θ)HaU(θ)|Φ0〉, (1)

where |Ψ0(θ)〉 is the trial wave function and Ha is the atomic Hamiltonian. The former is
parametrized as |Ψ0(θ)〉 = U(θ)|Φ0〉, where the unitary operator, U(θ), depends on a set
of arbitrary parameters, denoted collectively as θ, and |Φ0〉 is a suitable initial many-body
wave function. For the choice of U(θ), that is, the ansätz, we adopt the unitary coupled-
cluster variational form. The initial state is constructed by employing the Hartree-Fock (HF)
approximation. In this framework, the total Hamiltonian is expressed as Ha = H0 + Ves,
constructed out of the effective one-body HF Hamiltonian H0 and the residual interaction
term Ves [47]. Therefore, the total energy is computed as E0 = EHF + Ecorr with the
HF energy EHF = 〈Φ0|Ha|Φ0〉 and correlation energy Ecorr arising from the residual
interaction Ves. The unitary coupled-cluster theory accounts for these correlation effects
via an exponential ansätz acting on the HF wave function, with the exponent expressed as
the sum of excitation operators. Further, in this ansätz, the Trotterization [67] procedure is
used to decompose U(θ) into smaller operators to implement it efficiently in a quantum
circuit. Throughout, we work with |Ψ0(θ)〉 in its second quantized form, where the relevant
mathematical structures are recast in the language of creation and annihilation operators.
In Equation (1), the atomic Hamiltonian, Ha, too is expressed in the second quantized
form as

Ha =
D

∑
pq

hpqa†
paq +

1
2

D

∑
pqrs

hpqrsa†
pa†

q aras, (2)

where hpq and hpqrs denote one-body and two-body integrals of Ha, respectively, D refers
to the number of spin-orbitals from the chosen single particle basis, and the notations
{p, q, r, s} denote general atomic orbitals.

To compute atomic energies in the framework of quantum simulation, one needs to
express the second quantized fermionic operators that occur in both the wave function
as well as the Hamiltonian as spin operators that contain a sequence of unitary opera-
tions. We use three such mapping techniques, namely the Jordan–Wigner, Parity, and the
Bravyi–Kitaev transformations. In the Jordan–Wigner transformation [68], one works in the
occupation number basis. For a given site, k, the creation and annihilation operators, ak and
a†

k , are related to their corresponding gate structures, Ak and A†
k , via the Jordan–Wigner

transformation, by
Ak

† = ⊗k−1
j=1 Zj ⊗Qk

+ ⊗D
j=k+1 Ij, (3)

and
Ak = ⊗k−1

j=1 Zj ⊗Q−k ⊗
D
j=k+1 Ij, (4)

where Q+
k and Q−k are given by:

Q+
k =

Xk + ι̇Yk
2

, (5)

and
Q−k =

Xk − ι̇Yk
2

, (6)

D refers to the total number of qubits for the considered system, and X, Y, and Z are
the Pauli operators/gates. The string ⊗k−1

j=1 Zj in Equations (3) and (4) ensures that in the
spin operator-transformed version, the required phase change that occurs when a creation
or annihilation operator acts on an arbitrary Fock state is accounted for. In the case of
atoms, this would correspond to D spin-orbitals, with N electrons, or in other words, N
occupied and (D− N) unoccupied spin-orbitals. Note that for the description of a given
Ak, one needs to take into account a tensor product of Z gates that contains (k− 1) terms.
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Therefore, when one constructs terms such as A†
i Aj + A†

j Ai, which one normally encounters
in atomic calculations, the resulting term has tensor product of Pauli gates from index i
through j, with all the in-between indices occurring in steps of one. Thus, the number
of qubit operations for Jordan–Wigner transformation scales as O(D). In case of parity
transformation, the kth qubit stores the parity of all the spin-orbitals up to k. Thus, parity
transformation is known to work in the parity basis. The parity mapping uses two-qubit
reduction arising from the Z2 symmetry, thereby reducing the number of required qubits
by two. We note that the parity transformation too scales as O(D). The Bravyi–Kitaev
transformation works in the Bravyi–Kitaev basis, which finds a golden mean by borrowing
from both of above mentioned approaches, and leads to lesser number of required gates.
The number of qubits scales as O(logD). We have not provided the relevant equations
for the parity and the Bravyi–Kitaev transformations as we have for the Jordan–Wigner
mapping, and an interested reader can find a comprehensive discussion on all these three
transformations in Refs. [68,69].

The circuits thus constructed by starting from Equation (1) are evaluated with an initial
set of guess parameters in an appropriate backend simulator (either statevector or qiskit’s
QASM backend), and the energy is obtained. The statevector simulator executes the set of
circuits associated with a system without measurements or shots, given an input state vector.
The QASM simulator mimics an ideal quantum computer, in that it gives probabilistic
outcomes as counts for each of the states, after multiple shots. After evaluating Equation (1),
we pass the energy to an optimizer, which runs on a classical computer. This module uses
an optimization algorithm, and minimizes the energy, obtained from the previous step of
the variational quantum eigensolver algorithm, with respect to the parameters. Once the
new parameters are obtained, they are fed back as inputs to the quantum circuit from the
previous step. This process is repeated until the energy is minimized. The energy thus
obtained is guaranteed to be an upper bound to the true ground state energy.

2.2. Many-Body Methods

The ground state energy, E0, with the exact wave function |Ψ0〉 of an atomic system
can be determined by

E0 =
〈Ψ0|Ha|Ψ0〉
〈Ψ0|Ψ0〉

. (7)

The full configuration interaction (FCI) method can be employed to determine on |Ψ0〉
exactly for a given basis set by expressing as

|Ψ0〉 = C0|Φ0〉+ CI |ΦI〉+ CI I |ΦI I〉
+ · · ·+ CN |ΦN〉, (8)

where {C}s are the expansion coefficients with the Slater determinants |Φ〉s generated by
exciting the HF wave function |Φ0〉. Due to extremely steep computational cost, truncated
configuration interaction (CI) method is usually considered in the multi-electron systems
for practical scenarios. At a given level of truncation, the coupled-cluster theory accounts
for electron correlation effects more rigorously and satisfies size-consistency and size-
extensivity characteristics in contrast to the configuration interaction method, thereby
earning the title of the gold standard of electronic structure calculations [70]. In the coupled-
cluster theory ansätz, |Ψ0〉 yields the exponential form as (e.g., see Refs. [70,71])

|Ψ0〉 = eT |Φ0〉, (9)
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where T = T1 + T2 + ... + TN is a sum of excitation operators generating particle-hole
excitations with the level denoted by subscript. The amplitudes of these operators are
obtained on a classical computer by solving the following equation

〈ΦK
0 |Ha|Φ0〉 = 0, (10)

whereHa ≡ e−T HaeT =
(

HaeT)
l with subscript l representing the linked terms [70]. The K

on the right hand side of the above equation denotes the Kth excitation out of the HF state.
For example, in the CCSD method, there are two amplitude equations, one with K denoting
single excitations, and the other with K specifying double excitations. Once the amplitudes
associated with the T operators (t-amplitudes) are obtained, the energy of the system is
calculated by:

E0 = 〈Φ0|Ha|Φ0〉
6= 〈Φ0|eT†

HaeT |Φ0〉, (11)

where the inequality sign indicates that the energy expression given by Equation (11) is not
variational in an approximated coupled-cluster theory owing to non-hermitian property of
Ha, but it terminates naturally.

It is desirable to work with unitary operators in the framework of quantum com-
putation/simulation. For this purpose, we take recourse to the unitary coupled-cluster
theory over the coupled-cluster theory. In the approximated unitary coupled-cluster theory
framework [72], U(θ) = eΘ(θ) with Θ(θ) = T − T† such that t-amplitudes are used as
θ. One can immediately see from the above equation that the unitary coupled-cluster
operator involves not only the excitation operator T but also the de-excitation operator T†.
The energy expression follows:

E0 = 〈Φ0|eΘ†
HaeΘ|Φ0〉 = 〈Φ0|e−ΘHaeΘ|Φ0〉

= 〈Φ0|eT†−T HaeT−T† |Φ0〉. (12)

Unlike in the traditional version of the coupled-cluster method, eT†−T HaeT−T†
does not

terminate naturally in the above equation, but it guarantees that the energy thus calculated
obeys the variational principle. Owing to the non-terminating form, Equation (12) cannot
be evaluated efficiently in the traditional unitary coupled-cluster method on a classical
computer without resorting to brute-force termination of the expression. However, this
issue is circumvented on a quantum computer/simulator.

To carry out the analysis conveniently, we have used the approximated coupled-cluster
theory to singles and doubles approximation (CCSD method). The singles and doubles
approximated unitary coupled-cluster theory is henceforth mentioned as the UCCSD
method. The singles and doubles level excitations are denoted by subscripts 1 and 2
respectively, and these operators are defined in the second-quantized form as

T = T1 + T2

= ∑
ia

τiaa†
i aa

+
1
4 ∑

ijab
τijaba†

i a†
j aaab, (13)

where τs are the t-amplitudes, and notations {a, b} and {i, j} denote occupied and virtual
orbitals, respectively.

3. Methodology

We carried out the FCI and the CCSD calculations using PySCF [73], while the UCCSD
computations were performed using the OpenFermion-PySCF [74] program. The one-
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body and two-body integrals, as can be seen from Equation (2), are the main ingredients
from a classical computer to carry out many-body calculations on a quantum simulator.
These integrals are obtained from the PySCF program [73]. In this program, Gaussian type
orbitals [75], specifically contracted versions of the minimal STO-3G and STO-6G basis [76],
as well as Pople’s 3-21G basis and 6-31G basis [77], are employed. Since the number of
qubits required for the computations is equal to the number of spin-orbitals (which is in turn
decided by the choice of single-particle basis set), the qubit requirement for Be, Li−, and B+

is 10 for the STO-3G and STO-6G basis sets, while it is 18 for the 3-21G and 6-31G basis sets.
We stress that we carry out all-electron calculations, that is, we do not freeze any of the
occupied spin-orbitals. This factor, in combination with the chemically (and/ or physically
motivated) UCCSD variational form, leads to the computations becoming expensive. As an
example, Be in the 6-31G basis, which is a 18 qubit computation, demands for about 1900
gates even with the ‘heavy’ RYRZ with full entanglement strategy hardware efficient ansätz,
but UCCSD demands for about 32000 gates. This scaling makes computations with more
qubits challenging. In all of our calculations, we set the initial guess parameters for the
variational form to zero. We also fixed the Trotter number to be one. We used a gradient-free
approach, the COBYLA (Constrained Optimization BY Linear Approximation) optimizer,
which is commonly used in the literature [5,24,78,79]. For an optimization problem with N
design variables, a simplex of N + 1 vertices is constructed. Hereafter, a linear polynomial
approximation is used as an interpolation of the objective function and the inequality
constraints of the problem. The algorithm controls the size of the trust region (simplex)
and decreases it until a convergence is reached. The convergence for COBYLA optimizer is
slower than the gradient based methods as it requires higher number of function evaluations
to reach the optimum value. However, stability comes as a notable feature for this algorithm
along with lesser number of parameters to be tuned for performing optimization [80]. We
used the qiskit 0.15.0 package [81] to carry out quantum simulations using the variational
quantum eigensolver algorithm.

We have depicted the important steps followed in the current work for better under-
standing of its objective in Figure 1a, while the general features of the variational quantum
eigensolver algorithm adopted in the present work, as well as its structure is encapsulated
in Figure 1b. The qubit mapping of unitary coupled-cluster operators into circuit form
includes a rotation gate, Rz(2θ), encased within a staircase structure constructed out of
two-qubit CNOT-gates. Figure 1a shows an example with 3 qubits, q0, q1, and q2, where
the circuit represents U(θ) = e−iθZ0Z1Z2 with Zi referring to the ith Pauli Z-gate. For the
cases where the exponent contains the X or Y Pauli operators, the basis is rotated with the
appropriate single-qubit rotation gates.

In the Results section, we show the dependence of the calculated ground state energies
of Be, Li−, and B+ using the variational quantum eigensolver algorithm on combinations
of different mappings and simulators, within a basis set. For the larger 3-21G and the 6-31G
bases, we only provide results obtained with the statevector simulator. We also give the HF,
CCSD, UCCSD, and FCI calculations, obtained with a classical computer, for comparison.
Explicitly giving the HF energy allows us to visually check for the correlation effects
captured by a variational quantum eigensolver calculation for a given combination of basis,
mapping, and backend.
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(a) (b)

Figure 1. (a) A schematic demonstrating evaluation procedure of Equation (1) using the variational
quantum eigensolver algorithm. It includes different combinations of mapping (in green), basis
sets (in blue), and backend simulator (in red) to capture the correlation effects. A sample template
unitary coupled-cluster circuit is provided for the case of three qubits (q0, q1, and q2), built out of
CNOT and Rz(2θ) gates. The figure lists the atomic systems chosen for the investigation, and it also
mentions about the comparison of our variational quantum eigensolver results with those obtained on
a classical computer by employing various many-body methods. (b) An overview of the variational
quantum eigensolver algorithm applied to electronic structure problem, which requires generating the
one-body and two-body integrals of atomic Hamiltonian, expressing the wave function in parametric
form and adopting quantum modules for computation. The guess parameters are then updated each
time in an iterative procedure on a classical optimizer until a global minimum is reached.

4. Results and Discussion

We first present an outline of the contents of this section in order to make it easier to
follow the organization of the results. We first discuss the analysis of the required number
of shots for QASM calculations, with the corresponding figures being Figures 2 and 3. This
is followed by a brief analysis of errors due to Trotter number. We then move to the main
results pertaining to the calculations with the STO-3G basis, followed by those from the
STO-6G basis. We then examine the results of our calculations with the 3-21G and the
6-31G bases, and provide additional comments on possible discrepancies due to optimizers,
STO-6G vs 3-21G bases, and comparison of results across smaller (STO family) and larger
(split-valence, that is, 3-21G and 6-31G) bases.
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Figure 2. Analysis of the unitary coupled cluster energy from the QASM backend (UCCSD(QASM))
versus the number of shots, for Be in STO-3G basis and with Jordan–Wigner mapping. The results
obtained using the QASM backend are also compared with the values obtained using the full
configuration interaction (FCI), coupled cluster in singles and doubles approximation (CCSD), and the
unitary coupled cluster in the singles and doubles approximation (UCCSD) methods on a classical
computer. Each data point (circle) represents the mean of 160 runs for a given number of shots, and is
accompanied by two error bars, with the band in yellow quoting the range (maximum–minimum),
while the green band denotes the standard deviation. The data points marked with a triangle refer to
the bootstrapped mean. The CCSD and the FCI lines overlap exactly, owing to their agreement to the
fifth decimal place, as Table 1 shows.

(a) (b) (c)

Figure 3. Graphical illustration of results for the (a) Be, (b) Li−, and (c) B+ in STO-3G basis obtained
using the variational quantum eigensolver algorithm. The figure serves to compare the impact of
different combinations of fermion to qubit mapping techniques, namely Jordan–Wigner (JW), parity
(PAR), and Bravyi–Kitaev (BK) transformations, as well as backend simulators (statevector and
QASM). The dark blue bars indicate the energies obtained on a QASM simulator, while the bars in
light blue specify the energies computed using a statevector simulator. The calculated energies are
compared with full configuration interaction (FCI) (dot-dash line), and also with CCSD (dotted line),
and UCCSD (dashed line) methods. Each of the plots also show the Hartree-Fock (HF) energy as a
black solid line, which allows to visualize the correlation effects.
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Table 1. A quantitative analysis of the ground state energies (in hartree) of Be, Li−, and B+ computed
using the variational quantum eigensolver algorithm in the STO-3G basis and adopting the UCCSD
ansätz, with different combinations of simulators (statevector (SV) and QASM) and fermion to
qubit mapping techniques (JW refers to Jordan–Wigner, PAR to parity, and BK to the Bravyi–Kitaev
mapping). The results are compared with values obtained using various methods in a classical
computer (ClC). Next to the final values, we provide the correlation energy for that combination in
brackets. The percentage fraction difference with respect to FCI results is denoted as ‘∆ in %’.

Map Method Backend Be Li− B+

HF −14.351880 −7.213273 −23.948470
ClC FCI −14.403655 (−0.051775) −7.253791 (−0.040518) −24.009814 (−0.061344)

CCSD −14.403651 (−0.051771) −7.253786 (−0.040513) −24.009811 (−0.061341)
UCCSD −14.391028 (−0.039148) −7.244008 (−0.030735) −23.994757 (−0.046287)
UCCSD QASM −14.388109 (−0.036229) −7.244270 (−0.030997) −24.002041 (−0.053571)

JW (∆ in %) (−0.108) (−0.131) (−0.032)
UCCSD SV −14.403490 (−0.05161) −7.253682 (−0.040409) −24.009652 (−0.061182)
(∆ in %) (−0.001) (−0.001) (−0.001)
UCCSD QASM −14.394762 (−0.042882) −7.243156 (−0.029883) −23.992675 (−0.044205)

PAR (∆ in %) (−0.062) (−0.146) (−0.071)
UCCSD SV −14.403446 (−0.051566) −7.253611 (−0.040338) −24.009631 (−0.061161)
(∆ in %) (−0.001) (−0.002) (−0.001)
UCCSD QASM −14.392365 (−0.040485) −7.243775 (−0.030502) −23.998311 (−0.049841)

BK (∆ in %) (−0.078) (−0.138) (−0.048)
UCCSD SV −14.403539 (−0.051659) −7.253681 (−0.040408) −24.009500 (−0.06103)
(∆ in %) (−0.001) (−0.001) (−0.001)

4.1. Analysis of the Required Number of Shots for QASM Calculations

We study the effect of the number of shots, for evaluating the ground state energy of
the considered systems, on precision, for the results obtained using the QASM simulator.
We chose the Be atom as a representative system in the STO-3G basis with Jordan–Wigner
mapping for this purpose. The findings from a preliminary analysis of percentage fraction
error with respect to FCI versus number of shots, with the latter verified up to 512 shots in
steps of one, is given in Figure 4. We deemed this analysis as being qualitative, in that in a
calculation with a given number of shots, the computation does not return identical results
when repeated. Hence, we only pay attention to the overall trend for the purposes of this
analysis. We note that each point on the X-axis in Figure 4 is an individual computation
with those many shots. For 100 shots, we have approximately 4 percent error for Be, which
is clearly not desirable. This leads us to Figure 2, which shows results from larger intervals,
and all the way up to 100,000 shots. We also explicitly plot the energy versus the number of
shots here. This analysis is rigorous, with the inclusion of maximum, minimum, and mean
values for the energies at each data point, by repeating each of the runs for a given number
of shots 160 times. In Figure 4, we also show the values of energy calculated on a classical
computer from the HF, FCI, CCSD and UCCSD methods, so as to have a visual feel of
correlation effects. It is noticeable from the above figure that at 100 shots, the mean energy
is above the HF value, and therefore hardly satisfying the variational principle. One can
also see that at lower number of shots, the error bar (the difference between the maximum
and minimum values) is so large that its extent is greater than the difference between the
energy values from the HF and FCI methods, that is, the amount of electron correlation.
As the number of shots increase, the curve approaches and appears to converge to the
UCCSD value that one obtains with a classical computer and has a very small error bar.
It is worth noting here that had we increased the shots further, the curve would have,
albeit gradually, yielded lower values. The inference that the curve would continue to
monotonically decrease is based on a simple fit to the mean energy values. However, it is
important to see that it is non-trivial to find a rigorous fit due to the statistical nature of each
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data points, and for our purposes, not necessary. The plot also shows that the error bars
reduce with increasing shots. Based on these results, we performed computations with the
QASM backend for the rest of the basis sets and mappings, as well as for the other atoms,
setting the number of shots to 20,000. The rationale is that 20,000 shots finds a golden
mean between computational cost and accuracy. In fact, we obtained about 0.1 percent
error for the mean value with respect to FCI, while the standard deviation is only around
4 mHa. We also add at this point that we carried out bootstrapping procedure to check its
agreement of the mean over 160 repetitions for a given number of shots. For the purpose
of bootstrapping, we chose 50 samples of lists with each having four data points (we did
repeat the procedure for longer lists (up to lists of length 50 and from 10 to 100,000 shots
for each list length), and found that the results only change at ∼0.1 mHa from 10,000 shots
onwards). We find that mean and bootstrapped mean agree at 1 mH at 20,000 shots.
Lastly, in the interest of computational time, we only performed one calculation with
20,000 shots for each of the remaining cases (that is, Be with other mappings and also the
remaining two atomic systems considered) and not with twenty repetitions, given that for
Be with STO-3G basis and Jordan–Wigner mapping, at those many shots, the difference
between the maximum and minimum values in twenty repetitions is less than 0.1 percent.
We anticipated the error estimate to be similar for the rest of the cases, and under this
assumption, we performed a single run for them. It is worth adding at this point that
there are works in the literature that have made great strides in reducing the number of
variational quantum eigensolver measurements for electronic structure [82–85]. Lastly,
we note that this analysis serves an important purpose; our estimate for the number of
shots required sets the tone for future analyses on atomic systems with the QASM backend,
where we can strive to emulate a quantum computer more realistically, with the inclusion
of noise models and error mitigation.

Figure 4. Plot showing the variation in the percentage fraction error in the calculated energy using
the QASM simulator with respect to the Full Configuration Interaction value, with the number of
shots up to 512, for Be in the STO-3G basis and with the Jordan–Wigner mapping.

4.2. Analysis of Errors Due to Trotter Number

We verified the errors that may arise as result of setting the Trotter number in our
simulation to one. For the Be atom in the STO-3G basis and with Jordan–Wigner mapping,
we found that up to a Trotter step of 50, the error was at most∼1 milli-hartree in∼14 hartree.
For Li− with the same basis and mapping, the error was found to be as high as 0.2 milli-
hartree in ∼7 hartree, and for B+, the error did not exceed 0.1 milli-hartree in ∼24 hartree.
We also verify that we obtain similar estimates with parity and Bravyi–Kitaev mappings
for all three chosen atomic systems. Hence, we set a conservative estimate that even with
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other basis sets and mappings, the error due to Trotter step would not exceed 0.01 percent.
In other words, the error is negligible, and justifies setting Trotter number to one. We note
that trottering U(θ) does not preserve particle number, and in that sense, one can view
the comparison between variational quantum eigensolver results and FCI results as the
deviation in our results from the expectation value of the correct particle number.

4.3. Main Results and Analysis

We examine the correlation effects in the ground state energies of the systems that
we considered, in Tables 1–4, with each table presenting results for a given basis set.
Among these, Table 1 (and the accompanying Figure 3) gives the STO-3G results. We
immediately see that for Be, the energies obtained using the statevector simulator agree
to ∼ 0.1 milli-hartree, or about 0.001 percent error, with respect to FCI. We find similar
differences for Li− and B+ for the STO-3G basis, whose results are also presented in Figure 3.
In comparison, the correlation effects from FCI are about 50, 40, and 60 milli-hartree for Be,
Li−, and B+, respectively. Therefore, we can infer that quantum simulation with statevector
simulator accounts for electron correlations very accurately in the STO-3G basis. This is
perhaps not surprising, as a statevector simulator does not rely upon statistics built from
repeated measurements in order to extract energy. We also present our results from a
QASM simulator. They are all in good agreement with the unitary coupled-cluster results
from a classical computer, and not with the FCI results as one may expect, due to our choice
of the number of shots (20,000 of them) as seen earlier. In fact, the difference between the
FCI and the unitary coupled-cluster QASM value (about 8 and 11 milli-hartree for parity
and Bravyi–Kitaev mappings, respectively, and about 15 milli-hartree for Jordan–Wigner
case), is comparable with that between the maximum and the minimum values (about
8 milli-hartree) for 20,000 shots from Figure 2.

Table 2. The ground state energies of Be, Li−, and B+ obtained using the STO-6G basis. All notations
are the same as in Table 1.

Map Method Backend Be Li− B+

HF −14.503361 −7.295246 −24.190562
ClC FCI −14.556088 (−0.052727) −7.336640 (−0.041394) −24.252889 (−0.062327)

CCSD −14.556083 (−0.052722) −7.336635 (−0.041389) −24.252884 (−0.062322)
UCCSD −14.543257 (−0.039896) −7.326677 (−0.031431) −24.237615 (−0.047053)
UCCSD QASM −14.544091 (−0.04073) −7.326529 (−0.031283) −24.227757 (−0.037195)

JW (∆ in %) (−0.082) (−0.138) (−0.055)
UCCSD SV −14.555940 (−0.052579) −7.336485 (−0.041239) −24.252614 (−0.062052)
(∆ in %) (−0.001) (−0.002) (−0.001)
UCCSD QASM −14.541160 (−0.037799) −7.321997 (−0.026751) −24.222150 (−0.031588)

PAR (∆ in %) (−0.103) (−0.199) (−0.127)
UCCSD SV −14.555943 (−0.052582) −7.336510 (−0.041264) −24.252623 (−0.062061)
(∆ in %) (−0.001) (−0.002) (−0.001)
UCCSD QASM −14.548048 (−0.044687) −7.321989 (−0.026743) −24.241578 (−0.051016)

BK (∆ in %) (−0.055) (−0.199) (−0.047)
UCCSD SV −14.555848(−0.052487) −7.336462 (−0.041216) −24.252669 (−0.062107)
(∆ in %) (−0.002) (−0.002) (−0.001)
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Table 3. The table presents the energies for Be, Li−, and B+ in the 3-21G basis. The same notations as
in Table 1 are adopted here.

Map Method Backend Be Li− B+

HF −14.486820 −7.366760 −24.096376
ClC FCI −14.531444 (−0.044624) −7.397779 (−0.031019) −24.153344 (−0.056968)

CCSD −14.531416 (−0.044596) −7.397757 (−0.030997) −24.153311 (−0.056935)
UCCSD −14.512130 (−0.02531) −7.383818 (−0.017058) −24.131129 (−0.034753)

JW UCCSD SV −14.513922 (−0.027102) −7.385692 (−0.018932) −24.138757 (−0.042381)
(∆ in %) (−0.121) (−0.163) (−0.059)

PAR UCCSD SV −14.516600 (−0.02978) −7.387247 (−0.020487) −24.139378 (−0.043002)
(∆ in %) (−0.102) (−0.142) (−0.058)

BK UCCSD SV −14.519369 (−0.032549) −7.386396 (−0.019636) −24.139013 (−0.042637)
(∆ in %) (−0.083) (−0.154) (−0.059)

Table 4. Using the same notations as in Table 1, the ground state and correlation energies for Be, Li−,
and B+ in the 6-31G basis are given.

Map Method Backend Be Li− B+

HF −14.566764 −7.405387 −24.234041
ClC FCI −14.613545 (−0.046781) −7.438753 (−0.033366) −24.293125 (−0.059084)

CCSD −14.613518 (−0.046754) −7.438739 (−0.033352) −24.293096 (−0.059055)
UCCSD −14.593071 (−0.026307) −7.423171 (−0.017784) −24.269635 (−0.035594)

JW UCCSD SV −14.601323 (−0.034559) −7.426886 (−0.021499) −24.279715 (−0.045674)
(∆ in %) (−0.083) (−0.159) (−0.055)

PAR UCCSD SV −14.597296 (−0.111) −7.425017 (−0.185) −24.278157 (−0.061)
(∆ in %) (−0.030532) (−0.01963) (−0.044116)

BK UCCSD SV −14.597296 (−0.030532) −7.423154 (−0.017767) −24.277312 (−0.043271)
(∆ in %) (−0.111) (−0.209) (−0.651)

A peculiar observation in the classical computing part of the results is that for all the
considered basis sets, the CCSD result agrees better with the results from the FCI method
than the UCCSD method. In principle, UCCSD is expected to capture more many-body
effects than CCSD, with the caveat that the energy expression for the former does not
naturally terminate, thereby relying upon the chosen truncation scheme to achieve the
desired results. We suspect that the observed deviation is associated with the truncation
scheme of the UCCSD method. To that end, we provide a fairly detailed explanation of the
approach taken in the openfermion code to evaluating the UCCSD energy, and en route,
explain the approximations and truncation involved in the procedure. The UCCSD energy
is calculated using the familiar E = 〈Φ0|eΘ† HeΘ|Φ0〉. Rather than taking the conventional
route of solving the UCCSD equations, obtain the amplitudes, and then solve the expression
for energy while suitably terminating the series, the code aims at directly solving the
expression for energy by matrix multiplications involving H and eΘ|Φ0〉. In order to do
this, the second quantized creation and annihilation operators in the Hamiltonian and wave
function are mapped to a string of tensor products of Pauli operators using the Jordan–
Wigner transformation. The CCSD equations are solved in Pyscf or any other suitable
program, and the t amplitudes (real) thus obtained are used in eΘ. The remaining step,
and arguably the most important, is finding an efficient way of matrix multiplication. This
boils down further to finding an efficient approach for multiplying an exponential matrix
and a column vector. The algorithm from Al-Mohy and Higham [86] is adopted, where
etAB, where A is an n× n matrix, and B an n× n0 matrix, with n0 << n, is evaluated by
approximating the exponential as a [m/m] Pade approximant, which in turn is written as
a truncated Taylor series. The backward error from such an algorithm would depend on
the choice of an integer, s ≥ 1, and m, which are in turn chosen by an appropriate recipe
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from their paper. On the other hand, the UCCSD energy obtained from qiskit simulators
(where we have a compact circuit representation for exponentials, after Trotterization),
E = 〈Φ0|e−ΘHeΘ|Φ0〉, have their own sources of errors, which we have studied in detail
in our work. Given that the approaches are different, complex, and come with their own
approximations, and also given that evaluating a matrix exponential is almost always
non-trivial, a thorough study of the openfermion UCCSD algorithm over and above the
details that we mentioned above is perhaps beyond the scope of this work. To that end, we
have done the best that we can, which is to compare both the UCCSD results with the FCI
result with the same single-particle basis.

Table 2 (and Figure 5) also shows the same results but obtained with the STO-6G
basis. The results are an improvement over the earlier basis as evident by lowering of
the calculated energies, although the qubit number is the same for a given system, since
more functions are contracted in the STO-6G case. Not too surprisingly, the trends are very
similar to those in the STO-3G basis.

(a) (b) (c)

Figure 5. Figure showing bar plots depicting the values of ground state energies of the (a) Be,
(b) Li−, and (c) B+ obtained from variational quantum eigensolver calculations in the STO-6G
basis, with various fermion to qubit mapping techniques, and on different backend simulators.
The notations are the same as in Figure 3.

We now proceed to examine the results obtained from bigger bases as shown in
Tables 3 and 4 (and the accompanying Figures 6 and 7 respectively). We reiterate that
QASM results are not computed for calculations using these two basis sets, in view of
the requirement of a large number of shots to obtain a reasonably accurate result. We
observe from the Table 3 that the effect of electron correlation on FCI energy is about 40,
30, and 50 in milli-hartree for Be, Li−, and B+, respectively, whereas the difference in the
correlation energies between FCI and quantum simulation are about 10 milli-hartree for
all the systems. This discrepancy is possibly due to the slow convergence of the COBYLA
optimizer. To check this, we choose the Jordan–Wigner mapping and the STO-3G basis set
for a representative calculation, and increase the number of iterations to beyond the default
maximum threshold of 1000 iterations (which we employ to report our results in this work).
We found that while the percentage fraction error with respect to the FCI result is ∼ 10−3

at 1000 iterations, it decreases further to ∼ 10−4 at 2000 iterations. We expect that with
the 3-21G basis as well as the 6-31G basis, the results would improve slightly with larger
number of iterations, which comes with higher computational cost. Alternatively, one
could employ an optimizer that converges faster, such as L-BFGS-B and conjugate gradient,
which we find after a preliminary survey to have converged within a lesser number of
iterations but not as smoothly as COBYLA.
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(a) (b) (c)

Figure 6. Our results for the ground state energies of the (a) Be, (b) Li−, and (c) B+ in 3-21G basis using
different combinations of mappings and backend simulators visualized as bar plots. The notations
that have been adopted for this figure are the same as those for Figure 3.

(a) (b) (c)

Figure 7. The results for the energies of the (a) Be, (b) Li−, and (c) B+ in the 6-31G basis in the form
of bar plots showing different combinations of fermion to qubit mapping techniques and backend
simulators. The notations that have been adopted for this figure are the same as those for Figure 3.

4.4. Further Findings from Obtained Data

In the rest of the results section, we briefly present an assortment of important com-
ments based on our findings.

Dependence of results on mapping scheme: It is known that the energy landscape close to
the variational minimum is invariant with respect to the chosen encoding. It is, therefore,
important to note that the observed difference in results across maps for the QASM simula-
tor could be more a consequence of the error due to statistics associated with the backend,
and not the actual difference, if any. En route to drawing this conclusion, we have explicitly
verified that the errors due to trotterization and optimizer convergence have been checked
and are found to be negligible, by choosing Be as a representative case and for all the three
mapping schemes.

Preferred mapping scheme: We note that for a given atom, between different maps,
the change in correlation energies even with the QASM backend is ∼1 milli-hartree, thus
reinforcing that the correlation energy is not very sensitive to the mapping scheme. In this
regard, the parity map is cheaper due to the reduction of two qubits, while giving results in
agreement with other maps that are more qubit-expensive, and hence recommended for
future atomic calculations of this nature.

STO-6G vs. 3-21G bases: The largest basis chosen in this work, namely the 6-31G
basis, displays trends similar to the 3-21G counterpart. An observation about the results
from the 3-21G basis is that the obtained FCI results (and hence, statevector results and
predicted QASM results with 20,000 shots) are comparable to those from the STO-6G
basis for Be (within 10 milli-hartree), whereas the 3-21G results are slightly better (about
60 milli-hartree) and much worse (about 100 milli-hartree) for the negative and positive
ions, respectively, than the STO-6G basis. However, since the STO-6G basis uses 10 qubits
while 3-21G demands 18 for the considered systems, the former is more attractive and
should be preferred over the latter.

Trends in C2+: Since our goal in this pilot study is to assess precision with which
one can capture correlation effects, and not really present an exhaustive survey of many
systems, we have tried to select carefully a few systems and attempted to be rigorous in
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studying the influence of the knobs of the variational quantum eigensolver algorithm in
deciding the precision in ground state energies. As an extension, we also comment on
two other isoelectronic systems to Be. We explicitly verify that the trends, as one would
expect, remain the same in C2+ by calculating its energies within the STO-3G and STO-6G
bases, for all three mappings, and compare with FCI, CCSD, and the UCCSD results from a
classical algorithm, just as we did for the main systems considered in this work. Within each
of the two bases, our statevector (SV) results differ at ∼ 0.1 mHa with respect to the FCI
values, while for QASM backend (with 20,000 shots), they differ at ∼ 10s of mHa. We add
that we have avoided the isoelectronic He2−, as the STO series contracted basis sets have
been designed in a way historically where there is no room for any correlation effects.

Variational quantum eigensolver results versus FCI in larger bases: Lastly, we attempt to
address the question of the energy from a variational quantum eigensolver calculation
being farther away from the FCI value in larger basis sets, as compared to the smaller
ones. This could be due to the fact that with lesser qubits in a smaller basis and hence a
limited number of virtuals, we miss a fewer excitations, whereas for a larger basis with
more virtuals, we miss more excitations from the higher-level excitations such as from the
triples and quadruples.

5. Conclusions

We investigated the trends in electron correlation effects for assessing the precision
with which we can determine the ground state energies of Be, Li−, and B+ isoelectronic
systems using the quantum-classical hybrid variational quantum eigensolver algorithm.
We worked with four single-particle basis sets, two minimal and two split-valence, that are
not very qubit-expensive and thus suited for the Noise Intermediate State Quantum era.
Within each of those bases, we analyzed the changes in the results with choice of mapping
as well as the backend simulator, in the unitary coupled-cluster theory ansätz. The energies
obtained using the STO-3G basis showed that the statevector results agreed well beyond
the milli-hartree level of precision with respect to the best possible calculation within that
single-particle basis, namely the full configuration interaction method, for all the three
atomic systems. Moreover, the results were found to be almost independent of the choice
of mapping. For calculations using the QASM simulator backend, we first carried out an
extensive analysis of the required number of shots, and with our recommended value,
the results agreed to tens of milli-hartree with respect to the full configuration interaction
method. We also probed the errors due to the spread in results from the repetition of
a computation with a given number of shots, and found that they lie around the same
ballpark, and the energies are in better agreement with the values obtained using the
singles and doubles approximated unitary coupled-cluster theory on a classical computer.
The results from the higher quality STO-6G basis also showed similar trends. When we
examined the statevector results from the larger (in number of qubits) 3-21G basis set, we
found that the values were comparable with those obtained using the STO-6G basis set and
with the same backend, although the former required eight extra qubits than the latter. We
find again that the results from the 3-21G basis agree better with the singles and doubles
approximated unitary coupled-cluster theory. The results also vary within 10 milli-hartree
across different mappings. The trends from the 6-31G basis are similar to those from the
3-21G basis set. Our work is timely and relevant in view of recent developments, such as
the announcement of the IBM Quantum Condor, which is expected in 2023, which aims
to hit the 1000-qubit mark in the quest for scaling quantum computers [87]. When such
machines come to fruition, our pilot study will pave the way in extending our present
calculations to not only heavier atomic systems, but also in evaluating other properties with
the variational quantum eigensolver algorithm, which would be of interest in new physics
beyond the Standard Model and other important applications such as atomic clocks.
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