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Abstract: We investigate a possible reduction mechanism from (bosonic) Quantum Field Theory 

(QFT) to Quantum Mechanics (QM), in a manner that could explain the apparent loss of degrees of 

freedom of the original theory in terms of quantum information in the reduced one. This reduction 

mechanism consists mainly of performing an ansatz on the boson field operator, which takes into 

account quantum foam and non-commutative geometry. Through the reduction mechanism, QFT 

reveals its hidden internal structure, which is a quantum network of maximally entangled 

multipartite states. In the end, a new approach to the quantum simulation of QFT is proposed 

through the use of QFT’s internal quantum network. Finally, the entropic equilibrium of fully 

mixed and maximally entangled states in the quantum network seems to suggest that the black 

hole paradox of information loss might be solved under suitable conditions. 

Keywords: quantum field theory; quantum information; quantum foam; non-commutative 

geometry; quantum simulation 

 

1. Introduction 

Until the 1950s, the common opinion was that quantum field theory (QFT) was just quantum 

mechanics (QM) plus special relativity. 

But that is not the whole story, as is described in [1,2]. There, the authors mainly say that the 

fact that QFT was “discovered” in an attempt to extend QM to the relativistic regime is only 

historically accidental. Indeed, QFT is necessary and applied also in the study of condensed matter, 

e.g., in the case of superconductivity, superfluidity, ferromagnetism, etc. 

The substantial difference between QM and QFT was understood around the 1950s [3], the 

Haag’s theorem [4–6], the breaking of spontaneous symmetry, the dynamic generation of collective 

modes (long range correlations). In QM the Stone-von Neumann theorem [7,8] holds: for systems 

with a finite number of degrees of freedom the representations of the CCRs are “unitarily 

equivalent”, and therefore physically equivalent. The theorem of Stone-von Neumann does not 

apply to QFT because the fields by their nature introduce an infinite number of degrees of freedom, 

and so therefore the hypothesis on which the theorem of Stone-von Neumann is based fails: in QFT 

there are infinitely many unitarily inequivalent representations. There are physically different 

“stages” or dynamic regimes. 

For a review on these topics, see, for example, foundational works in [9–11]. 

Another common opinion is that QFT does not have quantum information content, differing 

from QM (for example, in the case of a two-levels quantum system). For an introduction to quantum 

information and quantum computation, see, for example, [12]. This is a very important point, of 

great interest to us. In fact, we don’t fully agree with this common opinion, in the sense that we 

believe that there is hidden quantum information in QFT. We instead agree that the quantum 

information content is not explicit in QFT, and, put in these terms, this can be taken as one of the 

main differences between QFT and QM. 

Then, we maintain the following main differences between QFT and QM: 
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(1) The number of degrees of freedom is infinite in QFT and finite in QM. 

(2) The representations of the canonical commutation relation (CCR) are all unitarily 

equivalent in QM (for the Stone-von Neumann’s theorem). Instead, QFT admits unitarily 

inequivalent representations (uir) of the CCR. In the case of QFT with interactions, Haag’s 

theorem states that the representation of the interacting fields is unitarily inequivalent to 

that of the free fields. 

(3) QFT does not seem to have explicit quantum information content, differing from QM. 

(4) From point 3 it follows that, while QM can be simulated directly by a quantum computer 

(QC), QFT cannot. The QFT must first be adjusted before being simulated, and the regulator 

is typically a lattice, which, however, breaks Lorentz’s invariance. For the topic of quantum 

simulation of QFT, see, for example [13,14]. 

Points 2, 3, and 4 will be discussed in more detail below. 

First, however, a few questions arise (relating to points 3 and 4): 

“Is there any quantum information hidden in QFT?”  

Also: “How can we reduce QFT to QM in such a way that the hidden informational quantum 

structure, if it exists, can be revealed?”  

Furthermore: “Does that quantum information structure lead to a direct simulation of the 

original QFT?”. 

Answering these questions was the goal of this paper. So, we looked for a reduction mechanism 

from (bosonic) QFT to QM that could reveal QFT’s Hidden Quantum Information (HQI). We found 

that HQI was there and was organized in a quantum network of maximally entangled multipartite 

states. That was the quantum computational “skeleton” of the original QFT. Since such a “skeleton” 

is itself a quantum network, it seems that it is right to enter it in a one-to-one correspondence with an 

external QC to simulate the original QFT. 

The various stages of the reduction mechanism are illustrated below, which is quite complex 

and requires sophisticated mathematics. 

We considered a boson field operator, over which we performed an ansatz that admits an 

attractor in whose basin there is a flow of spatial degrees of freedom (an analogous ansatz was used 

for an SU(2) gauge field in [15]).  

The ansatz we perform in this work corresponds to a boson translation in terms of the 

annihilation operator in momentum space. This defines a new vacuum and, in the case of infinite 

volume, the two representations are unitarily inequivalent. However, in the finite volume of the 

basin of the attractor, the two representations become equivalent, indicating that the (bosonic) 

Quantum Field Theory has been reduced to Quantum Mechanics. 

Within the attractor basin it is possible to define a new metric, quantized in Planck units, that 

undergoes quantum fluctuations, (the quantum foam) [16,17], which induce uncertainties in the 

position states. The latter can be interpreted as maximally entangled qubits on the surfaces of the 

spheres centred at the attractor point. This is possible if an adequate non-commutative space, which 

is a generalization of the fuzzy sphere [18] is taken as the geometrical representation of the state 

space of the (maximally entangled) n-qubits states.  

Within the spheres, instead, the position states are fully mixed states, and represent the spatial 

degrees of freedom which have been released.  

The entanglement entropy of the maximally entangled states equals the total quantum entropy 

(the von Neumann entropy) of the fully mixed states, so that quantum information is conserved.  

The study of representing qubit states by non-commutative geometry started a few years ago.  

In [19] we looked for a quantum system, on a quantum (non-commutative) space, which could 

mimic (simulate) space-time at the Planck scale. For a review on quantum spaces, see, for example, 

[20], and for the relation with QFT, see [21]. The theoretical construction in [19] was developed in 

[22], where we found a model for quantum-computational gravity: a quantum computer on a 

quantum space background; namely, the fuzzy sphere.  

A few words should also be spared for the important role played in this paper by the uir of the 

CCR in QFT. In QM, i.e., for systems with a finite number of degrees of freedom, the choice of 
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representation is inessential to the physics, since all the irreducible representations of the canonical 

commutation relations (CCR) are each unitarily equivalent: this is the content of the Stone-von 

Neumann theorem. Thus, the choice of a particular representation in which to work, reduces to a 

pure matter of convenience. The situation changes drastically when we consider systems with an 

infinite number of degrees of freedom. This is the case of QFT, where systems with a very large 

number of degrees of freedom are considered. In contrast to what happens in QM, the von Neumann 

theorem does not hold in QFT, and the choice of a particular representation of the field algebra can 

have a physical meaning. From a mathematical point of view, this fact is due to the existence in QFT 

of unitarily inequivalent representations (uir) of the CCR (in the infinite volume or thermodynamic 

limit). The two particularly important cases of linear transformations are the boson translation 

[2,9,23–25] and the Velatin-Bogoliubov transformation (for bosons) [26,27].  

In the context of conventional approach to Quantum Field Theory, when we try to explain the 

interacting theories, more than one class of representations is needed. The said phenomena was 

observed bay Haag and sometimes is called the Haag’s no-go theorem, which states that free and 

interacting fields must necessarily be defined on different unitarily inequivalent Hilbert spaces.  

The main problem is that when we try to construct a physical theory, by considering, e.g., the 

Poincare symmetry, we select just one of these classes and simply forget about the existence of 

others. This causes some problems, such as Haag’s no-go theorem. On the other hand, the 

formulation of S-Matrix is such that one can find the final state by operating S-Matrix on the initial 

state without taking into account the moment of interaction, regarding it as a black box. But it is the 

moment of interaction that all of these classes may become equally important. 

The fact of ignoring the moment of interaction derives from the common attitude of the 

practitioners to adopt an ontology of events, instead of an ontology of processes. 

In many domains of Physics, an ontology of events seems to be the only possible one, or at least 

the most convenient. The typical case is the scattering of particles. All that we can practically observe 

are the events before and after the scattering. All that happens in the meanwhile is unknowable, and 

the only theories we can make concern the correlations among input and output events. This way of 

reasoning is sufficient for many practical purposes.  

Let us now discuss processes. A process is a temporal sequence of events that is ruled by some 

dynamical law which characterizes the process itself. This is exactly the structural content of QFT, as 

stressed and explained in [1,2,9], where it is clarified that the dynamics, expressed by the equations 

for the interacting fields (also called Heisenberg fields), defines and characterizes the theory under 

study and manifests itself in the observable physical fields at the level of the observations. Events are 

thus the manifestations of the underlying dynamics (the process).  

For example, a calculation is ruled on by the implemented algorithm. An ontology of processes 

does not deny that observations are about events, but hold that events are explained only in terms of 

the underlying process, and that the descriptions of events and processes are somehow inseparable. 

The expression “ontology of processes” has been borrowed from information science, where it has 

been introduced within the context of space-temporal databases (see, for instance, Kuhn [28]). In 

particular, in the reduction mechanism of QFT to QM illustrated in this paper, it is extremely 

important to take due account of the moment of interaction; that is, to assume an ontology of 

processes, as we will see in Section 8 (and in the Conclusions). Avoiding doing so would lead to an 

internal classical computational structure of QFT, which is itself of no real help in the simulation of 

the latter. 

Theoretical research on quantum simulation of QFT is very urgent nowadays, because it should 

support important experimental applications, mainly in high energy physics (HEP), and also for 

setting up the fundaments of theoretical computer science (TCS) [29]. 

The paper is organized as follows: 

In Section 2, we make an ansatz on the boson field operator, take the spatial slice at constant 

time equal to zero, and show that the center of an open sphere of rational radius nrn /1 , where n 

is a positive integer, of the induced topology is an attractor, through which there is a flow of degrees 

of freedom of the boson field. 
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In Section 3, we describe a new metric within the attractive basin, which is quantized in Planck 

length units. This metric undergoes quantum fluctuations, which are the maximum for an open 

sphere of unitary radius, and disappear when approaching the attractor. So, in the classical limit, the 

attractor would become a singularity in which all the degrees of freedom of the boson field would be 

lost. 

In Section 4, we show that carrying out the ansatz on the boson field corresponds, in the 

momentum representation, to performing a boson transformation, which defines a new vacuum 

state. In the limit of infinite volume, the two representations are unitarily inequivalent, but in the 

finite volume of the attractive basin, they are equivalent. This means that in the attractive basin, the 

original Quantum Field Theory has shrunk to Quantum Mechanics. 

In Section 5, we hypothesize that, in the presence of quantum fluctuations of the metric, the 

surface of a sphere of radius nr , which incorporates the attractor basin, encodes quantum 

information (this will be formally demonstrated in Sections 6 and 7) and that in this case there is a 

relationship of uncertainty between the metric and quantum information. Due to the uncertainty 

relation, there are some missing qubits on the sphere, corresponding to the mixed states between 

two spheres of radius nr  and 1nr  respectively. 

In Section 6, we illustrate the origin of the quantum information encoded by the surface of the 

sphere that incorporates the attractor basin, which had been hypothesized in Section 5. We show that 

when taking into account the ansatz (in the finite volume of the basin), the quantum fluctuations of 

the metric induce an uncertainty in the position state, giving rise to a superposed state that can be 

interpreted as a qubit. Furthermore, we show that two cat position states are maximally entangled 

(forming a Bell state) on the surface of the sphere, while the reduced state, which is completely 

mixed, is inside the sphere. Since the maximum entanglement entropy (mutual information) of the 

Bell state is equal to the maximum von Neumann entropy of the fully mixed state, there is no loss of 

quantum information. Hence, we extend this result to multipartite maximally entangled states such 

as the Greenberger-Horne-Zeilinger (GHZ) [30] states. 

In Section 7, we show that in order to have n-partite maximally entangled states on the surface 

of the sphere enclosing the attractor basin, such a sphere should be a (modified) fuzzy sphere with 

rational radius nrn /1 , in the fundamental representation of SU(2) (with two elementary cells).  

In fact, in the case of a usual fuzzy sphere, the latter would encode n qubits in the 
nN 2  

irreducible representation of SU(2) [22], each one of the N cells encoding a string of n bits, and such 

geometrical representation would be that of a separable n-qubits state. In the case of the modified 

fuzzy sphere, instead, the n-maximally entangled states are accommodated in two cells, each one 

encoding either a string 
n

0  or a string 
n

1 . Furthermore, in this way the one-to-one 

correspondence [19] between the Bloch sphere and the usual fuzzy sphere with unitary radius in the 

fundamental representation of SU(2) is maintained. 

In Section 8, we show that a quantum computer can simulate both free and interacting fields 

once the quantum fields are reduced to a quantum network. 

In Section 9, we revisit our findings in what we call the quantum black hole paradigm and 

explore the path from QFT’s hidden quantum information to a possible solution, under appropriate 

conditions, to the information loss paradox of black holes. 

Section 10 is devoted to the conclusions. 

2. The Ansatz Over the Boson Field Operator 

Let us consider the boson field operators  x̂  and  x†̂  that obey the following 

commutation relations at equal times: 

      ''ˆ,ˆ 3† xxxx


       txx ,


    321 ,, xxxx 


  'tt   (1) 

          0'ˆ,ˆ'ˆ,ˆ ††

 xxxx . 
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The boson fields  x̂  and  x†̂  are the annihilation and creation operators, respectively. 

 x̂  annihilates the vacuum state 0 :   00ˆ  x  and    xx  ˆˆ †
 is the boson 

number-density operator. 

Now, let us make an ansatz for  x̂ , given in terms of the following transformation: 

     xfxxA  ˆˆ , where the subscript “A” stands for ansatz, and  xf  is given by: 

     /, iEtexutxf   (2) 

In Equation (2) we take the spatial slice at constant time 0t , and we choose: 

 
 

PL

x
i

econstxu








  (3) 

where PL  is the Planck length: cm
c

G
LP

33

2/1

3
106.1 











.  

Then, the ansatz at constant time 0t  takes the form:  

   
 

PL

x
i

A econstxx








 ˆˆ  
(4) 

For future convenience, we make the following choice for the constant: iconst 2/1 . 

A similar ansatz was used for the )2(SU  gauge fields in [15], in order to reduce a pure non 

abelian gauge field theory to quantum information theory on the fuzzy sphere [18]. 

The complete metric space  dR ,3
, where d is the Euclidean metric   '', xxxxd


  has an 

induced topology which is that of the open balls with rational radii nrn /1 , with n a positive 

integer. 

The open ball of radius nr  centered at *x


 is: 

   nrxxdRxxB  ),( *3* 
. (5) 

Now, let us make the following natural choice for  x


 : 

  PnL

xx
i

exx








*

*  
(6) 

where 
*x


 is a fixed point for )(x


  as it holds: 

**)( xx


  (7) 

It is easy to check that )(x


  continuously approaches 
*x


 for large values of n (i.e., for 

smaller radius of the ball): 
*)(lim xxn


  .  

The fixed point 
*x


 is an attractive fixed point for )(x


 , as it holds: 

1)(' * x


  (8) 

where:     *

*'
xx

x
dx

d
x 




  . 

The fixed point 
*x


 is then a particular kind of attractor for the dynamical system described by 

this theory. 

Furthermore, it holds: 

1)(' x


  (9) 

for all  *xBx
nr


 , which is equivalent to say that )(x


  is a contraction map in the attraction 

basin of 
*x


; that is, it satisfies the Lipschitz condition [31]. 
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Then, it holds: 

      ',', xxdqxxd


  (10) 

with  1,0q  for every  *', xBxx
nr


 . 

3. The Ansatz and the Quantum Foam 

It should be noted that the choice Equation (6) for )(x


  implies that we are considering a 

discrete space background quantized in Planck length units Pn nLL  , with 
 Zn . 

In the classical limit 0PL  we have: )(x


 ,   0ˆ  xA


. 

Then, the new metric inside the basin of the attractor is:  

   

pp

n
nL

xx

nL

xxd
xxg

'',
',


 

 ,   
 Zn  (11) 

The function )(x


  in Equation (6) can be rewritten as: 

    xxgixx n


,exp* *  (12) 

The absolute value of the variation of ng  with respect to n  is: 

2

1

n
g n   (13) 

and the quantum fluctuations of the metric ng  are: 

ng

g
g

n

n
n

1
)( 


  (14) 

Let us consider the Wheeler relation [16] of the quantum foam, that is the quantum fluctuations 

of the metric  ijg  )3,2,1,( ji : 

 
L

L

g

g
g

p

ij

ij

ij 


  (15) 

The maximal fluctuation occurs for PLL  , that is at the Planck scale: 

  1 ijg , ijij gg   (16) 

The Wheeler relation was extended to the case of a quantum de Sitter space-time [32], which is 

discretized by spatial slices: Pn ntt  , where Pt  is the Planck time: 

.sec103.5 44

2/1

5











c

G
tP


  

In that context, the Wheeler relation takes the form: 

 
n

p

ij

nij

nij
L

L

g

g
g

n




  (17) 

where nL  is the proper length:  

PPnn nLcntctL  ,     
 Zn  (18) 

For 1n  we recover the maximal fluctuation of the metric as in Equation (16):   1
1


nijg .  

In the limit n , the fluctuations of the metric tend to zero:   0lim  nn g . From 

Equations (17) and (18), it follows that the values of the rational radii of the balls can be identified 

with the quantum fluctuations of the metric:  
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nn rng  /1)(  (19) 

The maximal fluctuation occurs for 1n , which corresponds to the maximal radius of the 

attractor basin. Instead, very close to the attractor point 
*x


 (the centre of the basin)—that is, for 

n , the fluctuations of the metric vanish   0 ng . This suggests that in absence of the 

quantum fluctuations of the metric, in the classical limit, the attractor would become a singularity 

where all the degrees of freedom of the boson field would be lost.  

4. From QFT to QM 

In absence of the ansatz, the operator  x


̂  annihilates the vacuum 0 :  

  00ˆ  x


, (20) 

The number operator is: 

   xxxdN


 
†3

 (21) 

and the v.e.v. of the number operator is zero:  

000 N , (22) 

meaning that there are no particles in the vacuum state 0 . 

In the k


-momentum space representation, the annihilation and creation operators  ka


 and 

 ka


†
 are given in terms of the fields operators  x


̂  and  x†̂  respectively: 

    


/

2/3

1 xkiexxd
L

ka 

   (23) 

    


7†

2/3

† 1 xkiexxd
L

ka 

  . The annihilation and creation operators  ka


 and  ka


†
 satisfy 

the canonical commutation relations: 

      '', 3† kkkaka


   (24) 

     0', kaka


,      0', †† kaka


, By defining: 

   xxxdN AAA


 

†3
, (25) 

it holds: 

4

1
00

2
 AN  (26) 

where:  

 

PL

x
i

e
i








2

1
 (27) 

which is the density of boson condensate in the vacuum state 0  once the ansatz has been 

performed. 

Performing the ansatz corresponds, in the momentum k


-representation, to performing the 

boson transformation [2,9,23] for each mode k


: 

  kkkk aaa       Ck   (28) 

where, in the case of homogeneous condensation, it is: 
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i
k

2

1
       k


  (29) 

We define the new vacuum: 

    00 ka     k


  (30) 

The number of quanta with momentum k


 is: 

   
4

1
00

2†

 kkk aa   (31) 

The generator of the boson transformation Equation (28) is a unitary operator U: 

      1 UaUa kk  (32) 

where: 

     iGU exp ,      †*3
kkkk aakdiG     (33) 

is called the displacement operator [2,9,33]. Then the new vacuum is:  

   0exp
2

1
exp0 †323

 







 kkk akdkd   (34) 

The scalar product of the two vacua is given by: 

  







 

23

2

1
exp00 kkd   (35) 

Now, let us consider, for example, the case of a homogeneous condensation; namely, 

 kk    [1]. 

We have:  

      




















 Vk k

32
0

2 2
2

1
exp

2

1
exp00   (36) 

In the infinite volume limit V  the exponential tends to zero, and the two vacuum states 

are orthogonal: 

  000  . (37) 

This means that the two representations are unitarily inequivalent. While this fact is admissible 

in QFT, it is forbidden in QM by the Stone-von Neumann theorem [7,8]. 

In our case, we are considering a finite spatial volume, which is the basin of the attractor; that is, 

the open ball of radius nrn /1 , centered at 
*x


.Then, the two vacuum states in this case are not 

orthogonal: 

  000 
A

  (38) 

(where the subscript A indicates the ansatz) and the two representations are now equivalent. 

More in detail, the volume of the ball is: 

3

3 1

3

4

3

4

n
rV n    (39) 

By replacing Equation (39) in (36) we get:  

  322

12

1
exp00  n

n
  (40) 

There is a countable set of vacuum states  
n

0 , with 
 Zn , each one corresponding to the 

volume of a ball of radius nrn /1 . 
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5. Metric-Quantum Information Uncertainty Relation 

In [32] it was shown that the quantum information nI  (the total number of qubits) stored by 

the nth cosmological horizon of a discrete quantum de Sitter space-time, with quantum fluctuations 

of the metric: 
1

1
)(




n
g n  was:  2

1 nIn  with Nn . Here we assume that the quantum 

information encoded by the surface of a sphere nS  of radius nrn /1 , embedding the attractor’s 

basin in presence of quantum fluctuations of the metric ng n /1)(   is: 

2nIn   (41) 

The variation of nI  from slice n  to slice 1n  is: 

121   nIII nnn  (42) 

In [34] it was shown that nI  is the number of the “virtual qubits” (whose occurrence is due to 

the quantum fluctuations of the metric), which will be transformed into real qubits by Hadamard 

gates at each node. 

Then, within the basin of the attractor, ng)(  and nI  are linked by the uncertainty relation: 

1
1

2)( 
n

gI nn  (43) 

which is saturated for 1n . 

In fact, for 1n  we get:  

11 )(1)( ggg MAX  ,  MAXrr 11 , MINIII  11 1  (44) 

that is, the fluctuations of the metric get the maximal value, the maximal radius is the unit radius of 

the Bloch sphere, and quantum information 1I  is one qubit.  

In what follows, we will analyze the distribution of both the “real” qubits (pure states encoded 

on the surface of the sphere nS ) and “virtual” qubits (mixed states in the interior of a sphere, for 

example in between sphere nS  of radius nrn /1  and sphere 1nS  of radius 1/11  nrn ).  

If we wanted to rebuild the quantum fluctuations of the metric ng n /1)(   at level n from 

virtual quantum information, we would see that the latter is too large because of the uncertainty 

relation (43): 

 
12

1




n
g n  (45) 

This means that not all virtual qubits are transformed into pure states on the surface of the 

sphere nS , but some of them are transformed into mixed states below the surface.  

Then we redefine the virtual quantum information as:  

nnn III  '  (46) 

where: 

1 nIn  (47) 

This is the number of degrees of freedom released by the quantum field at level n . The remaining 

n  states are n  qubits at each level n . 

Note that the redundancy of nI  is peculiar of the uncertainty relation (43), which instead was 

not valid in [34].  
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Now, the information nI  is not really lost, but simply transformed into the entanglement 

entropy of pure n-multipartite states maximally entangled at every level n, as we will see in Section 

6.  

More in detail, we will consider n-maximally entangled states: for 2n , the Bell states:  

 
BABAAB

1100
2

1


 and for 2n , the Greenberger–Horne–Zeilinger (GHZ) 

[30] states: 

 nn

n
GHZ


 10

2

1
 2n .  

At this point one might argue that transforming quantum information into entropy means that 

there is a loss of quantum information, which is forbidden by the conservation principle of quantum 

information. But this not the case, because entanglement entropy is strictly related to mutual 

quantum information. This relationship, which is fairly well known, will, however, be briefly 

discussed in Section 6. 

However, it must be said that the transformation of missing information into mutual 

information is a process that can take place as long as the discrete quantum structure of space holds 

up, since in the classical limit this is no longer possible. In fact, we would get: 

0)(  ng   0nr   nI ,  nI   n  (48) 

which means that very close to the attractor, where the quantum fluctuation of the metric vanish (the 

quantum structure of space is lost) all the spatial degrees of freedom flow inside the singularity. 

In summary, at each level n , there are are 12 n  virtual states that should be transformed 

into qubits. However, because of the uncertainty relation (43) there are 1n  missing qubits on the 

sphere nS , corresponding to the 1n  mixed states in between sphere nS  and sphere 1nS . The 

remaining n  qubits are maximally entangled, with maximal entanglement entropy, which is 1, 

equating the quantum entropy of the fully mixed states.  

The whole picture described so far can be formalized by a quantum network, which we call the 

“Hidden Quantum Network” (HQN) of (bosonic) QFT, with the following rules: 

1. There are n  nodes, with .....3,2,1n  

2. Each node n  is connected to the previous node 1n , to the next node 1n  and to 

infinity (the attractor A) by 12 n  links. The latter represent the 12 n  virtual 

qubits induced by the quantum fluctuations of the metric. 

3. Of the 12 n  links, n  of them are going from node 1n  to node n  and from 

node n  to node 1n . They are the n  virtual states which are transformed into n  

real qubits.  

4. Of the 12 n  links, the remaining 1n  are the links connecting the nodes n  to the 

attractor A. They are fully mixed states.  

Of course, only at node 1n  there are no mixed states. 

5. At each node n  there are n  outgoing arrows representing n  maximally entangled 

qubits. See Figure 1. 
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Figure 1. The Hidden Quantum Network (HQN). 

The dotted connecting links are fully mixed states, converging in the attractor A. 

The non-dotted connecting links are virtual states. 

The nodes, labeled with integers n, represent the n spherical surfaces in the attractor basin. 

The free outgoing links on each node n represent n qubit states, which are maximally entangled 

for any n > 1. 

In terms of the nS  spheres, the quantum network of Figure 1 can be visualized as in Figure 2. 

 

Figure 2. The singularity. 

The concentric circles, labeled by a positive integer n = 1,2,3… represent the surfaces of the n 

spheres centered in the attractor A.  

The dots on the circles represent the maximally entangled n-qubits encoded by the nth surface. 

The n − 1 arrows pointing from the nth surface to A, represent n − 1 fully mixed states.  

It might be worth pointing out the difference between the quantum network in Figure 1 and 

that described in [34], and illustrated in Figure 3, where all the virtual qubits have been transformed 

into real ones and have not been mixed. The quantum network of Figure 3, which illustrates the 

quantum information content of the inflationary era was called the “Quantum Growing Network” 

(QGN).  
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Figure 3. The Quantum Growing Network (QGN). 

The outgoing free links are qubits.  

The connecting links are virtual states. 

The nodes, labeled by integers, are Hadamard gates. 

For a summary, we will show Scheme A1 and Table A1 in the Appendix A. 

6. Quantum Fields and Quantum Entropy 

The spatial degrees of freedom of the quantum field did flow inside the attractor’s basin, and 

filled it with quantum entropy. The latter is the von Neumann entropy defined as: 

    lgTrS  , where   is the density operator of the quantum system: 

i
i

iip   , i   

are the quantum states, and ip  are the probabilities. 

A pure state is defined as  . 

For a pure state, it holds:   1)( 2   TrTr ,   0S , while for a generic mixed state it is:  

1)( 2 Tr ,   0S .  

Let us consider now the pure quantum state  , which is the one-boson state in the position 

eigenstate x


 at position x


:   0† xx


 .The density matrix is:    xxxx


 ˆˆ † . 

We remind that    xx


 ˆˆ †
 is the boson number-density operator: 

    xdxxN
 3† ˆˆ  .The quantum entropy is zero, as it should be for pure states:  

            0ˆˆlgˆˆ ††  xxxxTrxS


.   

However, when the ansatz is taken into account (in the finite volume of the basin), the quantum 

fluctuations of the metric )(xgn


  induce an uncertainty nx


  in the position state x


 at each 

level n, where nx


  is defined as: 

 

2

1











xg

n
Lx

n

Pn 



 (49) 
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The above expression of x


  in terms of the metric fluctuations was obtained by the use of the 

following relations introduced in [32]: 

   2/1
xg

L
x

n

n
n 


    Pn nLL  ,  
 
  nxg

xg

n

n 1





.  

From the uncertainty relation in Equations (43) and (49), it also follows:  

2

1

12














n

I
Lx n

nn  (where nn xx


 ) (50) 

which shows the relation between the uncertainty in the position state of the boson field and the 

uncertainty in the quantum information at level n. 

It is worth considering the particular case 1n  for which it holds: 

111  gg , PLL 1 , 111  II   

In this case we get, from Equation (49): 

PLx  1  (51) 

The apparently harmless result in Equation (51) is discussed in more detail in Section 9, where 

we show its relationship to a Planckian black hole (see also Figure 13). Here we limit ourselves to 

anticipating the fact that the uncertainty in the position state of the boson field is somehow 

responsible for quantum cosmological models such as Sitter’s quantum Euclidean universe [32].  

We can redefine the position state x


 as the superposed state: 

 
A

xxx 


2

1
 (52) 

(In Equation (52) the subscript “n” has been omitted). 

Consider now a second position state 'x


, which can also be redefined as: 

 
B

xxx  ''
2

1
'


 (53) 

In the following, we will consider only the plus sign in both Equations (52) and (53) for 

simplicity. 

Now, let us identify the position state x


 and its uncertainty x


  with the computational 

basis states of 
2C , that is, with the logical bits 0  and 1 , respectively: 

0x


,  1x


.  

The two states in Equations (52) and (53) are then identified with the qubit cat-states, 

respectively: 

 
AA

10
2

1
 ,    

BB
10

2

1
  (54) 

Let us consider the following three cases. The two qubits in (54) can be: 

(a) Uncorrelated 

(b) Mixed 

(c) Entangled 

In case (a) their joint entropy is: 2),( BAS , and their mutual entropy (mutual information, 

in bits), defined as      BASBSASBAS ,):(   is zero: 0):( BAS . 

In case (b), their joint entropy is: 1),( BAS  and their mutual entropy is: 1):( BAS . 

In case (c) their joint entropy is zero because a Bell state is a pure state: 0),( BAS , but their 

mutual entropy is maximal, as in this case it measures the degree of entanglement: 2):( BAS . 
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The available information is quantum, and is limited by the Holevo bound [35].  

Quantum information I  is the mutual quantum entropy. The quantum mutual entropy is 

defined as follows: If AB  is the joint state of two quantum systems A and B, the mutual entropy 

 BAS  :  is:        ABBABA SSSSI   : .  

The Holevo theorem [35] states that the available information AI —that is, the information that 

can be obtained from a generalized quantum measurement (or POVM = positive operator-valued 

measure)—cannot exceed the mutual entropy:  BAA SI  : , the latter given in bits. We recall 

that the number of bits corresponding to n qubits is 
n2 . 

From the above it follows:  

nII nA  ,     12:  n
BASI    (55) 

where 
12 n

 is 
n2  the number of bits corresponding to n qubits divided by 2. 

Notice that for 2n  it holds:  

  2: BAS   (56) 

which is saturated for maximally entangled 2n  (A and B ) states.  

We conclude that for 2n , corresponding to the radius 
2

1
2 r , the bipartite system of two 

position cat-states is maximally entangled (case c). This is the Bell state: 

   xxxx
ABAB




2

1
1100

2

1
 (57) 

The cases (a) and (b) cannot occur, as they do not satisfy Equation (55).  

The bipartite entanglement entropy of a pure state 
 

ABABAB , denoted by 

 ABE  , is defined as the von Neumann entropy of either the reduced states, as they are of the same 

value:      BAAB SSE   , where: 

   AAA TrS  log ,     ABBA Tr   .  

If the reduced state is fully mixed, then the original pure state is maximally entangled, with 

maximal entanglement entropy:   1
MaxABE   (in log basis 2).  

In the case of maximal entanglement, then, the following relation holds between the 

entanglement entropy and the mutual information: 

    ISE BAMaxAB
2

1
:

2

1
    

Although the Bell state Equation (57) is a pure state:  

  ABABAB ,   0, BAS ,  (58) 

the reduced state is fully mixed: 

    2
2

1

2

1
1100

2

1
 xxxxTr ABBA


 . (59) 

Note that the reduced state of case c) is identical to the reduced state in case b). 

Let us consider the metric for 1n . The associated quantum information is 1 nI —that 

is, one qubit. The particular case 1n , corresponds to the maximum volume of the ball with radius 

11 r  and the embedding surface is the Bloch sphere; that is, the geometrical representation of the 

state space of one qubit. The points on the surface of the Bloch sphere are pure states, such as the cat 
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state in Equation (54), the basis states x


 and x


  (corresponding to the north and south pole 

respectively), and, more generally, states like xx


   with 1
22
  .  

The points inside the Bloch sphere, instead, correspond to mixed states. The maximally mixed 

state in this case is: 

    2
2

1

2

1
1100

2

1
 xxxxxx


  (60) 

which is the same as the reduced state in case c) for 2n , (two qubits maximally entangled), 

2/12 r . 

This fact suggests that being a pure state or a mixed state in this model depends on the 

observer: If he/she is on the surface of the Bloch sphere 1rS  of radius 11 r , he/she would see all 

the states inside the Bloch sphere (for example at 2/12 r ) as mixed states. Instead, an observer on 

the surface of the sphere 2/1rS  of radius 2/12 r , will see a bipartite pure state—that is, a Bell 

state but will see the states inside the sphere 2/1rS  (for example at 3/12 r ) as mixed states, such 

as: 

   xxxxxxxxAB




2

1
11110000

2

1
 . (61) 

Instead, an observer on the surface of the sphere 3/1rS  will see a maximally entangled three 

partite state (the GHZ state):  111000
2

1
GHZ , which is also a pure state, with: 

GHZGHZGHZ  ,   0GHZS  . and so on.  

7. Maximally Entangled States on Special Fuzzy Spheres 

In this section we formalize and demonstrate the assumption we made since the beginning that 

the n pure states are encoded by the spheres nS  of rational radii nrn /1 , and are maximally 

entangled. 

To this aim, we will consider a generalized version of the fuzzy sphere with radius 

nrr nFS /1 , in the fundamental representation 2N  of )2(SU . 

Let us consider the ordinary, commutative sphere 
2S  of radius r  embedded in 

3R :  

2
3

1

2 rx
i

i 


 (62) 

The fuzzy sphere is constructed replacing the algebra of polynomials on the sphere 
2S  by the 

non commutative algebra of complex N × N matrices, which is obtained by quantizing the 

coordinates ix  (i = 1, 2, 3), that is, by replacing the ix  by the non-commutative coordinates iX : 

iii kJXx   (63) 

where the iJ  form the N-dimensional irreducible representation of the algebra of SU(2) satisfying 

the commutation relations: 

  kijkji JJJ ,         3,2,1,, kji  (64) 

where ijk  is the three-dimensional anti-symmetric tensor, and k  is a parameter called the 

non-commutativity parameter. 

In terms of the new coordinates iX  defined in (63), the relation in (62) becomes:  
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  2
3

1

2222
3

1

2 1 rNkJkX
i

i
i

i  


 (65) 

where 



3

1

222 1
i

i NJJ  is the Casimir of SU(2) in the N-dim. representation.  

From Equation (65) it follows: 

12 


N

r
k  (66) 

The dimension N of the irreducible representation of SU(2), that is 12  jN  is equal to the 

number of elementary cells of the fuzzy sphere. 

In the case 2N  (the fundamental representation) the non-commutative coordinates iX  

are given in terms of the Pauli matrices i :  

ii kX   (67 

and Equation (66) becomes:  

3

r
k   (68) 

In this case, the sphere is very poorly defined as only the North and the South poles can be 

distinguished. However, the higher is the dimensionality N of the representation, the lower is the 

fuzziness. From Equation (66) it follows that 0k  for N , and one recovers the classical 

sphere 
2S . 

The concept of the area of a fuzzy elementary cell was first introduced in [22], although it was 

already implicit in [18] through the introduction of the constant krK 4 , which has the 

dimension of a squared length. 

The area 
EC

NA of an elementary cell of the fuzzy sphere in the N-dim. irreducible 

representation of SU(2) is then: 

1

4
2

2




N

r
A

EC

N


 (69) 

For N  0
EC

NA , that is, the elementary cell reduces to a point. 

The total area of the fuzzy sphere is: 

1

4
2

2




N

r
NA

FS

N


 (70) 

For large N, the area of the fuzzy sphere tends to the area of the ordinary sphere: 

24
2

rAA SFS

N  .  

In the particular case of 2N , there are two elementary cells, each one of area: 

3

4 2

2

r
A

EC 
  (71) 

The quantum version [36,37] of the Holographic principle [38,39] is strictly related to 

2-dimensional noncommutative geometry. In fact, for the case of one qubit, it was shown [19] that 

the geometrical representation of the qubit state space (the Bloch sphere) is in a one-to-one 

correspondence (a bijection) with the fuzzy sphere in the fundamental ( 2N ) representation.  
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For the fundamental representation 2N , and 1r  it was shown [19] that the North (N) 

pole 0  and the South (S) pole 1 of the Bloch sphere are “smeared” into two elementary cells, 

each one of area: 

3

4
2




EC
A  (72) 

One cell encodes the bit 0 and the other cell encodes the bit 1  

As a whole, the N = 2 fuzzy sphere encodes one qubit. See Figure 4. Some detail will be given in 

the Appendix B. 

 

Figure 4. N = 2 fuzzy sphere. 

Two elementary cells. One cell encodes the bit 0 and the other cell encodes the bit 1  

As a whole, the N = 2 fuzzy sphere encodes one qubit. 

In the case of many qubits, the non-commutative C*-algebra is the algebra of logic quantum 

gates, which are NN  unitary matrices, where 
nN 2 , and n  is the number of qubits. For more 

technical details, see Appendix B. 

However, the one-to-one correspondence between the fuzzy sphere and the Bloch sphere is lost 

for 1n . 

In fact, let us consider, for example the case of two qubits, 2n . The fuzzy sphere is in the N = 

4-dim. irreducible representation of  2SU  and the number of cells is 4N . For a unit radius, 

the area of an elementary cell is: 

15

4
3




EC
A  (73) 

Each cell encodes one of the 4 strings of 2n  bits: 00 , 01 , 10 , 11 , which is the 

geometrical representation of the state space of a separable two-qubits state. See Figure 5. 

 

Figure 5. The N = 4 fuzzy sphere. 
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Four elementary cells. Each cell encodes a 2-bits string. As a whole, the N = 4 fuzzy sphere 

encodes a separable 2-qubits state. 

The one-to-one correspondence with the Bloch sphere might be recovered by setting the 

representation 2N  (two cells) and considering only two strings: 

2

0

1
00











 and 

2

1

0
11











 . 

In this way, we still have the bijection: 

00N           11S   

where N and S stand for North pole and South pole respectively. 

The fuzzy sphere for 2N  will then encode the Bell state:  1100
2

1


. See 

Figure 6. 

To recover the one-to-one correspondence with the Bloch sphere, it will be necessary to slightly 

modify the definition of the area of the fuzzy elementary cells. To this purpose, we will take the 

radius of the fuzzy sphere, to be the radius of the sphere nS  of rational radius nrn /1 . 

The non-commutativity parameter in Equation (66) becomes: 

1

1
'

2 


Nn
k  (74) 

In this case, the fuzzy sphere will be called “special fuzzy sphere” for any N. 

We see that, once the dimension N of the irreducible representation of SU(2) is fixed, k’ depends 

on n. For n , 0'k , and even in the case of the fundamental representation 2N , 

commutative geometry is recovered. 

For 1n  we recover the usual fuzzy sphere, as it is: kk ' . 

The area of the elementary cell (69) becomes: 

1

4
22,



Nn

A
EC

nN


 (75) 

For simplicity, let’s set 2N . Equation (75) becomes: 

3

4
2,2

n
A

EC

nN


  (76) 

More details are given in the Appendix B.  

 

Figure 6. The N = 2, n = 2 “special” fuzzy sphere. 

Two elementary cells. One cell encodes the string 00 and the other cell encodes the string 

11 . 
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As a whole, the N = 2, n = 2 special fuzzy sphere encodes the Bell state 
 . 

The special fuzzy sphere for 3,2  nN  encodes the (maximally entangled) 
3

GHZ  

state:  111000
2

1
3

GHZ . More details are given in the Appendix B. See Figure 7. 

 

Figure 7. The N = 2, n = 3 special fuzzy sphere. 

Two elementary cells, each one encoding a 3-bit string. One cell encodes the string 000 , and 

the other cell encodes the string 111 . As a whole the N = 2, n = 3 fuzzy sphere encodes the GHZ 

state 
3

GHZ , In the same way, for 4,2  nN  the special fuzzy sphere will encode the 

(maximally entangled) 
4

GHZ  state:  11110000
2

1
4

GHZ , and so on. 

In general, the nN ,2  special fuzzy sphere with radius nrn /1  will encode the 

n
GHZ  state:  nn

n
GHZ


 10

2

1
.  

See Appendix B for more details. 

8. Quantum Simulation of QFT: A New Approach 

In this section, we propose a new theoretical approach to the topic of the quantum simulation of 

QFT, in light of the arguments discussed so far.  

As is well known, quantum simulation is needed since Feynman [40] showed that a classical 

computer would experience an exponential slowdown when simulating quantum phenomena, 

while a quantum computer would not.  

Then Deutsch [41] described a universal quantum computer, and Lloyd [42] showed that a 

standard quantum computer can be programmed to simulate any local quantum system efficiently. 

However, there is a conceptual, foundational problem in using quantum computers for 

simulating QFT, which arises from Haag’s theorem [4], which states that free and interacting fields 

must necessarily be defined on unitarily inequivalent Hilbert spaces. So suppose that a scattering 

process must be simulated by a quantum computer. This is impossible in principle, because the 

quantum computer is a quantum mechanical system, with a finite number of degrees of freedom, 

which, according to von Neumann’s theorem, has only unitarily equivalent representations. In other 

words, if the quantum computer simulates free input fields, let us say in representation F  (where 

the subscript F stands for “free”) it cannot also simulate their interaction in representation I  

(where the subscript I stands for “interacting”) because it does not exist a unitary transformation 

IF HHU :  such that UU IF  † . Then the interaction process will be a black box for the 

quantum computer. See Figure 8. 
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Figure 8. The black box. 

The I , F , QC  indicate the representations for the interacting fields, the free fields and 

the QC respectively. The I , F  are not unitarily equivalent to each other for Haag’s theorem. 

The QC  representations are all unitarily equivalent for the Stone-von Neumann theorem. Then, if 

QC  can be unitarily equivalent to F , cannot be also unitarily equivalent to I . Then, the 

interaction appears as a black box to the QC, and cannot be simulated. 

Although the formulation of S-Matrix is such that one can find the final state by operating 

S-Matrix on the initial state without taking into account the moment of interaction, regarding it as a 

black box, the interaction cannot be simulated by a QC. In fact, it is the moment of interaction that all 

of the classes of representations may become equally important, and instead the QC is endowed 

with only one class.  

Hence, the “for all useful purposes” black box of the S matrix formulation becomes a true black 

box with regards to quantum simulation. 

So, in principle, we will not be able to directly simulate interacting quantum fields. However, 

quantum simulation might become possible once quantum fields are reduced to a quantum network 

of qubits. A seemingly argument was proposed by Preskill [13] and by Jordan et al. [14], who 

recognized that in order to build up an efficient quantum algorithm to quantum simulate the 
4  

theory, the field should be “represented with finitely many qubits by discretization of space via a 

lattice, and discretization of the field value at each lattice site”. 

In this work, we have shown that a (bosonic) QFT has in itself a hidden quantum information 

IQFT. Extracting this quantum information, involves the reduction of QFT to a quantum-mechanical 

system, which is a quantum network, the Hidden Quantum Network (HQN) like the one shown in 

Figure 1. 

Now, if we think of an external quantum simulator QCE, with which we would like to simulate 

the QFT, we would simulate in fact the HQN, not the original QFT, because the QFT ceased to exist 

once it revealed the quantum information IQFT it hid. However, in some sense, the quantum network 

HQN is a kind of “skeleton” of the original QFT, from which we could go back to QFT. 

We state the following no-go theorem: 

“If it exists a representation QC  of the quantum simulator which is unitarily equivalent to the 

representation F  of the free fields, then it does not exist a representation 'QC  of the quantum 

simulator that is unitarily equivalent to the representation I  of the interacting fields.” This 

means, in practice, that a quantum algorithm for simulating QFT will be incomplete, unless 
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quantum QFT is reduced to a quantum network HQN, which has only one class of unitarily 

equivalent representations. 

Now, the question is: “How can an external quantum computer simulate two interacting 

quantum networks HQN1 and HQN2?”. The answer is given by “gluing” the two quantum networks  

as shown in Figure 9. However, before going further, we want to clarify what is meant here by 

the “bonding” of the two networks. To do this, it is worth remembering the existence of the “gluing 

operation”, introduced in the quantum metalanguage [43] which controls the logic of quantum 

information. 

Given the quantum sequent ipi  ( Ni ) (a quantum assertion in the metalanguage) where 

Ci   is the assertion degree, and ip  are atomic propositions of the quantum logic (the quantum 

object language), and its *-dual (also defined in [42]) 
*

i

ip  , where 
*

i is the complex conjugate of 

i , we make their gluing by means of the gluing operation “ “ defined as: 




 

*
i

ip 
 

  iii ppp ii
2  , with the meta data  

i
i 1

2
 . 

Note that the quantum identity axiom ii pp i
2

  bears a partial truth value 
2

iiv  , which 

can be interpreted as the probability with which a quantum object can be identical to itself. 

Regarding the bonding of the two networks, we will interpret the quantum fields of the boson as 

statements (assertions) of a quantum metalanguage (work in progress). More precisely, we identify 

the incoming fields 
INi  with the quantum assertion ipi , and the outgoing fields 

INiOUTi    as the *-dual 
*

i

ip  . 

Hence, the gluing of the two quantum sequents corresponds to the bonding of the networks of 

incoming and outgoing fields 
2

iii    through the interaction, which is revealed by 
2

i . 

In fact, a displacement of the boson field iii    gives 
2*

iii   , then we conclude 

22

ii   . This means that the bonding of the incoming and outgoing networks is made possible 

through the interaction phase, which is dominated by a dressed vacuum, with a boson condensate 

density given by 
2

i .  

More details on this will be provided in a future article. Regardless, we just wish to add a little 

remark at this point. The probability with which a quantum object can be identical to itself, 

expressed by 
2

i in the quantum identity axiom may be interpreted as the impossibility for the 

outgoing fields to be fully determined by the incoming ones, even in the case they are identical. The 

problem stands in the interaction, which is just made out of mixed states, designing informational 

ignorance. 
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Figure 9. The interaction net. 

The interaction net results from the bonding of two identical nets like that of Figure 1. The 

connected part of the graph describes the interacting fields. The disconnected part of the graph (the 

free outgoing arrows) describes the free fields: the input on the left, the output on the right. The 

primed and unprimed numbers that identify the nodes refer to the left and right networks 

respectively. 

The connected part of the network in Figure 9 represents the interaction, and consists of fully 

mixed states (the dotted connecting links) and quantum fluctuations of the metric (the un dotted 

connecting links).  

The connected part of the network is the most similar to a scale-free growing network, where 

free links are absent. However, the connected part is deterministic, in the sense that it follows some 

precise rules, as a lattice.  

The disconnected part of the graph (outgoing free links), which consists exclusively of pure 

states that are maximally entangled, represents the free fields. The free links destroy the structure of 

a regular lattice, as the configuration of free links changes at each node. 

Each node of the graph is associated with a quantum gate of the quantum simulator QC. The 

presence of maximally entangled states in the quantum network is crucial for quantum simulation, 

in fact entanglement was shown [44] to be necessary to achieve quantum computational speed-up. 

By balancing the quantum entropy of the fully mixed states with the entanglement entropy of 

the maximally entangled states, it will be possible to simulate both the interacting fields and the free 

fields of the original QFT. 

However, an important requirements is needed: The quantum simulator should be able to 

simulate mixed states. Actually, such a quantum computer has been described in [45], where the 

authors define a quantum circuit which is allowed to be in a mixed state and to use quantum 

operations as gates, not necessarily unitary. 

It may be worth stressing the fact that the connected part of the graph in Figure 9 is filled of 

fully mixed states, whose maximum von Neumann entropy indicates our total ignorance of the 

interaction process in the original QFT. 

Ignoring the connected part of the quantum network in Figure 9, is what one does in discarding 

the mathematical formalism of interactions in QFT, as often happens in constructivist formulations 

of QFT: only free fields in input and output are taken into account. If virtual states and mixed states 

were absent in the quantum network of Figure 9, the computational speed would be much lower. In 
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fact, in this case, the quantum network would be reduced to a 
n2  Boolean lattice (n = 0,1,2,....) 

represented by the regular tree graph (a binary tree) in Figure 10. 

 

Figure 10. The binary tree. 

A (classical) abstract data structure (ADS), a binary tree, is what is left when the connected part 

of the interaction net of Figure 9 is removed. 

The dramatic consequences of ignoring the quantum-computational structure of the interaction 

process will be discussed, among other topics, in Section 9. 

9. The Quantum Black Hole Paradigm 

Quantum information theory states that QFT probably does not have explicit quantum 

information content, unlike QM. However, the question of entanglement in QFT has already been 

studied in the literature, for example in [46,47]. 

In [46] the authors show the existence of entanglement between internal and external particles 

with respect to the event horizon of a black hole, and that this entanglement is a consequence of the 

existence of unitarily inequivalent representations of the CCR in QFT. In our opinion, their results 

have a common basis to ours, even if the contexts may appear different. In fact, as is well known, a 

black hole is the best scenario for studying quantum gravity, so entanglement in QFT, unitarily 

inequivalent representations of quantum fields and quantum gravity appear to be intimately 

interconnected. The same holds in the present paper, where however the difference lies in the fact 

that our quantum gravity scenario is that of Wheeler space-time quantum foam at the Planck scale. 

In [47] (specifically in the Appendix) the authors showed in detail that in QFT an entangled 

state can be viewed as a collective mode vacuum  0 controlled by the Bose–Einstein 

condensation. Such an entangled state is unitarily inequivalent to the bare vacuum 0 , which is 

non-entangled. 

In other words, in QFT there is unitary inequivalence between the entangled and non-entangled 

state. 

This fact is very important in our case, since it applies quite well to the quantum network in 

Figure 9. Indeed, the connected part of that network, which is not entangled, describes the 

interacting fields, while the disconnected, entangled part describes the free fields. In a sense, we 

could rephrase Haag’s theorem, which states that the representation of interacting fields is unitarily 

inequivalent to that of asymptotic free fields, as follows: “In QFT interacting fields are (fully) mixed 

and asymptotic free fields are (maximally) entangled, and there is no a unitary transformation 

between the two phases.” 

A (quantum) Euclidean de Sitter universe [32] on which the present work was based, can be 

seen as the expansion of a Euclidean Planckian BH, the latter being present at level 1n . It should 

be reminded that, while a BH has an absolute horizon, a de Sitter universe has an 

observer-dependent horizon. This means that an observer on the nth hypersurface at ntt  will 

receive signals from all the other hypersurfaces at 'nt , with nn '  but not from those with nn ' . 
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Only at the Planck scale  1n  does the de Sitter horizon become an absolute horizon, as it 

coincides with the Schwarzschild radius of a Planckian black hole [32]. See Figure 11. However, by 

truncation (at a given level 0nn  ), and under the    transformation (where it  is the 

imaginary time) the Euclidean quantum de Sitter universe can be viewed as a Euclidean 

Schwarzschild BH [48,49] (see Figure 12). Then, at a given level 0n , the connected part of the 

network in Figure 9, which consists of fully mixed states, is the exterior of the quantum BH event 

horizon, while the disconnected part, which consists of pure (maximally entangled) states is the 

interior.  

As Hawking [50] pointed out, the fact that a pure state cannot evolve into a mixed state by a 

unitary transformation implies that information is lost. However, as we have shown in this article, 

based on a quantum de Sitter space-time, quantum information is not lost in the mixed states of the 

interaction phase once all the pure states of the asymptotically free phase of the fields are maximally 

entangled. Applying this result to the inverse case of the black hole, in the extreme hypothesis that 

all pure states within a black hole are maximally entangled, the evaporation of the black hole would 

not cause a loss of information.  

The non-existence of a unitary transformation that makes a pure state evolve into a mixed state 

can then be understood as the non-existence of a unitary transformation between the interacting 

fields representation and that of asymptotically free fields, according to Haag’s theorem. 

The classical singularity “A” in Figure 9 might be seen as the black hole singularity where all 

degrees of freedom would be lost, however it is not so, because a Planckian BH and the de Sitter 

universe are Euclidean, so they are singularity free. 

The Planckian black hole, which originates the quantum de Sitter universe can be also depicted 

(see Figure 13) as the “level”  1n  of the quantum network discussed in this paper. There, the 

uncertainty in the position state is equal to the Planck length  PLx  , the quantum fluctuation of 

the metric is maximal  1g , and the quantum information is minimal  1I  as the Planckian 

pixel encodes one qubit. In fact, a pixel can be “on” = 1 and “off“ = 0 at the same time, (i.e., it can be 

interpreted as a qubit) [37] if the puncture is made by a (open) spin nework’s edge [51] in the 

superposed quantum state: 









2

1

2

1

2

1
. 

For 1n  (at the Planck scale),  1I , we have only one puncture giving rise to one pixel of 

area, associated with the 1-qubit state 1  offon 
2

1
, which represents the horizon state of 

a Euclidean Planckian black hole [32]. In summary, At level n = 1 of the quantum network, the 

uncertainty x  in the position state of the bosonic field, induced by the maximum fluctuation of 

the metric 1g , is equal to the Planck length. The surface of the sphere of radius has the area of a 

Planckian pixel, which is the area of the event horizon of a Planckian BH. The content of the 

information is one qubit, encoded by the pixel according to the quantum holographic principle [36]. 

So there is only one pure state within the event horizon and there are no mixed states outside. This is 

why a Planckian BH does not evaporate. It seems that the uncertainty in the position state of the 

boson field creates a Planckian BH, from which a Euclidean quantum de Sitter universe originates. 
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Figure 11. The Planckian BH and the Euclidean de Sitter universe. 

Level 1n  of the quantum network corresponds to the (absolute) event horizon of a 

Planckian BH (the undotted blu circle) from which a Euclidean de Sitter universe originates (see the 

arrow), which has an observer-dependent horizon at each level n (the dotted circles). 

The attractor A of the quantum network is not a true singularity.  

 

Figure 12. From truncated Euclidean de Sitter to Euclidean Schwarzschild BH. 

A Euclidean quantum de Sitter universe truncated to a fixed level 0nn   corresponds, 

by -inversion, to a Euclidean Schwarzschild BH. The n0 − 1 completely mixed states within the 

horizon of the truncated Euclidean universe become the mixed states outside the BH event horizon, 

and the n0 maximally entangled states on the n0th de Sitter horizon become the pure states within the 

BH event horizon. 
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Figure 13. The uncertainty in the position state of the boson field at the Planck scale. 

The curved line represents the quantum fluctuation of the metric, which, at level n = 1 is 

maximal ( 1g ). The square stands for the planckian pixel. Inside the square, x  stands for the 

uncertainty in the position state, and PL  is the Planck length. The two arrows denote the puncture 

made by a spin ½ edge in a superposed quantum state. I = 1 is the quantum information of one qubit. 

10. Discussion and Conclusions 

In this paper we have illustrated a particular process of reduction from QFT to QM. This 

reduction mechanism proved to be much more complex than just the reduction to finite volume. In 

fact, some unknown characteristics emerged and several topics were involved.  

Among the unknown characteristics there is the quantum-computational structure which is 

intrinsically rooted in QFT, and the quantum-gravitational origin of this same structure. Among the 

topics involved, besides those of quantum information and quantum gravity, there are 

non-commutative geometry (the fuzzy sphere) and quantum simulation. The latter is of great 

importance as a possible theoretical support for practical applications in scattering processes of 

elementary particles at high energies. Until now, quantum algorithms to simulate QFT [13,14] have 

mainly used lattices.  

A lattice is a particular type of regulator, which allows a computer simulation of QFT. 

However, while a lattice breaks Lorentz’s invariance, our regulator does not, because a fuzzy 

sphere has the same rotational symmetry as the ordinary sphere. As Maas writes in his lectures [52]: 

“... it is an unfortunate consequence of our current understanding of quantum field theory that the 

need to have regulators always implies that some symmetries are broken, no matter what, until the 

regulator it is not removed”. It should be noted, however, that Lorentz’s invariance is restored on the 

fuzzy sphere. 

A lattice is a mathematical artefact, as also Preskill says in [13]: “The lattice is an artifice 

introduced for convenience.” In our case, instead, the regulator is physical, because the 

discretization is induced by the quantum fluctuations of the metric in the attractor basin. 

Also, while in the case of a reticular regulator the limit of the continuum is reached (but not 

always) when the number of sites is huge and the spacing approaches zero, in our case there is the 

classic limit that is reached when the fluctuations of the quantum metrics vanish near the attractor. 

Moreover, while in the case of a reticular regulator the reduction of QFT to QM is not 

mathematically explicit, in our case it is, since the ansatz corresponds to the execution of a boson 

translation (as it was illustrated in Section 4). This shows how the unitarily inequivalent 

representations of QFT are reduced to a single class of unitarily equivalent representations of QM. 
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In Preskill’s algorithm for simulating scalar field theories, it was introduced a spatial lattice. To 

make the theory simulated, they replace the scalar field  x


  at each lattice site by a discrete 

variable with a finite number N of mutually orthogonal eigenstates. There is a conjugate variable 

 x


 , the field momentum at the lattice site x


, which is related to  x


  by the quantum Fourier 

transform applied to the N-dimensional Hilbert space residing at each lattice site x


. For 
nN 2 , 

the quantum state of the field at a site can be encoded in n qubits.  

In our case instead, qubits are induced directly by the quantum fluctuations of the metric, due 

to the uncertainty relationship between metric and quantum information. 

Both approaches can lead to satisfactory results, but ours is more physical, not only in a 

heuristic sense, since it is supported by a rigorous mathematical framework. As Preskill himself says 

in [13]: “There may be more clever ways of regulating that would improve the efficiency of the 

simulation”. 

In any case, however, the profound philosophical meaning of the mathematical role of a 

regulator is that by reducing the infinite degrees of freedom of QFT to a finite number, allows the 

quantum simulator and the simulated quantum system to have unitarily equivalent representations 

even when interactions are present. 

Then, it may not be quite true that a quantum computer can simulate any quantum system, and 

our doubt is shared by Preskill in [13]. We claim that a quantum computer can simulate the hidden 

quantum network (HQN) of the quantum system under study. More precisely, a quantum computer 

can be programmed to be in a one-to-one correspondence with the HQN. 

We think that QFT is meta-logically described (work in progress) by a “quantum 

metalanguage” (QML). If that is true, then QFT is its own semantics (QFT interprets itself). In the 

reduction process illustrated in this paper, QFT would appear then as the semantics of the quantum 

logic underlying the quantum information hidden in it. The reduction process (in particular the 

regulator) would then play the role of a definitional equation [53], which allows the switch from a 

metalanguage to an object language (the logic). In particular, the quantum version [43] of the 

definitional equation allows to pass from a QML to the quantum logic of quantum information 

(QLI). 

Hence, the metalinguistic links between assertions, which are interpretable as interactions of 

quantum fields, are sent to logical connectives between propositions, which correspond to quantum 

correlations such as quantum superposition and entanglement. 

Then, the definitional equation corresponds to the regulator of QFT discussed in this paper. In 

this logical framework, Haag’s theorem simply translates the fact that the QML contains the QLI, as 

every metalanguage contains the object language. Another important point to discuss is that of the 

serious consequences of the attitude of discarding the ontology of processes (in this case the 

ontology of interaction). As we have already pointed out in Section 8, the quantum network in 

Figure 9 consists of a connected part (which describes the interaction) and a disconnected part 

(which describes the free fields). So, ignoring the interaction process is tantamount to eliminating the 

connected part of the quantum network in Figure 9. The problem, unfortunately, is not only 

mathematical, but also physical. In fact, by eliminating the connected part of the graph, the balance 

between the quantum entropy of fully mixed states and the entanglement entropy of the maximum 

entangled states is lost. This involves the non-conservation of quantum information. 

In fact, the result of neglecting the connected part of the quantum graph in Figure 9 reduces the 

latter to a pair of binary trees like the one in Figure 10, one for the input fields and the other for the 

output fields.  

In this way, a Boolean lattice, a binary tree, which is an abstract data type used in computer 

science, would appear to be the classical computational skeleton of the original QFT, which makes 

no sense. In fact, as we said before, the computational skeleton of a quantum field theory is 

quantum. Using a binary tree to trace the original QFT would mean not recovering the quantum 

characteristics of the latter. 

A fairly unexpected result of this article is that quantum gravity seems to be hidden in QFT just 

like quantum information does (remember that there is an uncertainty relationship between metric 
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and quantum information). Indeed, the quantum fluctuations of the metric appear in this model 

within the attractive basin and induce uncertainty in the position states, leading to the definition of 

qubit states. 

The structure of quantum foam arising in the attractor basin was exploited in Section 9 to show 

that the quantum network of information hidden in QFT seems to be closely related to the 

information loss paradox in evaporation of black holes, which then might be solved in the extreme 

hypothesis that all the pure states within the BH event horizon are maximally entangled. 

It would be worth further looking for a series of relationships between QFT, QM, quantum 

information, entangled space-time, quantum gravity, non-commutative geometry, quantum 

metalanguage and quantum logic, since these topics are closely intertwined.  

QM and QFT are not at the same level, neither mathematical (due to the appearance of the uir of 

the CCR in QFT, while in QM this is prohibited by Stone-von Neumann’s theorem) nor logical (QFT 

is described by a quantum metalanguage while QM is described by a quantum logic), neither 

physical (since Haag’s theorem holds in QFT, and therefore the irreducible representations of free 

fields are unitarily inequivalent to those of interacting fields). 

Moreover, QM has a classical space-time background, which is absolute. Instead, we believe 

that QFT should have an entangled quantum space-time [54] as a space-time background. If you 

remove the QFT from the background, what remains is the entangled space-time, which is itself a 

quantum network, quite similar to that depicted in Figure 1. Some relations between the entangled 

space-time background and meta-logic may be found in a recent paper [55]. 

To conclude, in this work we have shown that a (bosonic) quantum field theory T has in itself a 

hidden quantum information IT. Extracting this quantum information, however, involves the 

reduction of T to a quantum-mechanical system, which is a quantum network QT like the one shown 

in Figure 1. 

Now if we think of an external quantum simulator QE, with which we would like to simulate T, 

we would actually simulate at least QT, not T, because the latter ceased to exist once it revealed the 

quantum information IT it hid. In a sense, however, QT is T’s “skeleton”, and from it we can go back 

to T, at least that’s hope. It might be worth extending this reduction mechanism to fermionic QFT. 
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Appendix A 

 

Scheme A1. Relations among the relevant quantities in the attractor’s basin. 
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Table A1. The relevant quantities in the attractor’s basin at each level n Values of the radius of the 

attractor’s basin and of quantum information at each level n. 
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Appendix B 

For the fundamental representation 2N , and 1r , each one of the two elementary cells 

)(iEC   2,1i  is a string i . The strings i  (for 2N ) are the cyclic vectors of the Hilbert 

space 
2C , which can be obtained from pure states of the non-commutative C*-algebra of 22  

complex matrices through the Gelfand-Naimark-Segal construction [55]: 
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The area of each of the two cells is [15]:  
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where  ip   is the probability to find the ith string in the ith cell, and the fuzzy sphere encodes in 

total one qubit. 

By the GNS construction [55], from the 
nN 2  pure states of this algebra, which correspond 

to N  cyclic vectors of the associated Hilbert space 
nC 2

, one can build, by the relation 

12  jN , all the
2

1
2 1  nj  irreducible representations of SU(2). By the GN [56] theorem, to 

this non-commutative C*-algebra, it is associated a quantum space which is the fuzzy sphere with 
nN 2  cells.  

The N  cells are the N  pure states, and then correspond to the N  cyclic vectors, which are 

strings of n bits. The area of the ith cell is proportional to the probability of finding the ith string in 

that cell. 

The quantum background space (the fuzzy sphere) and the quantum computer are then in a 

one-to-one correspondence. 

The Special Fuzzy Sphere 

More in detail, for 2N , 2n : 

 2
2,2

3


  i

EC
nN

i pA 


 (A3) 

 2

12,2
1

3


  


pA

EC
nN         2

22,2
2

3


  


pA

EC
nN  (A4) 



Quantum Rep. 2020, 2, 3 488 

where:  
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and the fuzzy sphere encodes the Bell state: 
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For 3n , it holds: 
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Then, in general it holds: 
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