# Statistical Quantifiers Resolve a Nuclear Theory Controversy

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Statistical Order

#### 1.2. Disequilibrium

#### 1.3. Exactly Solvable Lipkin-like Models

## 2. The AFP Model

## 3. Hamiltonian Matrices

## 4. Thermal Quantifiers

#### 4.1. Complexity-Associated Quantum Quantifiers

#### 4.2. Thermal Efficiency

## 5. The Controversy

#### Renormalized Coupling $v/N$

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hubbard, J. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond.
**1963**, 276, 238–257. [Google Scholar] - Liu, Y. Exact solutions to nonlinear Schrodinger equation with variable coefficients. Appl. Math. Comput.
**2011**, 217, 5866. [Google Scholar] [CrossRef] - Frank, R. Quantum criticality and population trapping of fermions by non-equilibrium lattice modulations. New J. Phys.
**2013**, 15, 123030. [Google Scholar] [CrossRef][Green Version] - Lubatsch, A.; Frank, R. Evolution of Floquet topological quantum states in driven semiconductors. Eur. Phys. J. B
**2019**, 92, 215. [Google Scholar] [CrossRef][Green Version] - Otero, D.; Proto, A.; Plastino, A. Surprisal Approach to Cold Fission Processes. Phys. Lett.
**1981**, 98, 225. [Google Scholar] [CrossRef] - Satuła, W.; Dobaczewski, J.; Nazarewicz, W. Odd-Even Staggering of Nuclear Masses: Pairing or Shape Effect? Phys. Rev. Lett.
**1998**, 81, 3599. [Google Scholar] [CrossRef][Green Version] - Dugett, T.; Bonche, P.; Heenen, P.H.; Meyer, J. Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei. Phys. Rev. C
**2001**, 65, 014311. [Google Scholar] [CrossRef][Green Version] - Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Uys, H.; Miller, H.G.; Khanna, F.C. Generalized statistics and high-T
_{c}superconductivity. Phys. Lett. A**2001**, 289, 264. [Google Scholar] [CrossRef][Green Version] - Kruse, M.K.G.; Miller, H.G.; Plastino, A.R.; Plastino, A.; Fujita, S. Landau-Ginzburg method applied to finite fermion systems: Pairing in nuclei. Eur. J. Phys. A
**2005**, 25, 339. [Google Scholar] [CrossRef] - de Llano, M.; Tolmachev, V.V. Multiple phases in a new statistical boson fermion model of superconductivity. Physica A
**2003**, 317, 546. [Google Scholar] [CrossRef] - Xu, F.R.; Wyss, R.; Walker, P.M. Mean-field and blocking effects on odd-even mass differences and rotational motion of nuclei. Phys. Rev. C
**1999**, 60, 051301. [Google Scholar] [CrossRef][Green Version] - Häkkinen, H.; Kolehmainen, J.; Koskinen, M.; Lipas, P.O.; Manninen, M. Universal Shapes of Small Fermion Clusters. Phys. Rev. Lett.
**1997**, 78, 1034. [Google Scholar] [CrossRef][Green Version] - Lipkin, H.J.; Meshkov, N.; Glick, A.J. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys.
**1965**, 62, 188–198. [Google Scholar] [CrossRef] - Co, G.; De Leo, S. Analytical and numerical analysis of the complete Lipkin–Meshkov–Glick Hamiltonian. Int. J. Mod. Phys. E
**2018**, 27, 1850039. [Google Scholar] - Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw Hill: New York, NY, USA, 1965. [Google Scholar]
- Ruiz, R.L.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. A
**1995**, 209, 321. [Google Scholar] [CrossRef][Green Version] - Arrachea, L.; Canosa, N.; Plastino, A.; Portesi, M.; Rossignol, R. Maximum Entropy Approach to Critical Phenomena in Finite Quantum Systems. Phys. Rev. A
**1992**, 45, 44. [Google Scholar] [CrossRef] - Abecasis, S.M.; Faessler, A.; Plastino, A. Application of the Multi Configuration Hartree-Fock Theory to a Simple. Model. Z. Phys.
**1969**, 218, 394. [Google Scholar] [CrossRef] - Feng, D.H.; Gilmore, R.G. Critical properties of a generalized pseudospin Hamiltonian. Phys. Rev. C
**1982**, 26, 1244. [Google Scholar] [CrossRef] - Bozzolo, G.; Cambiaggio, M.C.; Plastino, A. Maximum Overlap, Atomic Coherent States and the Generator Coordinate Method. Nucl. Phys. A
**1981**, 356, 48. [Google Scholar] [CrossRef] - López-Ruiz, R. A information-theoretic Measure of Complexity. In Concepts and Recent Advances in Generalized Information Measures and Statistics; Kowalski, A., Rossignoli, R., Curado, E.M.C., Eds.; Bentham Science Books: New York, NY, USA, 2013; pp. 147–168. [Google Scholar]
- Martin, M.T.; Plastino, A.; Rosso, O.A. Generalized information-theoretic complexity measures: Geometrical and analytical properties. Physica A
**2006**, 369, 439. [Google Scholar] [CrossRef] - Dehesa, J.S.; López-Rosa, S.; Manzano, D. Configuration complexities of hydrogenic atoms. Eur. Phys. J. D
**2009**, 55, 539. [Google Scholar] [CrossRef][Green Version] - Esquivel, R.O.; Molina-Espiritu, M.; Angulo, J.C.; Antoín, J.; Flores-Gallegos, N.; Dehesa, J.S. Information-theoretical complexity for the hydrogenic abstraction reaction. Mol. Phys.
**2011**, 109, 2353. [Google Scholar] [CrossRef] - Pennini, F.; Plastino, A. Disequilibrium, thermodynamic relations, and Renyi’s entropy. Phys. Lett. A
**2017**, 381, 212. [Google Scholar] [CrossRef] - Martin, M.T.; Plastino, A.; Rosso, O.A. Information-theoretic complexity and disequilibrium. Phys. Lett. A
**2003**, 311, 126. [Google Scholar] [CrossRef] - Pennini, F.; Plastino, A.; Plastino, A.R. Thermal–Statistical Odd–Even Fermions’ Staggering Effect and the Order–Disorder Disjunction. Entropy
**2021**, 23, 1428. [Google Scholar] [CrossRef] - Nigmatullin, R.; Prokopenko, M. Thermodynamic efficiency of interactions in self-organizing systems. Entropy
**2021**, 23, 757. [Google Scholar] [CrossRef] - Pennini, F.; Plastino, A. Complexity and disequilibrium as telltales of superconductivity. Physica A
**2018**, 506, 828–834. [Google Scholar] [CrossRef]

**Figure 1.**${\eta}_{AFP}$ (red) and Lipkin’s ${\eta}_{L}$ (blue) vs. v, for $N=6$ and the low temperature $\beta =5$. Note that ${\eta}_{AFP}$ (red) clearly detects a phase transition. There is none for the Lipkin model.

**Figure 2.**Vertical axis: ${D}_{AFP}$ (red) and Lipkin’s ${D}_{L}$ (blue) versus v (horizontal axis). The remaining details are as in Figure 1.

**Figure 4.**Complexity C (continuous line) and $\eta AFP$ (dashed) plotted versus v. The effective coupling constant is $v/N$. Two N values are used.

**Figure 5.**$\eta AFP$ plotted versus v. The effective coupling constant is $v/N$. Eight different N values are used. A different color is assigned to each value, as indicated in the graph.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Monteoliva, D.; Plastino, A.; Plastino, A.R.
Statistical Quantifiers Resolve a Nuclear Theory Controversy. *Quantum Rep.* **2022**, *4*, 127-134.
https://doi.org/10.3390/quantum4010009

**AMA Style**

Monteoliva D, Plastino A, Plastino AR.
Statistical Quantifiers Resolve a Nuclear Theory Controversy. *Quantum Reports*. 2022; 4(1):127-134.
https://doi.org/10.3390/quantum4010009

**Chicago/Turabian Style**

Monteoliva, Diana, Angelo Plastino, and Angel Ricardo Plastino.
2022. "Statistical Quantifiers Resolve a Nuclear Theory Controversy" *Quantum Reports* 4, no. 1: 127-134.
https://doi.org/10.3390/quantum4010009