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Abstract: It has been more than 20 years since Deutsch and Hayden proved the locality of quantum
theory, using the Heisenberg picture of quantum computational networks. Of course, locality holds
even in the face of entanglement and Bell’s theorem. Today, most researchers in quantum foundations
are still convinced not only that a local description of quantum systems has not yet been provided,
but that it cannot exist. The main goal of this paper is to address this misconception by re-explaining
the descriptor formalism in a hopefully accessible and self-contained way. It is a step-by-step guide
to how and why descriptors work. Finally, superdense coding is revisited in the light of descriptors.
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1. Motivation

It is still a widespread belief that a complete description of a composite entangled
quantum system cannot be obtained by descriptions of the parts, if those are expressed
independently of what happens to other parts. This apparently holistic feature of entangled
quantum states entails violation of Bell inequalities [1,2] and quantum teleportation [3],
which are repeatedly invoked to sanctify the “non-local” character of quantum theory.
However, this widespread belief was proven false more than twenty years ago by Deutsch
and Hayden [4], who by the same token provided an entirely local explanation of Bell-
inequality violations and teleportation.

Descriptions of dynamically isolated—but possibly entangled—systems A and B are
local if that of A is unaffected by any process system B may undergo, and vice versa. After
Bell, it has become conventional wisdom to equate locality with a possible explanation by
a local hidden variable theory. However, local hidden variables are only one way in which
locality can be instantiated [5]. Here, locality is taken in its crudest form, the one advocated
by Einstein: “the real factual situation of the system S2 is independent of what is done with
the system S1, which is spatially separated from the former” [6]. Descriptions of individual
systems A and B are complete if, when put together, they can predict the distributions of
any measurement performed on the whole system AB.

For instance, if AB is in a pure entangled state |Ψ⟩AB, the reduced density matrices

ρA = trB|Ψ⟩⟨Ψ| and ρB = trA|Ψ⟩⟨Ψ|

are local but incomplete descriptions. This is because ρA is left unaffected regardless of
what happens to system B; however, since |Ψ⟩AB is entangled, it or its associated density
matrix |Ψ⟩⟨Ψ| can no longer be recovered from ρA and ρB. Some information that could
reveal crucial to compute the distribution of some joint measurements has been discarded
in the tracing out. If instead the descriptions of A and B are both taken to be the global
wave function |Ψ⟩AB, then one finds a complete but non-local account.

We seem to be stuck in a dichotomy, apparently forced to describe quantum systems
either non-locally or incompletely. However, the dichotomy is false. Following Gottesman’s
[7] quantum computation in the Heisenberg picture, Deutsch and Hayden defined so-called
descriptors for individual qubits and showed this mode of description to be both local and
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complete, hence vindicating the locality of quantum theory. In other words, even entangled
systems admit a separable description. When such a bold foundational result collects a
mere 190 citations in more than 20 years, it is evidence that a large portion of the community
of quantum foundations is unaware of the idea or, worse, does not understand it. This is the
problem that this paper addresses, and it does so by providing a detailed and self-contained
explanation of how and why descriptors work. The paper culminates with the superdense
coding protocol being revisited in the established framework. It is aimed both for experts
and non-experts in quantum theory. A background in physics is optional; only introductory
knowledge in quantum information theory is required.

2. A Question of Picture

In quantum theory, computations leading to statistics of measurable quantities all take
the same form, namely that of Dirac’s celebrated bra-ket notation, ⟨· · ·| · · · |· · ·⟩. Physicists
recognize this kind of computation as the expected value of some observable. Quantum
information scientists, bear with me for another 10 lines. An observable O is represented
by a hermitian operator which admits a spectral decomposition

O = ∑
i

λiΠi ,

where λi ∈ R is an eigenvalue corresponding to the measurement outcome and Πi is the
corresponding projector on the eigensubspace. If the system is in state |ψ⟩, the expected
value of such an observable is given by ⟨ψ|O|ψ⟩, since

⟨ψ|O|ψ⟩ = ⟨ψ|∑
i

λiΠi|ψ⟩ = ∑
i
⟨ψ|Πi|ψ⟩λi = ∑

i
piλi ,

where pi can be thought of the probability of measuring outcome λi. While this type of
computation is routine for physicists, quantum information scientists usually compute
probabilities of measurement outcomes. An n-qubit network in the state

2n−1

∑
j=0

αj|j⟩

has a probability |αl |2 to return the classical value “l”. However,

|αl |2 = ⟨ψ||l⟩⟨l||ψ⟩

is nothing but the expectation value of the observable |l⟩⟨l|. Hence, the reader who is
unfamiliar with observables can simply keep in mind projectors of the form |l⟩⟨l| required
to compute probabilities, but this is explained further below.

The most general observable can be thought as a choice of basis {|ϕi⟩}i, with a real
number λi corresponding to each basis vector. Indeed, O = ∑i λi|ϕi⟩⟨ϕi| defines a generic
hermitian operator, so a generic observable. Constructing an observable in this way makes
“measuring an observable” clearer for quantum information scientists: It corresponds to
measuring in the basis {|ϕi⟩}i with the measurement outcomes labeled by λi. Of course,
this measurement can be done by performing the unitary that maps the basis {|ϕi⟩}i to the
computational basis {|i⟩}i, before measuring in this last basis.

A generic state |ψ⟩ arises from the evolution of an initial state that shall be denoted |0⟩.
If U is the unitary operator representing this evolution, |ψ⟩ = U|0⟩, so the computations
carried to predict measurable quantities all have the form

⟨0|U†OU|0⟩ . (1)
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The Schrödinger picture is about viewing the sandwich Equation (1) as if the bread
evolves and the meat stays constant, namely,(

⟨0|U†
)
O

(
U|0⟩

)
.

With such a viewpoint, the initial state |0⟩ evolves to the final state |ψ⟩ = U|0⟩ and
the observable O remains constant.

The Heisenberg picture is about regarding the sandwich equation as if the meat evolves
but the bread remains constant,

⟨0|
(

U†OU
)
|0⟩ .

In this picture, the state vector remains fixed to |0⟩ but the observable O evolves to
U†OU. Therefore, in the Heisenberg picture, the term ‘state’, which refers to a quantity
that is fixed to |0⟩, becomes a misnomer. It is thus called the reference vector. However, then,
in the Heisenberg picture, can the quantum information of the system at a given time be
encoded in a single mathematical object? Yes, this is precisely what the descriptor does.

3. Tracking Observables

In the Heisenberg picture, a quantum system shall no longer be described by its
state vector, but rather by an object that encodes the information about all the evolved
observables of the system. This is a tall order since there is an uncountable number of
such observables. Things are greatly simplified once it is realized that observables are
linear operators and that the latter form a vector space. Since the evolution O → U†OU
is linear, one does not need to track the evolution of infinitely many observables: only a
basis of the linear operators suffices. Indeed, if O = ∑j ajBj, then U†OU = ∑j ajU†BjU, so
it suffices to track how each operator Bj of the basis evolves by U to then compute how any
observable evolves.

3.1. The Descriptor of a 1-Qubit Network

In the case of a singe qubit, the Pauli matrices together with the identity,

σ = (σx, σy, σz) =

([
0 1
1 0

]
,
[

0 −i
i 0

]
,
[

1 0
0 −1

])
andσ0 = 1 =

[
1 0
0 1

]
form a basis of the 2 × 2 matrices, if the linear combinations are taken over complex
numbers. Following the evolution of 1 is trivial, U†1U = 1, so it can be neglected. This
means that one only needs to follow the evolution of σ, to then be able to recover any
evolved observable, or the expectation value thereof.

Hence, for a single qubit quantum network, the descriptor of the qubit at time t is given by

q(t) = U†σU ,

where U is the unitary operator that represents the evolution undergone by the quantum
network between time 0 and time t.

Example 1. Consider the following quantum circuit

|0⟩ H

t = 0 t = 1

where H = 1√
2

[
1 1
1 −1

]
is the Hadamard gate. At time t = 0, the descriptor is q(0) = σ = (σx, σy, σz), while, at time
t = 1, the descriptor is

q(1) = H†σH = H†(σx, σy, σz)H = (σz,−σy, σx) . (2)
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The Heisenberg picture and the expression for q(1) can be used to compute the probability of

measuring the outcome “0”. Representing |0⟩ and |1⟩, respectively, by
[

1
0

]
and

[
0
1

]
,

⟨0|H†|0⟩⟨0|H|0⟩ = ⟨0|H†
[

1 0
0 0

]
H|0⟩

= ⟨0|H†
(
1+ σz

2

)
H|0⟩

= ⟨0|H†
(
1+ qz(0)

2

)
H|0⟩

= ⟨0|1+ qz(1)
2

|0⟩

=
⟨0|1|0⟩+ ⟨0|σx|0⟩

2

=
1
2

.

3.2. Descriptors of an n-Qubit Network

Consider now, and for the rest of the paper, the case of n interacting qubits in a quan-
tum computational network. Suppose that the qubits are initialized at time 0 in the state
|0⟩⊗n, which, when more conveniently denoted |0⟩, correspond to the Heisenberg reference
vector thus far invoked. Although this network appears to be a restricted system, its ability
to simulate any other quantum system to arbitrary accuracy [8] makes it completely general.
Moreover, no generality is lost by assuming that each gate in the network requires exactly
one unit of time, so that the state of the network needs only be specified at integer values
of time. Let again U be the unitary operator representing the evolution of the network
between time 0 and time t.

A natural basis of the space of all operators on n qubits is the product of Pauli operators,
namely,

B ≡
{

σµ1 ⊗ σµ2 ⊗ . . . σµn : µi ∈ {0, x, y, z}
}

.

There are 4n such matrices, and they are linearly independent; thus, indeed, they
form a basis of the 2n × 2n = 4n dimensional complex vector space of linear operators
on n-qubits. (In fact, B is a basis of hermitian operators if real linear combinations are
considered. However, in the present context, it is more relevant to think of B as a basis of
all linear operators.)

This means that, if one knows how each observable of the basis B evolves by the
action of U,

σµ1 ⊗ σµ2 ⊗ . . . σµn → U†σµ1 ⊗ σµ2 ⊗ . . . σµn U , µi ∈ {0, x, y, z} ,

then one knows, by linearity, how each observable evolves.

3.3. The Main Simplification

A great simplification is to track the evolution of only the set of observables

qi(0) = 1i−1 ⊗ σ ⊗ 1n−i , i = 1, . . . , n , (3)

where 1k stands for the tensor product of k copies of the identity. Note that, for each i, qi(0)
has three components, each of them being an operator acting on the whole Hilbert space.
The n-tuple whose components are the qi(0) is denoted q(0). Bold quantities are vectors,
so for instance one writes qi(0), but qix(0). This qi(0) is the descriptor of qubit i at time 0. The
descriptor at time t is then given by

qi(t) = U†qi(0)U . (4)
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Importantly, note that q(0) contains many fewer components than B contains elements.
In fact, instead of tracking the 4n operators of B, only 3n are suggested here. The reason
is that these 3n operators can be multiplied to generate any of the 4n basis operators.
Moreover, this multiplicative structure is preserved by the evolution U, namely, if an
observable is generated multiplicatively by qiw(0)qjw′(0), then the evolved observable is
given by

U†qiw(0)qjw′(0)U = U†qiw(0)UU†qjw′(0)U = qiw(t)qjw′(t) .

This observation obviously extends to larger products, as well as to sums of products
of components of q(0).

Example 2. Considering a two-qubit network, the observable |01⟩⟨01| can be expanded in the basis
B =

{
σµ ⊗ σν : µ, ν ∈ {0, x, y, z}

}
, and then expressed in terms of q1(0) and q2(0). Indeed,

|01⟩⟨01| = (|0⟩⟨0| ⊗ 1)(1⊗ |1⟩⟨1|)

=

(
1+ σz

2
⊗ 1

)(
1⊗ 1− σz

2

)
=

1
4

(
12 − 1⊗ σz + σz ⊗ 1− σz ⊗ σz

)
=

1
4

(
12 − q2z(0) + q1z(0)− q1z(0)q2z(0)

)
.

This can then be used to express in terms of q(t) the time-evolved counter-part of the observable,
U†|01⟩⟨01|U, under a an evolution U between time 0 and t:

U†|01⟩⟨01|U =
1
4

(
U†12U − U†q2z(0)U + U†q1z(0)U − U†q1z(0)UU†q2z(0)U

)
=

1
4

(
12 − q2z(t) + q1z(t)− q1z(t)q2z(t)

)
.

3.4. The Algebra of Descriptors

The addition and multiplication of components of descriptors grant them an algebraic
structure.

Remark 1. The operators of q(0) satisfy the su(2)⊗n algebra, namely

[qiw(0), qjw′(0)] = 0 (i ̸= j and ∀w, w′)

qix(0)qiy(0) = iqiz(0) (and cyclic permutations)

qiw(0)2 = 1 (∀w) .

In the first line, the bracket denotes the commutator, [A, B] = AB − BA. The above
algebraic relations follow from those of the Pauli matrices and from the factorized form of
the descriptors at time 0, displayed in Equation (3). After evolving by U, the descriptors
qi(t) shall in general lose their direct connection with Pauli matrices, as well as their
factorized form, but they still preserve their algebraic relations.
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Remark 2. For any t, q(t) satisfies the su(2)⊗n algebra:

[qiw(t), qjw′(t)] = qiw(t)qjw′(t)− qjw′(t)qiw(t)

= U†qiw(0)UU†qjw′(0)U − U†qjw′(0)UU†qiw(0)U

= U†qiw(0)qjw′(0)U − U†qjw′(0)qiw(0)U

= U†[qiw(0), qjw′(0)]U

= 0 (i ̸= j and ∀w, w′)

qix(t)qiy(t) = U†qix(0)UU†qiy(0)U

= U†qix(0)qiy(0)U

= U†iqiz(0)U

= iqiz(t) (and cyclic permutations)

qiw(t)2 = U†qiw(0)UU†qiw(0)U

= U†qiw(0)qiw(0)U

= U†1U

= 1 (∀w) .

One might object that unitary evolution is but a special case of a larger class of
processes represented by completely positive and trace preserving maps. Such processes
include for instance noisy channels or maps that do not preserve the dimensionality of the
system (and hence do not preserve the system’s algebra). These processes are, however, a
special case of unitary evolution. In fact, not only that, by Stinespring dilation theorem,
these processes can be mathematically understood as sub-processes of a larger unitary
evolution, but they physically are. Real quantum processes are unitary evolutions.

3.5. One More Simplification

Following Gottesman [7], the generating tuple q(0) could be reduced to 2n elements
by noticing a redundancy due to the su(2)⊗n algebra. In fact, for any i, only two of the
triplet of operators (qix(0), qiy(0), qiz(0)) are required, since the omitted operator can be
recovered by the product of the selected two. In what follows, the notation is not modified,
but one can happily use this shortcut to avoid tracking the observables qiy(t), keeping in
mind that qiy(t) = −iqix(t)qiz(t).

Summing this up, the Heisenberg picture is about tracking the evolution O → U†OU
of uncountably many initial observables O. This can be done by instead tracking the
evolution q(0) → q(t) = U†q(0)U of only 2n observables (qiy is omitted). In fact, q(t)
allows to infer, by multiplication, the evolution of the 4n observables of B, which allow to
infer, by linearity, the evolution of any observable.

4. Evolution from the Future?

Although q(0) → q(t) = U†q(0)U appears to be a completely acceptable way in
which observables should evolve, when U is broken down into different gates, for instance
U = Gt . . . G2G1, one finds that the observables of the descriptors evolve in the wrong
order! In fact, the order in which the gates are applied is first G1, then G2, and so on, until
the last gate Gt is applied. However, the descriptors evolve as

q(0) → G†
1 G†

2 . . . G†
t q(0)Gt . . . G2G1 . (5)

The evolution of observables appears to occur from the last gate of the network
to the first, which is inconvenient, since the network needs to be final before one can
start to compute anything. Much worse, it does not reflect the actual dynamics that the
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system is undergoing, so this kind of evolution from the future simply cannot be the right
explanation.

The way out of this conundrum is to notice that, inasmuch as observables are linear
operators generated by some set q(0) of operators, the evolution operators—or gates—
are too. They are generated multiplicatively and additively by the same set q(0), since
questions of hermiticity versus unitarity do not arise.

4.1. The Functional Representation of a Gate

For a fixed gate with matrix representation G, its multiplicative and additive genera-
tion by q(0) defines a function UG(·) through

G = UG(q(0)) .

The function UG(·) takes value in unitary operators and will be referred to as the
functional representation of the gate G. Its functionality encodes the multiplicative and linear
generation of G by the elements of q(0). In other words, any matrix G can be expressed as a
polynomial in the 2n matrices q1x(0), q1z(0), . . . , qnz(0), and UG(·) is one such polynomial.
Now, when q(t) varies with t, the matrix representation UG(q(t)) varies accordingly, but
as, we see in the next section, it is the fixed functionality of UG that plays a central algebraic
role when performing computations in the Heisenberg picture.

Example 3. In the case of a single qubit network, the negation and Hadamard gates are described by

N =

[
0 1
1 0

]
= σx = qx(0) and H =

1√
2

[
1 1
1 −1

]
=

qx(0) + qz(0)√
2

,

so their functional representations are

UN(q(t)) = qx(t) and UH(q(t)) =
qx(t) + qz(t)√

2
.

The counterclockwise rotation of a state vector in the |0⟩ & |1⟩ plane is described by

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
= cos θ1− i sin θσy = cos θ1+ sin θqx(0)qz(0) ,

which defines its functional representation URθ
(·). (Note that this operation represents the rotation

of a polarized photon, but not exactly that of the spin of an electron. The reason for this is that a
π/2 rotation of a photon takes the horizontal polarization |↔⟩ ≡ |0⟩ to the vertical polarization
|↕⟩ ≡ |1⟩. However, the spin of an electron needs a π rotation to take the |↑z⟩ ≡ |0⟩ to |↓z⟩ ≡ |1⟩.)

In the case of an n-qubit network, if such a unary gate, say H, is applied on qubit i, while
all other qubits are left invariant, then the matrix representation of the corresponding evolution
operator is

Hi ≡ 1i−1 ⊗ H ⊗ 1n−i =
qix(0) + qiz(0)√

2
,

so its corresponding functional representation is UHi (q(t)) =
qix(t)+qiz(t)√

2
.
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4.2. Back in Order!

The apparently reversed-ordered evolution of Equation (5) can then be transformed
back in the right order. Denoting V = Gt−1 . . . G2G1, one finds

q(0) → V†G†
t q(0)GtV = V†U†

Gt
(q(0))q(0)UGt(q(0))V

= V†U†
Gt
(q(0))VV†q(0)VV†UGt(q(0))V

= U†
Gt

(
V†q(0)V

)
V†q(0)VUGt

(
V†q(0)V

)
= U†

Gt
(q(t − 1))V†q(0)VUGt(q(t − 1)) .

In the second last line, the function UGt (and its hermitian conjugate) is applied to
the components of q(0) that are sandwiched by V† and V. The equality holds because
if UGt contains products of components of q(0), the inner V† and V in the expansion of
UGt

(
V†q(0)V

)
shall cancel out, leaving only the outer ones, which can then be factored out

to retrieve the line before.
At this stage, the computation can be continued in two different ways. First, remem-

bering that V = Gt−1 . . . G2G1, the argument can be iterated on both sides of the equation.
This makes explicit that the problem of the order in which the observables evolve in the
Heisenberg picture is solved by introducing the functional representation of the gates.
Indeed, evolving the observables by the matrix representation of the gates acting in the
wrong order,

G†
1 G†

2 . . . G†
t q(0)Gt . . . G2G1 ,

is equivalent to the right ordering of the functional representation of the gates evaluated at
the corresponding times, i.e.,

U†
Gt
(q(t − 1)) . . .U†

G2
(q(1))U†

G1
(q(0))q(0)UG1(q(0))UG2(q(1)) . . .UGt(q(t − 1)) .

Another way to continue the previous calculation is to invoke Equation (4) on both
sides of the equation to find

q(t) = U†
Gt
(q(t − 1))q(t − 1)UGt(q(t − 1)) . (6)

This is the way in which descriptors are prescribed to evolve in [4]. It is in fact correct
and equivalent to Equation (4), although not trivially recognized.

5. The Action on Descriptors

Evolving the descriptor in a step-by-step fashion, as prescribed by Equation (6),
permits finding out how a specific gate affects the different descriptors, i.e., the action of
the gate on the descriptors. A gate Gt transforms the 2n components of q(t − 1) in the
following way:

Gt : qiw(t − 1) → qiw(t) = U†
Gt
(q(t − 1))qiw(t − 1)UGt(q(t − 1)) .

Leveraging the fact that the descriptors at time t − 1 satisfy the su(2)⊗n algebra
(cf. Remark 2), the functional representation UGt(q(t − 1)) can be expanded, and the
algebraic relations of the many components of q(t − 1) that crop up are used to simplify
the expression. As shown below, the locality of the applied gate renders trivial most of
those 2n computations.

Example 4. Between time t − 1 and t, let a Hadamard gate H be performed on the ith qubit, so
Gt = Hi. What is the action of Hi on qi? What is it on qj, with j ̸= i?

Recalling that

UHi (q(t − 1)) =
qix(t − 1) + qiz(t − 1)√

2
,
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the action on descriptor qi is then

Hi : (qix(t − 1), qiz(t − 1)) → (qix(t), qiz(t))

= U†
Hi
(q(t − 1))(qix(t − 1), qiz(t − 1))UHi (q(t − 1))

=
qix + qiz√

2
(qix, qiz)

qix + qiz√
2

=
1
2
(qix + qiz + qiz − qix,−qiz + qix + qix + qiz)

= (qiz, qix) .

When the context does not require it, the time labels can be omitted, as here, from the third
line onwards, the “(t − 1)” is discarded. One can then simply denote the action of the gate on the
descriptors as Hi : (qix, qiz) → (qiz, qix) without insisting on the time labels, since the calculation
relies only on the time-independent algebra of descriptors. Notice that the result is analogous to
what is computed in Example 1, Equation (2), but, here, no matrix multiplication is involved, only
the algebra of descriptors. More specifically, the properties q2

iw = 1 and qizqix = iqiy = −qixqiz
are used.

How about the action of Hi on all other qj, with j ̸= i? Since UHi (q) depends only on qix and
qiz (time labels removed), it commutes with qj, leaving it invariant,

U†
Hi
(q)(qjx, qjz)UHi (q) = U†

Hi
(q)UHi (q)(qjx, qjz) = (qjx, qjz) .

5.1. Locality and Completeness

The fact that UHi depends only on qi—and thus leaves invariant the descriptor of all
qubits but qubit i—is precisely due to the fact that Hi is a gate that acts only on qubit i.
More generally, if the gate Gt acts only on qubits of the subset I ⊆ {1, 2, . . . , n}, then its
functional representation UGt shall only depend on components of qk(t − 1), for k ∈ I. For
j /∈ I, the descriptor qj(t − 1) shall then commute with UGt(q(t − 1)), so it will remain
unchanged between times t − 1 and t. Hence, anything that is done to any system that
does not concern qubit j leaves its descriptor invariant, namely the descriptors are a local
description of quantum systems.

The descriptors are also complete, in that the expectation value of any time-evolved
observable U†OU that concerns only qubits of I can be determined by the descriptors
qk(t), with k ∈ I. This can be seen more clearly at time 0, where an observable O on the
qubits of I is a linear (hermitian) operator that acts non-trivially only on the qubits of I.
Any such operator can be generated additively and multiplicatively by the components of
qk(0), with k ∈ I, thereby defining a polynomial fO(·) for which

O = fO({qk(0)}k∈I) , and so U†OU = fO({qk(t)}k∈I) .

Example 5. Determine the action of N = σx and σz on the descriptor of the qubit that is acted upon.

N : (qx(t − 1), qz(t − 1)) → (qx(t), qz(t))

= U†
N(q(t − 1))(qx(t − 1), qz(t − 1))UN(q(t − 1))

= qx(qx, qz)qx

= (qx,−qz) .

Similarly, and with a lighter, time-independent notation,

σz : (qx, qz) → U†
σz(q)(qx, qz)Uσz(q)

= qz(qx, qz)qz

= (−qx, qz) .
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5.2. The Cnot

The controlled not gate, denoted Cnot, is a two-qubit gate of great importance. Not
only does it represent a perfect measurement, but, when the Cnot is supplemented by arbi-
trary unary gates, it forms a universal gate set. This means that any unitary transformation
can be realized by a circuit with gates chosen solely among this set.

Consider a Cnot gate where the qubit c controls the target qubit t. Restricting to the
subspace acted upon, the linear transformation is represented by

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The functional representation UCnot(·) is established by expressing the above matrix
in terms of the components of the descriptor at time 0,

Cnot =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


= |0⟩⟨0| ⊗ 1+ |1⟩⟨1| ⊗ N

=
1+ σz

2
⊗ 1+

1− σz

2
⊗ σx

=
1
2

(
12 + qcz(0) + qtx(0)− qcz(0)qtx(0)

)
.

The functional representation of Cnot (c controls t) is thus given by

UCnot(q(t)) =
1
2
(1+ qcz(t) + qtx(t)− qcz(t)qtx(t)) .

The action of the Cnot on the descriptors that it affects can be found to be

Cnot :
{
(qcx, qcz)
(qtx, qtz)

}
→

{
(qcxqtx, qcz)
(qtx, qczqtz)

}
.

For example, the calculation of qcx(t) is done below.

qcx(t − 1) → qcx(t)

= U†
Cnot(q(t − 1))qcx(t − 1)UCnot(q(t − 1))

=
1
4
(1+ qcz + qtx − qczqtx)qcx(1+ qcz + qtx − qczqtx)

=
1
4
(qcx + qcxqcz + qcxqtx − qcxqczqtx

+qczqcx + qczqcxqcz + qczqcxqtx − qczqcxqczqtx

+qtxqcx + qtxqcxqcz + qtxqcxqtx − qtxqcxqczqtx

−qczqtxqcx − qczqtxqcxqcz − qczqtxqcxqtx + qczqtxqcxqczqtx)

=
1
4
(qcx + qcxqcz + qcxqtx − qcxqczqtx

−qcxqcz − qcx − qcxqczqtx + qcxqtx

+qcxqtx + qcxqczqtx + qcx − qcxqcz

+qcxqczqtx + qcxqtx + qcxqcz − qcx)

= qcxqtx ,
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where the dependency on t − 1 is again discarded.
The action of a gate on a descriptor can also be found directly from the matrix repre-

sentation of the gate, without the detour by its functional representation and the gymnastic
of the su(2)⊗n algebra. Let us exemplify the method with the case of the Cnot, which, in
this case, consists of calculating

Cnot†
{

qc(0)
qt(0)

}
Cnot .

For the qcx element, this yields

Cnot†(σx ⊗ 1)Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


= σx ⊗ σx

= qcx(0)qtx(0) ,

consistently with the previous approach. However, why does this work? In fact, what has
been computed is

qcx(1) = U†
Cnot(q(0))qcx(0)UCnot(q(0)) = qcx(0)qtx(0) .

The leap to the general case, i.e., to have t and t − 1 instead of 1 and 0 in the above
equation, follows from observing that the calculation could have been done by replacing
UCnot(q(0)) by its functional representation, and then using the su(2)⊗n algebraic relations
at time 0. However, since the algebraic relations are preserved, q(0) could then invariably
have be changed to q(t − 1), to obtain that, generically, qcx(t) = qcx(t − 1)qtx(t − 1) .

6. Superdense Coding, Revisited

In the Schrödinger picture, the superdense coding [9] may appear to hinge on ’non-
local’ properties of the wave-function (see Figure 1).

|0⟩

|0⟩

H Hσ
j
x σi

z

Alice Bob

0 1 2 3 4 5 6

Figure 1. Network representing the superdense coding protocol.

The Schrödinger state at time 2 is given by the Bell state

∣∣Φ+
〉
=

|00⟩+ |11⟩√
2

.

The local operations performed by Alice on her qubit shall evolve the system to one
of the four Bell states in accordance with the bits i and j that she wants to transmit. The
latter are then revealed by a Bell measurement (see Table 1).
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Table 1. The Schrödinger state in relation to the bits to transmit.

Bits i, j State at Time 4 State at Time 6

0, 0 ∣∣Φ+
〉
= |00⟩+|11⟩√

2
|00⟩ = |ij⟩

0, 1 ∣∣Ψ+
〉
= |01⟩+|10⟩√

2
|01⟩ = |ij⟩

1, 0 ∣∣Φ−〉 = |00⟩−|11⟩√
2

|10⟩ = |ij⟩

1, 1 ∣∣Ψ−〉 = |01⟩−|10⟩√
2

|11⟩ = |ij⟩

The protocol is now revisited in the language of descriptors. Denoting the descriptor
at time 0 without any time labels, the computation can be done as follows.

q(0) ≡
{
(q1x, q1z)

(q2x, q2z)

}
H→ q(1) =

{
(q1z, q1x)

(q2x, q2z)

}
Cnot→ q(2) =

{
(q1zq2x, q1x)

(q2x, q1xq2z)

}
σ

j
x→ q(3) =

{
(q1zq2x, (−1)jq1x)

(q2x, q1xq2z)

}
σi

z→ q(4) =

{
((−1)iq1zq2x, (−1)jq1x)

(q2x, q1xq2z)

}
Cnot→ q(5) =

{
((−1)iq1z, (−1)jq1x)

(q2x, (−1)jq2z)

}
H→ q(6) =

{
((−1)jq1x, (−1)iq1z)

(q2x, (−1)jq2z)

}
.

Denoting by U(ij) the evolution throughout the the protocol, the probability of mea-
suring an outcome “i′” on the first qubit is given by

⟨00|U(ij)†(|i′⟩⟨i′| ⊗ 1)U(ij)|00⟩ .

In the Heisenberg picture, this computation is performed from the middle outwards.
The initial observables are expressed in terms of descriptors as

|i′⟩⟨i′| ⊗ 1 =
12 + (−1)i′q1z

2
,

which evolve by U(ij) to

12 + (−1)i′q1z(6)
2

=
12 + (−1)i′+iq1z

2
.

The expectation value with the reference vector |00⟩ thus yields

1 + (−1)i′+i

2
= δii′ .
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Similarly, the probability of measuring “j′” on qubit 2 is given by δjj′ and, hence, the
system shall deterministically return the value of the bits i and j.

When revisited with the help of descriptors, the superdense coding of two bits into
a single qubit appears quite natural: Alice’s qubit’s descriptor has precisely two slots in
which bits can be encoded. When Alice transmits her qubit to Bob, measurements on that
qubit alone could not leak any information about i or j. In fact, any observable on Alice’s
qubit at time 4 is a linear combination of 1, q1x(4), q1y(4) = −iq1x(4)q1z(4) and q1z(4),
and, since

⟨00|(1, q1x(4), q1y(4), q1z(4))|00⟩ = (1, 0, 0, 0) ,

the expectation value of any observable on that qubit alone is independent of i and j.
However, the information about the bits i and j is contained in the transmitted qubit at
time 4, since not only does q1(4) depend on i and j, but those bits eventually become
accessible to measurement. This kind of information, present in a system but unretrievable
by measurements on the system alone was called locally inaccessible by Deutsch and Hayden.
In Step 5 of the protocol, Bob’s qubit serves as a key as well as an extra capacity: it unlocks
the bit i by getting rid of the obfuscating q2x while copying the bit j in its z component.

Finally, notice that between time 2 and time 4, only the descriptor of the first qubit is
affected, which invalidates the idea that the superdense coding protocol relies on non-local
properties of entanglement. Indeed, there is an important asymmetry to be underlined:
the existence of a local way in which a phenomenon (or more generally, a theory) can be
explained makes the phenomenon (or theory) local. However, this does not hold for the
attribute “non-local”; otherwise, all phenomena and all theories would qualify as non-local
by considering ad hoc non-local explanations.

7. Conclusions

The formalism of descriptors is re-explained in this paper in what I hope is a more
complete exposition. I re-show that the Heisenberg picture entails a local and complete
way of describing quantum systems, and I use the approach to revisit superdense coding.
By the way, in quantum field theory, locality in the sense advocated here as no-action-at-a-
distance, as well as Lorentz invariance, are also recognized in the Heisenberg picture. The
reader who is curious to unravel the mysteries of Bell inequality violations and of quantum
teleportation is referred to Sections 4 and 5 of the article by Deutsch and Hayden (op. cit.).
When I explained in terms of descriptors the teleportation process to one of its pioneers,
Gilles Brassard told me enthusiastically that it was the most satisfactory elucidation he
had ever heard of his own invention. The best explanations of quantum processes are
unlocked by the Heisenberg picture, which is manifestly local, but remain oblivious in the
widespread Schrödinger picture.
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