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Abstract: Quantum teleportation plays a key role in modern quantum technologies. Thus, it is of
much interest to generate alternative approaches or representations that are aimed at allowing us a
better understanding of the physics involved in the process from different perspectives. With this
purpose, here an approach based on graph theory is introduced and discussed in the context of some
applications. Its main goal is to provide a fully symbolic framework for quantum teleportation from
a dynamical viewpoint, which makes explicit at each stage of the process how entanglement and
information swap among the qubits involved in it. In order to construct this dynamical perspective,
it has been necessary to define some auxiliary elements, namely virtual nodes and edges, as well as an
additional notation for nodes describing potential states (against nodes accounting for actual states).
With these elements, not only the flow of the process can be followed step by step, but they also allow
us to establish a direct correspondence between this graph-based approach and the usual state vector
description. To show the suitability and versatility of this graph-based approach, several particular
teleportation examples are examined in detail, which include bipartite, tripartite, and tetrapartite
maximally entangled states as quantum channels. From the analysis of these cases, a general protocol
is devised to describe the sharing of quantum information in presence of maximally entangled
multi-qubit system.
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1. Introduction

Quantum entanglement is the cornerstone of modern quantum technologies [1]. Within them,
quantum teleportation, the capability to transfer the information encoded in the quantum state of a
physical system (e.g., an atom or a photon) to another distant physical system, plays an important role,
as its remarkable theoretical and experimental development has shown over the last quarter of a century
[2]. Because the first protocol introduced by Bennet et al. [3], a number of milestones have paved
the way for a solid settlement of the technology based on it. In 1997, the first experimental evidence
was demonstrated by transferring a single photon state [4]. These former experiments, where the
distance mediating the quantum transfer was of about a few meters, were followed soon afterwards
by the first long-distance experiments, involving several kilometers [5]. In this regard, a record was
established in 2012, when the experiments were performed between two laboratories separated a
distance of 143 km [6], with the purpose to demonstrate the feasibility of the phenomenon at distances
of the order of a low Earth orbit and, hence, to implement quantum key distribution protocols at the
global level. That record was overcome shortly after by transferring a quantum state between the cities
of Delingha and Lijiang, separated by a distance of 1200 km [7], and then with the aid of the Micius
satellite [8], setting a new record and also the basis for global communications. Furthermore, there are
other important proposals or milestones in recent years regarding quantum teleportation, such as the
possibility to transfer internal quantum states between living organisms (e.g., bacteria [9]), the use
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of this phenomenon to acquire information from the inside of black holes [10], or the experimental
realization of quantum teleportation of qutrits [11]. No doubt, these appealing studies directly point
towards the development of more sophisticated protocols enabling the teleportation of complex
quantum objects.

Nevertheless, the physical essence of the process still remains the same, regardless of the level of
complexity and sophistication involved in all those investigations: an entangled pair of particles is
used as the resource necessary to transfer the information encoded in a quantum system to another
distant system, in a way that somehow remembers the classical momentum transfer in the so-called
Newton’s cradle. In this regard, one wonders whether it is possible to find a conceptual description of
the process, which might help us to better understand it without making emphasis on the particular
physical substrate, as it is usually the case when we consider the standard quantum formulation.
This is an idea underlying analogous descriptions of quantum information transfer processes, such as
Penrose’s graphical notation [12] or, more recently, Coecke’s quantum picturialism [13], closer to
logic. Another route that can be followed is that of topology. Kauffman and Lomonaco, for instance,
have developed an approach to account for quantum logic gates and entanglement operators [14,15].
Different topological surfaces have also been used by Mironov [16,17] to deal with the issue of
measuring the Von Neumann entropy.

The present work is motivated by the search of an effective pictorial representation for quantum
teleportation in dynamical terms, beyond the more standard state vector views, which in the end
are more closely connected to particular physical substrates (electrons, photons, vacancies, etc.).
Typically, topological descriptions and descriptors are developed within a static framework, just as an
operational tool to classify quantum states or to obtain entanglment relations and measures without
involving time. Quantum teleportation, on the other hand, inherently involves evolution in time as
the information conveyed by a given system is transferred via a quantum channel (and entangled
system) somewhere else, even if time-dependence is not explicitly displayed (this happens, for instance,
in the former protocol introduced by Bennet et al.). Hence, one wonders whether it is possible to
describe this flow, which involves unitary evolution stages with non-unitary measurements by means
of a symbolic language, which captures the essence of the full process and, in turn, maintains direct
correspondence with the usual state vector description. As it is shown here, this can be done with
the aid of graph theory, and introducing some auxiliary elements and notation, which confers the
approach with enough flexibility to mimic a dynamical evolution. Moreover, this description is also
general enough as to provide protocols when quantum channels consist even of large quantum
systems [18]. In this regard, the relational approach introduced here is intended to build a wider and
and deeper understanding of quantum dynamical processes involving entanglement, such as quantum
teleportation, which might also be easily transferred to other quantum dynamical problems in a rather
simple form despite an eventual gradual increment of the level of complexity involved (e.g., a web or
lattice of interconnected qubits).

To tackle the issue, a recent work by Quinta and André [19] has provided us the grounds upon
which our graph approach has been constructed. In this work, a relational classification system for
N-qubit states is provided, which is based on how many entangled subsystems are involved, in a
way that is similar to the search of irreducible representations in group theory. By recasting then the
quantum state in the form of an N-variable polynomial, they are able to associate an N-component
topological link with such a quantum state. Based on this idea, and taking into account the construction
of graphs from the corresponding polynomials and links, we have developed an intuitive graph
approach to quantum teleportation processes, which include virtual nodes and edges, on the one hand,
and additional labeling for nodes to denote potential states (in contrast to the usual actual states),
on the other hand. In this regard, this approach goes beyond more standard approaches that are based
on links, which lack this relational versatility of graphs, necessary to generate the idea of evolution or
flow in time.
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The work has been organized, as follows. To be self-contained, some elementary notions from
the polynomial and link approach developed by Quinta and André are introduced and discussed in
Section 2. In order to get the flavor of the approach and, hence, make more evident the transition
to the graph representation, the particular case of a four-qubit state coupled to an auxiliary six-level
qudit is analyzed. Subsequently, the graph approach here considered to account for entangled systems
is introduced and discussed in Section 3. The application to quantum teleportation is presented in
Section 4, first in the case of the standard protocol, and then in the case of teleportation processes
involving three and four qubits. From these cases, a general protocol for coupling of a qubit with
an N-party entangled state is introduced and discussed. To conclude, a series of final remarks are
summarized in Section 5.

2. Polynomials, Links, and Entanglement

According to Quinta and André [19], N-qubit entangled states can be represented by polynomial
and topological links, where each constituting qubit is associated with a variable in the polynomial
and a ring in the link structure. Consider the operation of partially tracing over a particular qubit in
the N-qubit density matrix that describes such a state. Within this representation, this is equivalent to:

(i) Setting to zero the variable describing the traced qubit in the corresponding polynomial.
(ii) Removing the ring related to this qubit from the full system topological link.

The resulting polynomial and link thus describe the reduced density matrix for the remaining
N − 1 qubits. Accordingly, the subsequent sub-polynomials and sub-links that arise after partially
tracing with respect to every qubit provide us with valuable information regarding the entanglement
that still remains and, therefore, which is going to characterize every reduced subsystem.
Thus, it follows that the original polynomial contains all the monomials associated with all possible
maximally entangled subsystems, which can be determined by means of the Peres–Horodecki
separability criterion [20,21] (see also [22,23]). This is, somehow, analogous to the criterion introduced
in [19] to reduce the polynomials under the presence of redundant monomials (simplification rule):
a monomial is irrelevant and, therefore, must be neglected if all of its variables are already present in a
lower-order sub-polynomial, which corresponds to a maximally entangled state that does not include
other variables.

To illustrate the above assertion, consider the case, for instance, of the quantum state |Ψ34〉
from [19] (the subscript ‘34’ is just a classifying label, not relevant to the present work, but introduced
establishing a better connection to notation used in the literature), which reads as

|Ψ34〉 = |31〉abc|1〉d|0〉ν + |31〉abd|0〉c|1〉ν + |31〉acd|1〉b|2〉ν + |31〉bcd|0〉a|3〉ν
+|21〉ab|11〉cd|4〉ν + |21〉cd|11〉ab|5〉ν. (1)

This state describes a system formed by four qubits (a, b, c and d) coupled to an auxiliary six-level
qudit ν (specified by |q〉ν, with q ranging from 0 to 5). Notice that, in turn, this quantum state consists
of several tripartite and bipartite entangled sub-states of the class

|N1〉ijk... =
1√
2

(
|00 . . .〉ijk... + |11 . . .〉ijk...

)
, (2)

with i, j, k = a, b, c, d, i.e.,

|21〉ij =
1√
2

(
|00〉ij + |11〉ij

)
, (3)

|31〉ijk =
1√
2

(
|000〉ijk + |111〉ijk

)
. (4)
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Furthermore, there are also factorizable single and bipartite qubits (note that the difference in notation
between factorizable states and entangled ones relies on the superscript associated with the latter,
which makes reference to the corresponding class specified in [19]). Physically, the quantum state
(1) can be interpreted as the result of coupling a four-qubit system with a qudit, such that the latter
couples differently depending on how the four qubits are arranged. For instance, the qudit remains in
its ground state if the qubits a, b, and c are entangled, while the qubit d remains independent; if the
qubits a and b are entangled, and the qubits c and d remain independent, then the qudit ν couples with
its fourth excited state; and, so forth.

In order to determine now the amount of entanglement as well as the polynomials and topological
rings that are associated with (1), we first determine the corresponding density matrix and we then
partially trace over the qudit ν. The resulting 16 × 16 reduced density matrix reads as

ρ̂abcd

(
Ψ34

)
=

Trν

[
|Ψ34〉〈Ψ34|

]
〈Ψ34|Ψ34〉

= |31〉abc|1〉dd〈1|abc〈31|+ |31〉abd|0〉cc〈0|abd〈31|
+|31〉acd|1〉bb〈1|acd〈31|+ |31〉bcd|0〉aa〈0|bcd〈31|
+|21〉ab|11〉cdcd〈11|ab〈21|+ |21〉cd|11〉abab〈11|cd〈21|. (5)

After applying the Peres–Horodecki separability criterion for mixed states to this reduced matrix
(details on this calculation are provided in Appendix A), only the subsystems (monomials) abcd,
abc, abd, acd, bcd, ab, and cd are shown to be maximally entangled. Consequently, the associated
polynomial is

P = abc + abd + acd + bcd + ab + cd, (6)

which contains all of the above monomials, except the abcd one, neglected by virtue of the simplification
rule mentioned above. On the other hand, the topological link that is associated with the polynomial (6)
is readily obtained by cutting and removing the ring corresponding to the qudit ν, which is equivalent
to setting to zero the associated variable. This process is analogous to chain structures (see, for instance,
Figure 11 in [19]), each one representing a monomial with two, three, or four variables. In the
particular case of the mixed state (5), the corresponding link representation is displayed in Figure 1,
where qubits a, b, c, and d have been denoted with orange, green, blue, and pink rings, respectively,
for a better visualization. Furthermore, in order to better appreciate the monomial structure, i.e.,
the two- and three-variable linking, bipartite entangled structures have been surrounded by yellow
and red circles, respectively.
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Figure 1. Topological link that is associated with the polynomial P = abc + abd + acd + bcd + ab + cd,
which represents the mixed state described by the reduced density matrix (5). The orange, green,
blue, and pink rings denote, respectively, qubits a, b, c, and d, with the yellow and red circles enclosing,
respectively, bipartite and tripartite entangled structures (monomials).

As it can be noticed, a topological description in terms of links is rather convenient to specify
entanglement relationships, for it provides us with a general picture of this quantum property without
making any explicit reference to a particular physical substrate (material particles, photons, or,
in general, different types of degrees of freedom). The key question now is whether the same
representation is suitable to describe entanglement transfer or exchange among different quantum
systems, which is the case of quantum teleportation. Two drawbacks arise in this regard:

1. The way back is not straightforward, i.e., it is not evident how to generate links that are associated
with polynomials from the constituting monomials. This entails difficulties regarding the
introduction of some general rules aimed at describing the system splitting after measurement.

2. Although topological links can be useful to elucidate entanglement relationships in systems with
a few qubits, the same gets far messier as the number of qubits increases.

At this point, it is clear that we need an alternative representation, which may introduce or
describe similar elements, but that, in turn, becomes more versatile, thus providing us with a more
suitable framework to deal with the notion of flow of entanglement and information.

3. Graphs and Entanglement

In order to circumvent the above inconveniences, let us thus consider instead a graph
representation. In order to move from polynomials to graphs, we associate the variables of a polynomial
with (labeled) graph nodes and any entanglement relationship is accounted for by a graph edge.
Accordingly, within this scenario, setting to zero a variable is analogous to removing the associated
node (and, of course, also the edges incident on it). Now, this is still a rather basic representation,
since it only enables a description of polynomials that consist of two-variable monomials; higher-order
monomials require an additional level of refinement, for the removal of a node and the corresponding
incident edges should not generate a disconnection among the remaining nodes. Notice that this is
also necessary, in turn, in order to provide a dynamical view of the entanglement transfer process.

That problem is solved here by defining an auxiliary element in the approach, namely an unlabeled
connection or virtual node. Appealing to a color code for simplicity, these virtual nodes are going to be
denoted here with blue, while the usual labeled ones will be specified with red. The constructions of
graphs by means of these auxiliary virtual nodes follows some simple rules, which also help to simplify
the reconstruction of multipartite graphs from elementary ones, just in the same that polynomials are
built from elementary monomials. These rules are:
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1. Auxiliary nodes are only used to join three or more labeled nodes, which represent entangled
states for three or more parties. Accordingly, two (or more) auxiliary nodes cannot be directly
connected by an edge.

2. An auxiliary node is redundant if it is connected to three or more labeled nodes chained among
themselves by successive edges. Redundant nodes must be removed.

3. If a labeled node is connected to other nodes through a virtual node, the trace over such a node
removes not only its edge with the virtual node, but also the latter.

To illustrate the concept, an equivalence table is displayed in Figure 2, where monomials,
links, and graphs for entangled states with a different amount of parties (N = 2 to 5) are compared.
These states have been built following a simple recursive relation with N, which makes more apparent
the fact that, when one of the qubits is removed, no matter which one, all other qubits become
disentangled immediately. That is, setting to zero a variable completely cancels out the corresponding
monomial; cutting a ring, totally releases all other rings. In the case of the graph representation, it can
be seen that, for N ≥ 3, the virtual node keeps all qubits entangled. However, as soon as one of
such qubits is removed (we partially trace over its states), the virtual node disappears and all other
remaining qubits are released. Thus, this approach starts pointing in a direction that seems to favor a
description in terms of generation and annihilation of entangled states, which is precisely the case in
quantum teleportation, as it will be seen below.

Figure 2. Monomial, link and graph representation for several N-qubit entangled states, with N =

2, 3, 4, and 5, which correspond, respectively, to the quantum states |21〉, |31〉, |41〉 and |51〉. These states
are of the type exemplified by the states (4).

Let us now consider the construction of the graph that is associated with a given polynomial.
Without any loss of generality, we are going to consider the polynomial (6). Figure 3a shows the graph
representation for the six constituting monomials. These monomials have been arranged in such a
way that identical elements (qubits) appear face-to-face, which facilitates the subsequent construction
of the final graph. Notice the key role played here, within this arrangement, by the virtual nodes.
As it is seen in Figure 3b, these nodes do not disappear when identical elements (labeled nodes) are
merged together, because they are not redundant, according to the above rules, rather they provide
us a clue on the inverse disconnection process. Furthermore, from this tetrapartite entangled system,
the presence of the virtual nodes allows for us to easily identify entangled substructures (monomials)
by just following the edges that join them with labeled nodes (for bipartite entangled structures it is
enough to follow the edge that joins two neighbor labeled nodes).
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Figure 3. (a) Graph representation of the monomials constituting the polynomial (6). (b) Graph
representation of the tetrapartite entangled represented by the polynomial (6).

By virtue of the second rule above, graphs can also be simplified. To illustrate this property,
consider the pentapartite entangled state described by the polynomial

P = abc + ad + be + de. (7)

The two graphs in Figure 4a are equivalent representations of this polynomial, although the one
on the right contains a redundant auxiliary node. Note that this node joins labeled nodes that form a
chain, which can be removed without altering the relationship among the constituting qubits, described
by the monomials ad, be and be. The other virtual node, on the contrary, is not reduntant, describing the
tripartite monimial abc. Now, notice that it is enough removing a single edge, for instance, between d
and e, to make such a virtual node not redundant, as illustrated by the two graph representations
displayed in Figure 4b. Although they also describe pentapartite entangled systems, these graphs are
not equivalent. The graph on the left is associated with the polynomial

P = abc + ad + be. (8)

The strategic position of the second virtual node in the graph on the right, on the other
hand, additionally contains a tetrapartite entangled subsystem, namely (abde), thus giving rise to
the polynomial

P = abde + abc + ad + be. (9)

Figure 4. In (a), both graphs correspond to the polynomial P = abc + ad + be + de, and the valid graph
is the one on the left. In (b), the graph on the left corresponds to the polynomial P = abc + ad + be,
and the right-hand graph corresponds to P = abde + abc + ad + be.
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4. Graphs and Quantum Teleportation

In order to determine a proper graph-based description for teleportation processes regardless
of the amount of entangled qubits involved in the quantum channel, first we are going to examine
several cases, ranging from the typical two-qubit maximally entangled pair to states that include up
to five or six entangled qubits. This will provide us with a general set of rules applicable to any case.
Nevertheless, in all cases we are analyzing scenarios where the information that is encoded in a given
qubit has to be transmitted to a far distant laboratory, which owns one of the parties involved in the
corresponding N-qubit entangled state.

4.1. Two-Qubit Entangled State

So far, we have focused on the relational aspects that are involved in entangled states or
subsystems. In order to tackle quantum information exchange, as it is the case of quantum teleportation,
it is of interest first to briefly see how the process takes place. To this end, let us reconsider the basic
quantum teleportation protocol [3], first in the usual state vector representation and then its description
in the present graph approach. Accordingly, we have Alice (a), who wishes to teleport the information
specified by the quantum state of a qubit (z) that she owns to Bob (b), in a far distant laboratory,
by using as a quantum channel the two parties of an entangled pair shared by them. Let us denote the
quantum state accounting for the full three-qubit system as

|Ψ〉zab = |φ〉z|21〉ab, (10)

which contains the maximally entangled bipartite subsystem ab and the factorized single qubit z.
Following the rules provided in the previous section, this state or first stage of the process, can be
represented by means of the upper graph displayed in Figure 5a.

After Alice’s entangled party interacts with her qubit, the state describing this new two-qubit
system can be recast in terms of Bell-basis vectors as

|Ψ〉zab = |Φ(+)
za 〉|φ

(1)
b 〉+ |Φ

(−)
za 〉|φ

(2)
b 〉+ |Ψ

(+)
za 〉|φ

(3)
b 〉+ |Ψ

(−)
za 〉|φ

(4)
b 〉. (11)

In this second stage, the change of basis is going to induce a series of important modifications
in the previous graph structure, as it can be noticed in the middle graph that is shown in Figure 5b,
with clear physical implications. First, not only a and z are going to be joined by a virtual (dashed)
edge, but z itself is also going to undergo a change in its color in order to make more apparent the
new pair az defined according to the Bell basis set. Moreover, b is also redefined with green color,
although surrounded by a red circle, with the purpose to explicitly indicate its potentiality to acquire
the information (state) formerly encoded in z. However, the fact that it is still physically attached
(entangled) to a, as denoted by then solid edge, is remarked by the red circle.

Therefore, it is only after Alice performs the measurement on her pair of entangled particles,
when Bob’s qubit is forced to project over the corresponding Bell vector. By transmission through a
classical channel of two bits (operations), Alice communicates to Bob the result of her measurement.
Now, he knows the quantum state of his qubit and, by using the correct operator, he finally gets the
original state. In terms of graphs, this physical process implies removing the ambiguity of b, which gets
physically separated from a (no solid edge between them) and, hence, acquires an unambiguous green
color, while a and z become maximally entangled (the virtual edge becomes real). The process is
described by the lower graph that is shown in Figure 5c.
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Figure 5. Three-stage graph representation of the quantum teleportation of a qubit z by means of an
entangled pair ab: (a) Alice has the qubit z, while she also shares one party of an entangled pair with
Bob; (b) the qubit z interacts with Alice’s entangled party; and, (c) the information encoded in z is
transferred (teleported) to Bob’s entangled party after measurement.

4.2. Three-Qubit Entangled State

Using a standard two-qubit entangled state may seem sort of trivial. Let us thus consider
a case where three parties share the entangled qubits a three-qubit |31〉 state, introduced above.
The teleportation process for such kind of states is formerly described in [18]. Now, Alice wishes to
send the information encoded in |φ〉z to Cliff, but taking into account her partner Bob. Accordingly,
the three of them receive in their corresponding laboratories one of the three parties implied in the |31〉
state. As for the transfer of classical information, unlike the previous setup, this time three bits are
required, namely two from Alice to Bob and one from Bob to Cliff. The quantum state describing the
four qubits that come into play reads as

|Ψ〉zabc =
1√
2

cos(θ/2)
(
|0000〉+ |0111〉

)
+

1√
2

sin(θ/2)eiϕ
(
|1000〉+ |1111〉

)
. (12)

The graph representation for this state is provided in Figure 6a, where the physical separation
between the abc entangled system and the z qubit is evident following the description that is provided
in Section 4.1. Next, Alice proceeds with a change of basis to describe her qubits z and a, which, in
terms of the Bell basis vectors, allows to recast (12) as

|Ψ〉zabc =
1
2
|Φ+〉

[
cos(θ/2)|00〉+ sin(θ/2)eiϕ|11〉

]
+

1
2
|Φ−〉

[
cos(θ/2)|00〉 − sin(θ/2)eiϕ|11〉

]
+

1
2
|Ψ+〉

[
sin(θ/2)eiϕ|00〉+ cos(θ/2)|11〉

]
+ |Ψ−〉

[
− sin(θ/2)eiϕ|00〉+ cos(θ/2)|11〉

]
. (13)

The graph representation for this rewritten state is given by Figure 6b, where the link between qubits a and z
is again denoted by the dashed line, while the potential to receive the information encoded in z is denoted by the
green labeled nodes encircled by the red (qubits b and c).
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Figure 6. Graph representation of the teleportation process sharing a |31〉 entangled state as quantum
channel (see text for a detailed account of each stage of the evolution).

Once the tetrapartite state (12) is expressed in terms of the Bell basis set, it is clear that a measurement by
Alice on a and z will render any of the four basis vectors with the same probability, releasing the other two qubits,
b and c, from their entanglement with a. These vectors become entangled between themselves, being described by
a state |21〉. This is precisely the situation that is described by the graph displayed in Figure 6c, where the virtual
node has disappeared (it is not necessary because we have two separate bipartite entangled states), and the qubits
b and c still undefined, as it is denoted by the green-in-red nodes. Remember that, in the case discussed in the
previous section, after measurement, the released qubit had already acquired the information initially encoded by
z (thus becoming green). Such an undefined state stresses the potential for any of these two qubits to acquire the
state of z.

The next step is rather subtle. Without any loss of generality, let us assume that, after measurement,
Alice obtains that the system za is in the state |Φ+〉. This means that bc are in the entangled state

|Ψ〉bc = cos(θ/2)|00〉+ eiϕ sin(θ/2)|11〉. (14)

Accordingly, the information encoded in z is shared by b and c, but neither Bob nor Cliff have it yet. As it can
be noticed, a measurement on b would not solve the problem, for it would imply that Cliff’s qubit, c, would be
either in the state |0〉 or in |1〉, with the corresponding probabilities, but we would not recover the initial state |φ〉.
Now, in the same way that in order to reach (14) Alice had to consider a change of basis, the same can be done by
Bob, not to a Bell basis, but to a basis set rotated by an amount with respect to the {|0〉, |1〉}. Let us denote this
new basis set for Bob {|+〉, |−〉}, which is related to the old one by means of the transformation

|1〉b = cos ω|+〉b + sin ω|−〉b,

|0〉b = − sin ω|+〉b + cos ω|−〉b,

where ω is the rotation angle, which can be achieved by means of a Stern–Gerlach magnets for entangled charged
particles or polarizers for photons (this angle could be taken equal to 45◦, for instance). Accordingly, the state for
bc can be written as

|Ψ〉bc =
[
− sin ω cos(θ/2)|0〉c + cos ω sin(θ/2)eiϕ|1〉c

]
|+〉b

+
[
cos ω cos(θ/2)|0〉c + sin ω sin(θ/2)eiϕ|1〉c

]
|−〉b, (15)

which is represented by the graph shown in Figure 6d. As it can be noticed in this figure, the ambiguity has
disappeared from qubit b; all potentiality relies on qubit c.

The last step thus consists of Bob performing a measurement of his qubit in the new basis, and classically
trasmitting the result to Cliff, so that he can then proceed to specify the state of his qubit. Actually, depending on
such a result, Cliff should apply one of the following operators. If the outcome is |+〉b, then he should operate his
final state by

Ô+ =

(
1/ cos ω 0

0 −1/ sin ω

)
, (16)
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while for |−〉b it should be used

Ô− =

(
1/ sin ω 0

0 1/ cos ω

)
, (17)

this being in analogy to the operators needed to recover the transmitted state in the standard two-qubit protocol.
With this last operator, qubit c is disambiguated and it acquires the information formerly encoded in qubit z,
as denoted by the graph that is represented in Figure 6e.

4.3. Four-Qubit Entangled State

The same procedure that is described in Section 4.3 can be now readily extended to entangled states of
the type |N1〉 if up to N parties are involved in the sharing of information. To illustrate, let us consider N = 4,
where now the information is going to be conveyed from Alice to Dave, the fourth party, with Bob and Cliff
playing the passive role of conveyors. In this case, the total state is described by the combination |φ〉z and |41〉,
which reads as

|Ψ〉zabcd =
1√
2

cos(θ/2)
(
|00000〉+ |01111〉

)
+

1√
2

sin(θ/2)eiϕ
(
|10000〉+ |11111〉

)
, (18)

which is represented by the graph that is plotted in Figure 7a. After Alice performs the change of basis for qubits
z and a, this state is rearranged in terms of the Bell basis vectors as

|Ψ〉zabcd =
1
2
|Φ+〉

[
cos(θ/2)|000〉+ sin(θ/2)eiϕ|111〉

]
+

1
2
|Φ−〉

[
cos(θ/2)|000〉 − eiϕ sin(θ/2)|111〉

]
+

1
2
|Ψ+〉

[
sin(θ/2)eiϕ|000〉+ cos(θ/2)|111〉

]
+

1
2
|Ψ−〉

[
− sin(θ/2)eiϕ|000〉+ cos(θ/2)|111〉

]
, (19)

which is denoted by the graph that is shown in Figure 7b. As before, as soon as the relation between qubits z and
a is set by means of the virtual node (physically, through the above basis change), all other nodes acquire the
potentiality to receive the information encoded in z, thus changing their color to the undefined green-in-red one.

When Alice performs the measurement of a Bell state, the za bipartite system becomes physically
disentangled from the rest, as shown in Figure 7c. If, for instance, Alice measures |Φ+〉, the state describing the
subsequent entangled bcd tripartite system is

|Ψ〉bcd = cos(θ/2)|000〉+ sin(θ/2)eiϕ|111〉. (20)

Notice now that we can apply the same rotation recipe used in the previous section, though sequentially,
that is, first Bob changes the basis of his qubit and then passes the information onto Cliff, who, in turn, proceeding
the same way will allow Dave to obtain in his qubit the information encoded in z. This is an option, of course.
However, if it happens that Bob and Cliff are in the same laboratory, there is another option that, in turn, allows for
preserving a maximally entangled state, which consists in recasting bc in terms of a Bell basis set, so that (20) can
be written as

|Ψ〉bcd =
1√
2
|Φ+〉

[
cos(θ/2)|0〉+ sin(θ/2)eiϕ|1〉

]
+

1√
2
|Φ−〉

[
cos(θ/2)|0〉 − sin(θ/2)eiϕ|1〉

]
, (21)

represented by the graph in Figure 7d. However, noticed that, unlike Alice’s former step, now only two Bell
vectors are involved, which simplifies the measurement process.

Accordingly, from this point on, the procedure is analogous to the one seen in the previous section, for it is
only necessary a measurement by Bob and Cliff, and the transmission of the outcome (two bits) by a classical
channel, which will be enough for Dave to obtain the replica of z in his qubit, as shown in Figure 7e. Specifically,
if the outcome is |Φ+〉, it means d has automatically acquired the former state of z; if the outcome is |Φ−〉,
the projective operator (

1 0
0 −1

)
(22)

must be used before.



Quantum Rep. 2020, 2 363

Figure 7. Graph representation of the teleportation process sharing a |41〉 entangled state as quantum
channel (see text for a detailed account of each stage of the evolution).

4.4. General N-Qubit Entangled States

The cases analyzed in Sections 4.2 and 4.3 provide us with some insight on a general procedure to
dynamically describe quantum teleportation processes that involve N-qubit entangled states as a quantum
resource. Two sequential routes have been mentioned. From the analysis of teleportation involving |31〉 states,
we found that after the measurement carried out by Alice, the transfer of information is achieved by simple
rotations. This procedure is independent of how many qubits are involved in the quantum channel, which makes
possible effective transfers among different laboratories, since each party from the entangled system is allocated
in one of them. The other procedure, coming out from the analysis including |41〉 states, consisted in transferring
the information by producing two-party rotations in a reduced Bell basis. This procedure is optimal if qubits can
be allocated two by two within the same laboratory, which has the advantage that, after transmission, those two
qubits are maximally entangled and they can be used eventually as a quantum resource for further operations.
Of course, there can also be hybrid options, where some laboratories receives only one party, while others receive
two of them.

In all of this, though, we can find or set a kind of general protocol in terms of a graph representation,
which allows for us to better understand the different steps of the process, thus providing us with an insightful
dynamical picture. This protocol involves a series of common steps, even if there are some variations.
Thus, without any loss of generality, let us consider a simple situation, where we can pair as many as possible
two-qubit entangled parties. All of the intermediate steps are going to be the same, regardless of N, but not the
last one, which will depend on whether N is odd or even, but this is something that we shall specify in due time.
Accordingly, given a quantum channel ascribed to an N-party entangled system, with its quantum state denoted
by |N1〉, as given by (2), the graph representation of quantum teleporting the state |φ〉z to any of the N parties
includes a series of steps, each one accounting for a specific operation. In order to illustrate these steps, we are
going to consider the processes that are illustrated in Figures 8 and 9, where the corresponding teleportation
processes involved |51〉 and |61〉 states, respectively. Accordingly, we have the following steps:

1. Initial preparation. The graph for the |N1〉 state is denoted by N red labeled nodes (a, b, c, d, e, f , g, . . .), all of
them joined by solid edges with a virtual (blue) node, which represents the entangling correlation. In turn,
the state |φ〉z is represented by a green isolated (labeled) node. This is what we observe in Figures 8a and 9a.
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Figure 8. Graph representation of the teleportation process sharing a |51〉 entangled state as quantum
channel (see text for a detailed account of each stage of the evolution).

2. Initial basis change. Alice prepares her two parties, the one from the |N1〉 state (a) and |φ〉z, in a way that,
when a Bell measurement is performed on this pair, one of the four Bell states is obtained. This introduces in
our graph representation some interesting changes. First, such redefinition gives rise to the appearance of a
virtual edge between z and a, and the change of color of the former. This indicates that these two parties are
going to become entangled, even though a still remains attached (entangled) to the remaining N − 1 parties
by virtue of the virtual node. Second, because those other N − 1 parties are susceptible to receive the state
encoded in z, they are represented with green color, remembering the former representation for z. However,
because they still remain entangled among themselves, there is a red circle around them. This stage is shown
in Figures 8b and 9b.

3. Alice measurement. As a result of the measurement performed by Alice, the za system disentangles from
the rest. Accordingly, the virtual (dashed) node joining z and a becomes real (solid). The remaining N − 1
parties are entangled among themselves, but not maximally due to the information transferred to them.
The corresponding |(N − 1)1〉 state is of the same kind as (2), which readily suggest a description of every
two constituting qubits in terms of the reduced Bell basis set {Φ+, Φ−}. This is the situation described by
the graphs in Figures 8c and 9c.

4. Two-by-two bipartite disentangling. Next, two qubits from the |(N − 1)1〉 state are grouped and their
state is separately described in terms of any of the two vectors of the reduced Bell basis. This implies
a change of their color to red, because they are assumed to have lost their potentiality to received the
information from z. This situation is represented in Figure 8d, but also in Figure 9d,f. In order to complete
the disconnection of these pairs of qubits from the rest, a measurement is performed on the reduced Bell
basis; the information is conveyed (by a classical channel) to the receiver of the state encoded in z (in the
examples of Figures 8 and 9, this role corresponds to either Emily or Fred, respectively). Such a measurement
generates bipartite maximally entangled states (which can be later on used, in turn, as a quantum resource),
as it is seen in Figures 8e and 9e,g.

5. Single-qubit measurement (only for odd N). As it can be noticed in Figure 9e, when |N1〉 involves an odd
number of qubits, after the two-qubit disentangling operations, there are two remaining qubits, one of them
being the one of interest (Emily’s one, in this case). This requires, as it was seen in Section 4.2, a simple basis
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rotation and measurement within such a basis for the residual qubit, represented by the graph shown in
Figure 9f.

Figure 9. Graph representation of the teleportation process sharing a |61〉 entangled state as quantum
channel (see text for a detailed account of each stage of the evolution).

6. Completion of the transfer (teleportation) process. The outcomes obtained after measuring in the last
reduced Bell basis (for even N) or in the rotated basis (for odd N) will be transmitted through a classical
channel to either Fred or Emily, who proceeding with the corresponding quantum gate operators on their
qubit will finally obtain the state encoded in z, as seen in Figures 8f and 9g.

As it can be noticed, apart from conveying the state encoded in Alice’s qubit z to the far distant qubits of
Emily (e) or Fred ( f ), we end up with (N − 1)/2 or N/2, respectively, bipartite maximally entangled states of the
type |Φ±〉, which can be used later on as quantum resources for other purposes.

5. Final Remarks

In spite of power of the standard algebraic approach of quantum mechanics in the field of quantum
information transfer processes, it is equally important to have at hand simpler and visual approaches that
emphasize the physics that arre involved in such processes from a quick glance, particularly in those cases where
many different relations can be established among a rather large number of intervening parties. In other words,
models and descriptions that emphasize the relational aspects of such complex systems are at the same footing,
in this regard, as tough algebraic representations, which are more susceptible to hiding the physics that we
otherwise we wish to readily see. Just to establish a direct and clear analogy, think of a roadmap that allows for us
to quickly see the different roads that join some places with others without involving more quantitative measures
(distances, heights, weather conditions, etc.), which is what matters at a first glance (other quantitative details are
also important, of course, but on the next level).

In that sense, topological and pictorial representations of quantum entanglement and related processes have
received much attention, because they emphasize such relational aspects over more quantitative algebraic ones.
Now, it happens that they usually make emphasis on a static description, which is suitable for the classification
and description of entangled states, or the performance and visualization of certain quantum logic operations.
However, quantum processes, such as teleportation, involve a sort of dynamics where entanglement is swapped
from one system or subsystem into another. In order to provide a symbolic representation for these dynamics,
here we have introduced a graph representation of the phenomenon. With such a purpose, some additional
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elements, namely virtual nodes and edges, have had to be defined in order to capture the physical essence
that is involved in such swapping process and translate it into proper and well-defined graph connections and
disconnections.

By means of this approach, we have shown that it is possible to reproduce the flow-type evolution involved
in quantum teleportation processes, but also to recover at any stage the usual state vector description, because of
the one-to-one correspondence between both scenarios, the symbolic and the algebraic. To prove this versatility,
we have analyzed and discussed the case of state teleportation while using bipartite, tripartite, and tetrapartite
maximally entangled states as quantum channels, and where the corresponding qubits could be accommodated
within the same laboratory (by pairs) or in different ones. This has allowed for us to summarize the actions
that should be taken in the case of using quantum channels made of any number of qubits with the purpose
to share the information available in a given laboratory with any other laboratory forming part of a quantum
interconnected network.
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Appendix A. Entanglement Analysis of the Reduced Density Matrix (5)

The explicit form for the density matrix (5), ρ̂
(
Ψ34), is given by

ρ̂abcd =



2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 4



, (A1)

where we have removed the normalizing prefactor 1/12 without loss of generality, since here we are only
interested in the sign of the eigenvalues. So, after computing all the associated partial transpose matrices in order
to determine the amount of entanglement, we obtain the following sets of eigenvalues for each one:
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ρ̂Ta
abcd, ρ̂Tc

abcd :



λ1 = 0 (×5)
λ2 = −1
λ3 = 1 (×5)
λ4 = 3
λ5 ≈ −1.306
λ6 ≈ 0.473
λ7 ≈ 1.492
λ8 ≈ 4.341

, ρ̂Tb
abcd, ρ̂Td

abcd :



λ1 = 0 (×5)
λ2 = 1 (×2)
λ3 = 2
λ4 ≈ −1.247
λ5 ≈ −0.887
λ6 ≈ 0.445
λ7 ≈ 0.485
λ8 ≈ 0.733
λ9 ≈ 1.802
λ10 ≈ 2.069
λ11 ≈ 4.600

,

ρ̂Tab
abcd :



λ1 = 0 (×8)
λ2 = 1 (×2)
λ3 = 2 (×2)
λ4 ≈ −0.414
λ5 ≈ 2.414
λ6 ≈ −0.646
λ7 ≈ 4.646

, ρ̂Tac
abcd :



λ1 = 0 (×4)
λ2 = 1 (×4)
λ3 = 2
λ4 = 4
λ5 ≈ −0.618
λ6 ≈ 1.618
λ7 ≈ −2.090
λ8 ≈ −0.356
λ9 ≈ 1.190
λ10 ≈ 2.256

, ρ̂Tad
abcd :



λ1 = 0 (×4)
λ2 = 1 (×2)
λ3 = 2
λ4 = 4
λ5 ≈ −1.194 (×2)
λ6 ≈ −0.295 (×2)
λ7 ≈ 1.295 (×2)
λ8 ≈ 2.194 (×2)

.

As it is seen, all cases contain negative eigenvalues, which ensures the existence of entanglement,
although now we have to determine whether it is tripartite, bipartite or both, and, if so, which parties are involved.

To proceed that way, first we have to compute the reduced matrices with respect to one of the parties.
Thus, partially tracing over d renders

ˆ̃ρabc =



3 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0
1 1 0 0 0 0 0 4


(A2)

with eigenvalues:

ˆ̃ρTa
abc, ˆ̃ρTb

abc :



λ1 = 0
λ2 = −1
λ3 = 1 (×2)
λ4 = 2 (×2)
λ5 = 3
λ6 = 4

, ˆ̃ρTc
abc :



λ1 = 0 (×2)
λ2 = 1 (×2)
λ3 = 3
λ4 ≈ 0.186
λ5 ≈ 2.471
λ6 ≈ 4.343

.

Now, not all cases present negative eigenvalues, which means that tripartite entanglement is not warranted
for the abc system. Accordingly, we compute the eigenvalues of (A2):

λ1 = 0 (×2) ⇒
{
|v1,1〉 = |100〉
|v1,2〉 = |101〉

λ2 = 1 (×2) ⇒
{
|v2,1〉 = |010〉
|v2,2〉 = |011〉

λ3 = 2 ⇒ |v3〉 = |110〉
λ4 ≈ 0.657 ⇒ |v4〉 = −0.427|000〉 − 2.916|001〉+ |111〉
λ5 ≈ 2.529 ⇒ |v5〉 = −2.125|000〉+ 0.654|001〉+ |111〉
λ6 ≈ 4.814 ⇒ |v6〉 = 0.551|000〉 − 0.262|001〉+ |111〉

.
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here, we observe that there are at least three non-factorizable eigenvectors, which ensures the existence of tripartite
entanglement for the abc system.

If now we trace (A1) over the qubit c, we obtain the reduced matrix

ˆ̃ρabd =



2 0 0 0 0 0 0 1
0 2 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 5


, (A3)

with the eigenvalues of its associated partial transpose matrices being

ˆ̃ρTa
abd, ˆ̃ρTb

abd :



λ1 = 0
λ2 = −1
λ3 = 1 (×2)
λ4 = 2 (×3)
λ5 = 5

, ˆ̃ρTd
abd :



λ1 = 0 (×2)
λ2 = 1 (×2)
λ3 = 2
λ4 ≈ 0.319
λ5 ≈ 2.358
λ6 ≈ 5.323

.

Again, one partial transpose has all its eigenvalues positive, so we need to compute the eigenvectors,

λ1 = 0 (×2) ⇒
{
|v1,1〉 = |100〉
|v1,2〉 = |101〉

λ2 = 1 (×3) ⇒


|v2,1〉 = |010〉
|v2,2〉 = |011〉
|v2,3〉 = |110〉

λ3 = 2 ⇒ |v3〉 = |000〉 − |001〉
λ4 ≈ 1.438 ⇒ |v4〉 = |000〉+ |001〉 − 0.562|111〉
λ5 ≈ 5.562 ⇒ |v5〉 = |000〉+ |001〉+ 3.562|111〉

,

which contains three entangled eigenvectors and, therefore, ensures tripartite entanglement for the abd system.
The same trend is found when we proceed with the partial trace over b, which renders the reduced

density matrix

ρ̂acd =



3 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 4


, (A4)

with eigenvalues for its transposes being

ˆ̃ρTa
acd :



λ1 = 0 (×2)
λ2 = 1 (×2)
λ3 = 3
λ4 ≈ 0.186
λ5 ≈ 2.471
λ6 ≈ 4.343

, ˆ̃ρTc
acd, ˆ̃ρTd

acd :



λ1 = 0
λ2 = −1
λ3 = 1 (×2)
λ4 = 2 (×2)
λ5 = 3
λ6 = 4

,
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and eigenvectors 

λ1 = 0 (×2) ⇒
{
|v1,1〉 = |010〉
|v1,2〉 = |110〉

λ2 = 1 (× 2) ⇒
{
|v2,1〉 = |001〉
|v2,2〉 = |101〉

λ3 = 2 ⇒ |v3〉 = |011〉
λ4 ≈ 0.657 ⇒ |v4〉 = −0.427|000〉 − 2.916|100〉+ |111〉
λ5 ≈ 2.529 ⇒ |v5〉 = −2.125|000〉+ 0.654|100〉+ |111〉
λ6 ≈ 4.814 ⇒ |v6〉 = 0.551|000〉 − 0.262|100〉+ |111〉

,

or when we trace over the qubit a to obtain the reduced matrix

ˆ̃ρbcd =



2 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 5


, (A5)

with eigenvalues for its transposes being

ˆ̃ρTb
bcd :

1
12



λ1 = 0 (×2)
λ2 = 1 (×2)
λ3 = 2
λ4 ≈ 0.319
λ5 ≈ 2.358
λ6 ≈ 5.323

, ˆ̃ρTc
bcd, ˆ̃ρTd

bcd :
1
12



λ1 = 0
λ2 = −1
λ3 = 1 (×2)
λ4 = 2 (×3)
λ5 = 5

,

and with eigenvectors 

λ1 = 0 (× 2) ⇒
{
|v1,1〉 = |010〉
|v1,2〉 = |110〉

λ2 = 1 (× 3) ⇒


|v2,1〉 = |001〉
|v2,2〉 = |011〉
|v2,3〉 = |101〉

λ3 = 2 ⇒ |v3〉 = |000〉 − |100〉
λ4 = 1.438 ⇒ |v4〉 = |000〉+ |100〉 − 0.562|111〉
λ5 = 5.562 ⇒ |v5〉 = |000〉+ |100〉+ 3.562|111〉

.

So, in these two latter cases, again we find a certain amount of tripartite entanglement for the systems acd
and bcd, respectively. In sum, from this analysis, we can conclude that, even though it is weak, there is certain
amount of tripartite entanglement and, therefore, the corresponding polynomial should include the terms abc,
abd, acd and bcd.

The above analysis referred to tripartite entanglement. We can still descent a level and check whether there is
bipartite entanglement and, if so, to determine which parties are involved. Accordingly, we are going to compute
the doubly reduced matrices (i.e., tracing the above matrices over another qubit) and check the positivity of the
eigenvalues of the associated partially transpose matrices. Proceeding this way, we find that

ˆ̃ρab = ˆ̃ρcd =


4 0 0 1
0 2 0 0
0 0 0 0
1 0 0 6

 , with ˆ̃ρTa
ab , ˆ̃ρTc

cd :


λ1 = 4
λ2 = 6
λ3 ≈ −0.414
λ4 ≈ 2.414

, (A6)
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ˆ̃ρad = ˆ̃ρbc =


3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 5

 , with ˆ̃ρTa
ad, ˆ̃ρTb

bc :


λ1 = 1
λ2 = 3 (×2)
λ3 = 5

, (A7)

ˆ̃ρac =


4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

 , with ˆ̃ρTa
ac :

{
λ1 = 2 (×2)
λ2 = 4 (×2)

, (A8)

and

ˆ̃ρbd =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 6

 , with ˆ̃ρTb
bd :

{
λ1 = 2 (×3)
λ2 = 6

. (A9)

From these results, we noticed that only the reduced systems ab and cd have negative eigenvalues.
Therefore, only these systems will present entanglement.

From the whole analysis here, we thus conclude that the polynomial corresponding to the quantum state
|Ψ34〉 is going to contain six terms, namely four terms accounting for tripartite entanglement relations and two for
bipartite ones. The final polynomial thus reads as

P(Ψ34) = abc + abd + acd + bcd + ab + cd. (A10)

Appendix B. Ring Link Structures and Graphs for N = 2, 3 and 4

To be self-contained, and completing the information provided by Quinta and André [19], in this appendix
we provide the N-ring link structures (Figures A1–A3) and graphs (Figures A4–A6) for all the possible classes for
N = 2, 3 and 4 (the correspondence between links and polynomials for N = 4 can be found in [19]).
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Figure A1. Ring link structures associated with classes 21 to 410.
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Figure A2. Ring link structures associated with classes 411 to 425.
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Figure A3. Ring link structures associated with classes 426 to 440.
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Figure A4. Graphs associated with classes 21 to 410.
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Figure A5. Graphs associated with classes 411 to 425.
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Figure A6. Graphs associated with classes 426 to 440.
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