
Citation: Koch, L.; Roeser, D.;

Badalian, K.; Lieb, A.; Andert, J.

Cloud-Based Reinforcement Learning

in Automotive Control Function

Development. Vehicles 2023, 5,

914–930. https://doi.org/10.3390/

vehicles5030050

Academic Editors: Hocine Imine,

Claudio Lantieri and Mehdi Azimi

Received: 29 May 2023

Revised: 18 July 2023

Accepted: 27 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Cloud-Based Reinforcement Learning in Automotive Control
Function Development
Lucas Koch 1 , Dennis Roeser 2, Kevin Badalian 1 , Alexander Lieb 1 and Jakob Andert 1,*

1 Teaching and Research Area Mechatronics in Mobile Propulsion, RWTH Aachen University,
52074 Aachen, Germany; koch_luc@mmp.rwth-aachen.de (L.K.); badalian@mmp.rwth-aachen.de (K.B.)

2 dSPACE GmbH, Rathenaustraße 26, 33102 Paderborn, Germany; droeser@dspace.de
* Correspondence: andert@mmp.rwth-aachen.de; Tel.: +49-241-8048071

Abstract: Automotive control functions are becoming increasingly complex and their development
is becoming more and more elaborate, leading to a strong need for automated solutions within
the development process. Here, reinforcement learning offers a significant potential for function
development to generate optimized control functions in an automated manner. Despite its successful
deployment in a variety of control tasks, there is still a lack of standard tooling solutions for function
development based on reinforcement learning in the automotive industry. To address this gap, we
present a flexible framework that couples the conventional development process with an open-source
reinforcement learning library. It features modular, physical models for relevant vehicle components,
a co-simulation with a microscopic traffic simulation to generate realistic scenarios, and enables
distributed and parallelized training. We demonstrate the effectiveness of our proposed method
in a feasibility study to learn a control function for automated longitudinal control of an electric
vehicle in an urban traffic scenario. The evolved control strategy produces a smooth trajectory with
energy savings of up to 14%. The results highlight the great potential of reinforcement learning for
automated control function development and prove the effectiveness of the proposed framework.

Keywords: reinforcement learning; automation; cloud simulation; function development;
co-simulation

1. Introduction

In recent years, the automotive industry has undergone a significant transformation,
with vehicles turning from mechanical systems into highly software-driven systems. To-
day, software has become the most important factor for automotive manufacturers [1],
and approximately 80% of functions in the vehicle are realized through software [2]. A
modern production vehicle usually has more than 100 electronic control units (ECUs) with
millions of code lines [3,4]. This already high level of complexity is projected to grow
exponentially as software is becoming more and more interconnected, both within the
vehicle and with external devices and because automated driving functions come with
more extensive features and stricter regulations apply [1].

As the complexity of automotive software continues to rise, so does the importance of
the underlying control algorithms inside the ECUs that operate the mechatronic subsystems
of the vehicle by converting sensor information into control commands for the actuators.
Thus, the control functions are ultimately responsible for the safe and eco-friendly vehicle
operation and have a strong impact on the overall performance. In the conventional
automotive software development process specified by the V model [5], the control function
development occurs at an early stage of the process, usually involving model-in-the-loop
(MiL) simulations. The resulting control function is then converted into machine code for
the target hardware and deployed on an ECU, typically in a hardware-in-the-loop (HiL)
environment first, where the subsequent calibration process for fine-tuning the control
parameters begins [6]. Although certain steps of the development process, especially code

Vehicles 2023, 5, 914–930. https://doi.org/10.3390/vehicles5030050 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles5030050
https://doi.org/10.3390/vehicles5030050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0002-7368-8833
https://orcid.org/0000-0002-5593-0227
https://orcid.org/0009-0001-4186-9306
https://orcid.org/0000-0002-6754-1907
https://doi.org/10.3390/vehicles5030050
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles5030050?type=check_update&version=2


Vehicles 2023, 5 915

generation and testing [7], are partly automated, the majority of the function development
and calibration process is still highly dependent on human experts. The effort for these
tasks, however, is continuously increasing, which is mainly caused by the rising complexity
of function development [1] due to several factors. The urgent demand for sustainable
transportation and the associated stricter regulations such as the expected Euro 7 emission
standard are enhancing the performance requirements [8]. In addition, the growing number
of ECUs sensors and actuators not only leads to additional functionality to be implemented,
but also makes its development more difficult due to the manifold, intricate interactions
with each other. At the same time, the number of vehicle variants and thus the need
for specific, individual software is increasing [9]. Finally, the introduction of automated
driving functions has led to a sharp increase in complexity due to the magnitude of sensor
information and scenarios combined with high safety requirements [1]. As a result, function
development is a time-consuming, costly process that poses challenges even for highly
skilled professionals. In combination with steadily shortening product cycles and the
general cost pressure, the process is prone to generation of suboptimal solutions that do not
fully exploit the existing potential. Thus, the need for process automation is increasing in
order to keep the effort at a feasible level and still obtain high-performing control functions.

Reinforcement learning (RL) constitutes a machine learning paradigm that aims to
learn optimal control strategies [10]. In RL, an agent observes states from its environment
and receives a feedback for its actions in the form of reward or punishment. Through inter-
action via trial-and-error, the agent derives its policy only from the experiences gathered
during the training process. This ability to adapt to its environment and evolve end-to-end
control strategies without human guidance makes RL particularly interesting for automa-
tion in the function development process. Due to the absence of tunable parameters of
the derived control function, it combines both function development and calibration and
thereby leads to a front-loading of the calibration process. By leveraging deep neural
networks (NNs), RL is particularly suited for automotive embedded systems with complex,
non-linear environments and high-dimensional state and action spaces.

The aforementioned potentials of RL have led to a variety of applications in the context
of automotive control. Table 1 shows common vehicular RL applications categorized by
use case and, because all agents were trained in purely virtual environments, sorted by the
utilized simulation software. The table is not intended to be a fully comprehensive review
of all existing literature, but rather an overview and classification of common use cases.

Table 1. RL applications in the context of automotive control.

Simulation Software Automated Driving Actuator Control Energy & Thermal
Management

CARLA [11–15]

CarSim [16–18] * [19] * [20]

Gaming Engines [21–24]

SUMO [12,25–28]

MATLAB/Simulink [18] *, [29] [19,30–32] *, [33–35] [36–39]

GT-Power [30–32] *

* co-simulation.

RL-based automated driving is a very active field of research with numerous publi-
cations. Articles summarized in this column in Table 1 describe approaches where an RL
agent directly affects the longitudinal or lateral motion of the vehicle, e.g., by controlling the
desired longitudinal acceleration or the steering angle. Publications in this field encompass
a wide range of applications, e.g., lane changing [15], ramp merging [27] or automated
parking [18]. Additionally, these publications differ in terms of the scenarios they inves-
tigate, such as inner-city [29] or highway [23] driving, and their primary optimization



Vehicles 2023, 5 916

targets, such as improving safety [14] or energy efficiency [28]. The choice of simulation
tools depends on the specific purpose of the research. Automated driving relies heavily on
an accurate perception, so a realistic 3D scenery and accurate sensor simulation is crucial
for studies with realistic sensor vision. Therefore, the 3D simulations CARLA or CarSim
are popular tools but gaming engines are also utilized frequently as they usually feature
sophisticated graphics. Research with a stronger focus on strategic decision making, on the
other hand, often employs the microscopic traffic simulation with Simulation of Urban
Mobility (SUMO), as it realistically depicts the overall traffic dynamics. It is used either
standalone, e.g., in traffic flow optimization [25], or in co-simulation, where it is responsible
for simulating the surrounding traffic. MATLAB/Simulink, one of the most widely used
tools in the automotive domain due to its high flexibility and customization capabilities, is
used less frequently in this area of research.

The column actuator control in Table 1 refers to studies where an RL agent directly
controls at least one active component of the vehicle. These use cases are usually charac-
terized by the optimization of the control trajectory under external boundary conditions,
e.g., a specific torque that needs to be produced. The literature provides the control of
various actuators inside the powertrain, such as an active turbocharger or an exhaust gas
recirculation (EGR) valve [30,31,33] of a combustion engine or the inverter of an electric
motor [34]. Furthermore, applications outside the powertrain, such as an active steering
system [19] or a semi-active suspension [35] control, can be found in the literature. Here,
specialized simulations are utilized to model the specific system that contains the controlled
component. This often involves developing custom models in MATLAB/Simulink or using
specialized tools such as GT-Power for combustion engine modeling.

The third column covers automotive RL applications with a more strategic control task,
operating the complete system rather than certain components. Among others, these include
RL-based control strategies ([36–38]) for hybrid powertrain management as well as torque
distribution [20] and thermal management [39] of electric vehicles (EVs). Similar to the
actuator control, tools and simulation models here are more tailored to the specific use case.

Despite its undeniable potential and many promising proof-of-concept
studies (see Table 1) that show the ability of RL agents to solve complex vehicular con-
trol problems, there are still some major challenges that prevent the wide-spread usage of
RL in the automotive industry. One reason why RL still has a prototype status is that all
studies use different tools that are suitable for the given use case but hard to transfer into a
real application due to their incompatibility with the conventional development process.
These tools are difficult to integrate into existing development pipelines, have real-time
performance constraints, or are not compliant with industry standards and regulations.
Furthermore, general safety concerns due to the RL agents’ black-box nature are present.
The generalization capability and robustness of RL-based controllers can currently not be
assured [40], so new testing methods must be established to guarantee safe operation across
the complete spectrum of possible scenarios. Lastly, its trial-and-error approach results in a
high demand for computationally expensive training episodes, often requiring thousands
to solve even relatively simple problems, which exacerbates the difficult in its application
to many different tasks.

Our contribution aims to lower the barriers of entry for RL-based control functions
and attempts to bring them one step closer towards an application in production vehicles.
We introduce a framework that is more tailored to the requirements of automated RL-based
control function development and demonstrate a potential tooling solution. The central
element is a connection between the open-source RL library RLlib and the commonly
used and well-established dSPACE automotive development toolchain. By leveraging the
associated automotive simulation models (ASM), which are commonly utilized in series
development throughout the entire V-model, a seamless transfer to higher virtualization
levels such as HiL can be realized. Further, the framework offers continuous variation of
the simulated scenario and all model parameters as well as integrated testing capabilities to
continuously monitor the agent’s performance and prove their robustness under different



Vehicles 2023, 5 917

conditions. To be able to handle the high training demand, especially in computationally
expensive tasks such as sensor simulation, we transfer the toolchain into the cloud for
distributed parallel execution of the training and testing episodes. Another advantage
of the toolchain is its flexibility both in terms of the use case and the RL algorithm. The
vehicle for which the function is to be developed can be equipped with different sensors,
powertrain topologies and software features. Thereby, all use cases listed in Table 1 could
potentially be covered. Each simulated vehicle component has a clear separation between
the plant and the control model, enabling an easy integration of an RL agent close to the
real software structure. The general interface between the RL agent and the simulation also
leaves flexibility in the choice of the model-free RL algorithm.

The paper is structured as follows: Section 2 gives a theoretical background of RL,
before the framework including the simulation models, the cloud-setup, and the process
flow are introduced. In Section 3, the framework is applied in a feasibility study to learn
an inner-city driving function. Here, the scenario is introduced, before the RL problem is
formulated and the results are discussed.

2. Methodology

The following chapter covers the integration of RL, the core methodology of our
approach, into the automotive development toolchain.

2.1. Reinforcement Learning

RL is one of the three main paradigms of machine learning, along with supervised and
unsupervised learning, which deals with an agent that freely interacts with an environment to
gain experience that is later used to optimize the agent’s strategy. Central to this paradigm
is the definition of the environment as a time-discrete Markov decision process (MDP)
(S, A, P, R), where S is the set of all states, A is the set of all actions, P : S× A× S → [0, 1]
is the transition probability function, and R : S× A× S → R is the reward function. The
agent’s policy is described by an action distribution πθ : S × A → [0, 1] with config-
urable parameters θ. An experience is a single interaction (st, at, st+1, rt), i.e., the state
st ∈ S the agent observes, the action (at ∈ A) ∼ πθ( · |st) it chooses, the successor state
(st+1 ∈ S) ∼ P( · |st, at) the environment transitions into, and the reward rt = R(st, at, st+1)
that is given for it. A sequence of interactions

τ = ((s0, a0, s1, r0), . . . , (sT−1, aT−1, sT , rT−1)) (1)

from a start state s0 ∈ S to a terminal state sT ∈ S is called an episode. RL strives to
maximize the cumulative discounted episode reward

R(τ) =
T−1

∑
t=0

γtrt (2)

where γ ∈ (0, 1] is the discount rate. It does so by modifying the policy parameters θ,
e.g., via gradient ascent [10].

RL agents need an environment to interact with from which they learn to map inputs
to outputs and thus represent the control function itself. Training on real hardware is time
inefficient and costly, and in the case of autonomous driving, it is also highly safety critical.
Therefore, RL agents are trained in simulation models.

2.2. Simulation Environment

Developing control functions for automotive applications typically starts with defining
the requirements and the use cases [41–43]. Based on these definitions, a suitable model
has to be derived or selected to represent the behavior of the plant with a fidelity required
by the function at hand. The level of fidelity also depends on the development stage and
on whether an individual function is tested or multiple functions are integrated. Thus,
a flexible model basis is required to provide a variable level of complexity, which allows



Vehicles 2023, 5 918

control functions to be easily integrated to accelerate the development process. A test
environment to meet those requirements is shown in Figure 1. It is based on the work by
Eisenbarth et al. [44] and can be used on different platforms from MiL, software-in-the-loop
(SiL) to HiL and vehicle-in-the-loop (ViL) as well as in local or cloud-based environments.

Detailed Vehicle Simulation Traffic Simulation

Ego Vehicle

Vehicle Dynamics

RL Control Function

Powertrain

Environment

OMNet++

SUMO

Co-Simulation 

Interface

EVI

Synchronization

Veins
position, angle,

velocity

states of selected

vehicles and

signals

traffic and

signal

states

ego states

Figure 1. Architecture of the simulation environment, including an ego vehicle model, traffic and
communication simulation and an interface model.

Main components of this test environment are the detailed vehicle simulation on the
left, the traffic simulation on the right and the co-simulation interface coupling these two
domains. The detailed vehicle simulation is based on the ASM tool suite and represent
a high fidelity ego vehicle and environment real-time simulation model. The term ego
vehicle is used for the vehicle for which the control function is to be developed. The
RL control function comprises a use case independent RL block and individual, optional
pre- and postprocessing functions as described in Section 2.3. The traffic simulation is
based on Vehicles in Network Simulation (Veins) and utilizes SUMO to simulate a vast
quantity of low fidelity vehicle models within a road network, whereas Objective Modular
Network Testbed in C++ (OMNeT++) emulates the communication between static and
dynamic objects. The co-simulation interface synchronizes both simulations and receives
the state of the ego vehicle simulated in ASM and returns relevant traffic objects that are
then perceived by the simulated sensors. Relevant traffic objects are chosen based on a
minimal distance norm in a circular area around the ego vehicle, where an additional circle
around the ego vehicle is defined to select the relevant nodes for vehicle-to-everything
(V2X) communication. Both tasks are handled by the ego vehicle interface (EVI) [44].

Depending on the use case, relevant parts of the simulation environment can be used
individually for function development or unit test and be integrated in a more complex
environment when integrating different functionalities. For instance, an RL agent to control
the engine can be trained using only the powertrain model of a single ego vehicle, whereas
an RL agent controlling an automated vehicle requires a model of the vehicle dynamics and
sensors, along with realistic traffic scenarios which may involve vehicle-to-infrastructure
(V2I) communication. The simulation environment presented in this paper can be used for
both use cases and its individual components are described in the following sections.

2.2.1. Physical Simulation

The ASM tool suite is the basis for the simulation models of vehicle dynamics, pow-
ertrain, sensors and environment as well as for soft ECUs, controlling the longitudinal or
lateral motion of the vehicle. These components are based on open MATLAB/Simulink
models, which are connected via bus interfaces and are separated in plant and control part,
with interfaces to connect external control algorithms directly. Thus, individual subsystems
can be replaced with models of a different level of fidelity or models implemented on a dif-
ferent basis, e.g., functional mock-up unit (FMU), robot operating system (ROS) or virtual
electronic control unit (VECU). This structure can represent a truck with a diesel engine as
well as a battery electric car and both types of vehicles can be used as ego vehicle in the



Vehicles 2023, 5 919

test environment shown in Figure 1. The fidelity of the model can easily be adapted. For
example, a mean-value engine model can be replaced by a model simulating the in-cylinder
pressure. For higher level advanced driver assistance systems (ADAS) functions, line,
traffic sign as well as sonar and radar sensors are available, together with an environment
model and an electronic horizon, containing map information based on the v2 standard by
the advanced driver assistance systems interface specification (ADASIS) consortium [45].
For realistic scenarios, the traffic participants and infrastructure around the ego vehicle are
controlled by SUMO, as described in the following section.

2.2.2. Microscopic Traffic Simulation

The traffic flow and communication simulation is based on the open-source software
environment Veins 5.0, connecting SUMO 1.13.0 for traffic and OMNeT++ 5.6.2 for network
communication simulation. This enables the simulation of realistic traffic scenarios, includ-
ing communication between vehicles as well as between vehicles and infrastructure. For
instance, scenarios can represent rush hour in a city and be used for powertrain function
development with a realistic load cycle as well as for automated driving functions control-
ling vehicles in dense traffic without the need for individually modeling the behavior of
the surrounding vehicles. SUMO simulates the movement of individual traffic participants
through a given road network. The traffic demand can be multimodal, and each partici-
pant has its own route and obeys traffic rules and lights. Every traffic participant is also
represented by a node in OMNeT++, where the communication is simulated including in-
terference effects and shadowing by other moving objects or buildings. Figure 2 illustrates
the co-simulation of ASM and SUMO. On the left, the ASM simulation is visualized by
MotionDesk where the blue ego vehicle can be seen. This vehicle is shown on the right side
as a yellow vehicle in the SUMO graphical user interface (GUI). The synchronized states of
the traffic light are also highlighted in both simulation tools.

Figure 2. Simulation environment with ASM (left) and SUMO (right).

2.3. Distributed Learning Framework

To overcome the challenges of on-policy data generation and model execution speed,
as outlined in Section 2.1, a cloud setup as well as a proprietary software interface has been
developed. Basis for the cloud setup is SIMPHERA [46], which offers a web-based interface
for parametrization, parallel simulation and analysis of individual scenarios.

The proprietary software interface is based on a master–minion architecture. Figure 3
illustrates the training process, which is managed by the master in a cyclic manner: At
the beginning of each cycle, the master extracts the policy NN and sends it to the minion
along with the training and scenario parameters to concertize the logical scenario used
for simulation. This prompts the minion to start a configurable number n of parallel
simulations, each tasked with completing an episode, and to wait for them to finish. Should
the number of generated experiences not be sufficient after they have terminated (e.g.,
if the model entered a catastrophic state and therefore a simulation could not continue),
the minion starts additional simulations. Once the necessary amount of data has been
collected, it is sent back to the master via TCP/IP using a custom protocol. Subsequently,



Vehicles 2023, 5 920

the master interfaces the open-source library RLlib [47] and trains the agent with the data
the minion generates. After updating the agent, the cycle starts again. Besides these training
cycles, so called validation cycles are performed continuously after a pre-defined number
of training cycles. The difference between the two types is that, during validations, only
one simulation is performed, and in this simulation, the agent’s actions are not sampled
stochastically according to πθ , but rather by just taking the policy’s mean. Thus, a more
comparable snapshot of the agent’s performance and a reproducible behavior of the control
function are attained. Additionally, key performance indicators (KPIs) can be defined to
assess the performance of the control function during a validation run. These KPIs can be
used to stop the training process once an agent has been trained sufficiently according to
the requirements defined earlier.

Master Minion

Extract current policy, choose 

training/validation run

Parametrize n simulations and 

overwrite the policy NN

Start n simulations and wait for 

them to finish

Enough

data?

Gather the generated data and 

calculate KPIs

Train the agent and update its 

policy NN

Experiences, KPIs

Policy NN,

training/validation

settings,

and scenario parameters

[yes] [no]

Evaluate training progress and 

KPIs

[yes]

[no]

Store final 

policy NN
Training

done?

Figure 3. A training cycle in the proposed cloud-framework.

The training process described above is orchestrated by SIMPHERA, using its intelli-
gent test control interface to execute simulations, calculate KPIs, and collect results. This
cloud setup is shown in Figure 4, together with the workflow for developing an RL-based
control function on the left. Initially, the function to be controlled is defined and an RL
block and optional pre- and postprocessing functions are integrated into the corresponding
control function model (c.f. Figure 1). Next, the training is configured by selecting the
relevant component of the plant model and the scenario, defining KPIs and stating the
training settings including the definition of the state and action space as well as the reward
function. After these manual steps are accomplished, the presented framework starts to
generate the control function automatically and no further human intervention is required.
Initiating a training configured this way, SIMPHERA starts and configures containers in a
cloud environment for master and minion, before the training process shown in Figure 4 is
conducted, wherein individual containers are highlighted with a gray background. During
training, SIMPHERA combines the individual components of the plant model and control
function into one joint application and starts a large-scale execution of the application with
n simulation containers composed of the setup in Figure 1. This step also includes the
concretization of the logical scenario, where each simulation instance receives a different
concrete scenario, allowing for a broad bandwidth of situations. Thus, the generalizability
of the agent is also promoted, so that it achieves a better performance in unknown situa-
tions. The central component of the control function is the RL block, which is responsible
for executing the policy NN, storing experiences and sampling the action according to the
applied RL algorithm. The weights and biases of the policy NN are send to the minion for
each cycle. Because the RL block uses TensorFlow Light Micro [48] and is written in C++,
the RL-based control function can be easily compiled for real time prototyping hardware.
The RL block can be accompanied by customized modules for pre-processing observations
(e.g., min–max normalization) or post-processing the actions (e.g., denormalization or
safety filtering), but can also be executed standalone when learning an end-to-end policy.



Vehicles 2023, 5 921

After an episode is finished, the calculated KPIs and experiences are sent to the minion.
Because this simulation is based on a containerized architecture, it can be scaled freely
according to the available cloud resources. Once the master determines a sufficient training
progress based on the KPIs defined, the large-scale simulation and intelligent test control is
shut down and the final policy NN as well as the training results are stored.

Minion

Master

RLlib

Policy NNTraining Data

Raw

Experiences

Scenario Parameters,

Policy NN
Raw

Experiences

Scenario Parameters,

Training Settings,

Policy NN

SIMPHERA Large Scale Execution

RL Control Function

RL

Block

Action

Obser-

vation

Reward
Preprocessing

Postprocessing Control 

State

Plant Model

SUMOASM

SIMPHERA Intelligent Test ControlRL Function

Development

Process

Choose Model 

Components

Define Training 

Settings

Integrate RL 

Block

Define KPIs

Start

Training

Choose Control 

Function

RL Control Function

RL

Block

Action

Obser-

vation

Reward
Preprocessing

Postprocessing Control 

State

Plant Model

SUMOASM

RL Control Function

RL

Block

Action

Obser-

vation

Reward
Preprocessing

Postprocessing Control 

State

Plant Model

SUMOASM

RL Control Function

RL

Block

Action

Obser-

vation

Reward
Preprocessing

Postprocessing Control 

State

Plant Model

SUMOASM

RL Control Function

RL

Block

Action

Obser-

vation

Reward
Preprocessing

Postprocessing Control 

State

Plant Model

SUMOASM

1

n

Figure 4. Architecture of the RL function development framework. The gray background represents
individual containers in the SIMPHERA environment. The plant model in this schematic shows a
coupling of ASM and SUMO.

3. Feasibility Study

To showcase a potential application of the framework introduced in the previous
chapter, an exemplary feasibility study was conducted. Here, a longitudinal controller
for an automated vehicle represents the control function to be developed using RL and
the presented simulation toolchain. The controller has the goal to generate a smooth and
energy-efficient trajectory while considering different safety aspects.

3.1. Scenario

For the training and validation of the agent, a route was selected on which the ego ve-
hicle, simulated in ASM, interacts with other traffic participants and traffic lights controlled
by SUMO.

3.1.1. Route

The simulation environment is based on a real road network in Paderborn, a medium-
sized city in Germany, described in [49], where the traffic volume is calibrated to match
actual traffic measurements. All traffic lights along the route are switched with a 90 s
cycle period and a yellow-light phase with a duration of 3 s is present at the transition
from red to green. Within this scenario, a route representative for a typical inner-city drive
with a length of 3.7 km is selected. Along the route, different speed-limited zones (30, 50,
and 70 km h−1) and different number of lanes (1–2) occur. Further, it contains 9 signalized
and 18 unsignalized intersections. There is right of way along the entire route and all
left-turning traffic lights are exclusive. The route with all features is depicted in Figure 5.



Vehicles 2023, 5 922

Start

50

Finish

70

50

30

50

Figure 5. Ego vehicle route with signalized intersections and speed limits [50].

3.1.2. Ego Vehicle

The ASM suite is configured to model the ego vehicle as an EV with a single permanent
magnet synchronous motor. The motor is connected to the rear wheels via a differential with
an integrated single-stage gear set. All vehicle and powertrain parameters are calibrated to
match a BMW i3 vehicle and are listed in Table A1. To be as close as possible to the real
application, the ego vehicle is equipped with various, non-ideal environment sensors. The
radar sensor enables the detection of vehicles located up to 150 m in front of the ego-vehicle
and provides a list of up to 15 objects. Each object is characterized by type, which contains
the information if the object is a vehicle and its velocity as well as its position relative
to the ego vehicle. The camera sensor provides the position of the ego lane boundaries
at a distance of 10 m to 50 m in front of the ego vehicle. For this purpose, the positions
of 5 equidistant points on each side of the lane are obtained. Both sensors are located at the
front of the vehicle and consider effects such as masking and noise. In addition, the ego
vehicle incorporates an electronic horizon and receives signal phase and timing (SPaT)
messages via V2I. The lateral control of the ego vehicle is performed by a conventional lane
keeping controller.

3.1.3. RL Control Function

The task of the control function, which represents the system to be developed, is to
provide safe, efficient longitudinal guidance of the vehicle by determining a target torque
as a function of the given sensor information. The functional architecture is shown in
Figure 6 and can be logically divided into the three parts preprocessing, RL block and
postprocessing. The sensor data is preprocessed by a fusion algorithm that matches the
camera’s lane information with the object list from the radar sensor to find the relevant
target vehicle. Further, information about road curvature, speed limits, road slope and
traffic light states along the upcoming segments are extracted from the electronic horizon
and the V2I messages, respectively. These processed data are then used to calculate the state
signals s and the reward r for the current time step (see Section 3.2). These two quantities
are input into the RL block where they are sampled and then used to determine the agent’s
action, the desired acceleration of the ego vehicle aAgent.



Vehicles 2023, 5 923

RL

BlockSensorfusion 

&

Signal 

Processing

𝑎𝐴𝑔𝑒𝑛𝑡

Torque 

Controller

𝑠

𝑟
Sensor

Data 𝑎𝐷𝑒𝑠
Reward

Function

State 

Calculation

𝑎𝑆𝑎𝑓𝑒

𝑇𝑇𝑎𝑟

Safety Function

Preprocessing Postprocessing

min

Figure 6. Control function architecture.

In parallel, the safety function ensures safe driving conditions by calculating a safe
acceleration request aSa f e. Here, the following safety criteria are considered:

• Collision: safety time gap (1 s) and distance (1 m) to the preceding vehicle are assured.
• Speed limit: compliance with legal speed limits is guaranteed.
• Curvature: the curve speed is limited to ensure that a lateral acceleration of 3 m s−2 is

not exceeded.
• Traffic light: red-light violations are prevented.

For each item, a kinematic model of the ego vehicle is used to calculate the maximum
acceleration at which the respective criterion is just fulfilled. aSa f e then equals the minimum
of these four calculated acceleration values. The acceleration request aDes, which is formed
from the minimum of aAgent and aSa f e to prevent the agent from entering safety-critical
driving states, is then converted into a target torque TTar by a downstream PI-controller.
This target torque is fed back into the simulation environment and affects the motion of the
vehicle to close the control loop.

3.2. Problem Formulation

The definition of the agent’s interface to the environment and the choice of a suitable
RL algorithm is a crucial step that needs to be performed manually at an early stage of
the RL-based function development process. The state space (see Table 2) contains the
dynamic state of the ego vehicle and information from the environment sensors that are
required to generate a safe longitudinal trajectory. The traffic light status indicates whether
crossing the traffic light in the current lane is permitted. In combination with the next
switching time and the distance, it enables generating an anticipatory driving trajectory.
A velocity band with an upper (vB,u) and lower (vB,l) limit is defined to guide the agent
towards arriving at traffic lights during a green phase. They are determined once when
a new traffic light is detected by calculating the required velocities for earliest and latest
arrival based on the distance and switching time information under consideration of the
speed limits ahead. Both upper and lower speed limits can only be within a range of 70% to
100% of the permissible maximum speed, so as not deviate too much from human driving
behavior. Furthermore, the current safe acceleration from the safety-function is used to
provide information about the criticality of the current driving state. The state signals are
passed to the RL block, where they are used to provide an acceleration demand aAgent as
action within a sample time of 0.2 s. All state variables are min–max normalized according
to the ranges stated in Table 2.

The reward function consists of multiple terms to serve different objectives. The
first term of the reward function penalizes unsafe acceleration requests if the desired
acceleration aAgent exceeds the safety-function acceleration limit aSafe. The deviation of the
ego vehicle velocity vEgo to the upper and lower velocity band limits vB,u and vB,l is taken
into account to guide the agent towards an efficient velocity trajectory and accelerate the
training. Sanctioning the ego vehicle’s acceleration aEgo ensures a smooth movement. The
successful crossing of a traffic light intersection bTL is rewarded as an encouragement to



Vehicles 2023, 5 924

maximize the traveled distance. The individual terms of the reward function are weighted
using the factors fSF, fv, fa, and fTL. The complete reward function is therefore defined as:

r = − fSF tanh (max(0, aAgent − aSafe))− fvmax(0, vEgo − vB,u, vB,l − vEgo)
2 − faa2

Ego + fTLbTL (3)

Table 2. Overview of the RL agent’s state and action space.

Type Quantity Range

State

Ego velocity 0 km h−1 to 75 km h−1

Ego longitudinal acceleration −4 m s−2 to 3 m s−2

Ego lateral acceleration −3 m s−2 to 3 m s−2

Fellow distance 0 m to 150 m
Fellow relative velocity −70 km h−1 to 70 km h−1

Traffic-light status 0 or 1
Traffic-light switching time 0 s to 70 s

Traffic-light distance 0 m to 300 m

Current legal speed limit 0 km h−1 to 70 km h−1

Distance to upcoming legal speed limit 0 m to 150 m
Upcoming legal speed limit 0 km h−1 to 70 km h−1

Distance to velocity curvature limit 0 m to 150 m
Curvature speed limit 0 km h−1 to 70 km h−1

Safe acceleration (aSa f e) −4 m s−2 to 3 m s−2

Velocity band lower limit 0 km h−1 to 70 km h−1

Velocity band upper limit 0 km h−1 to 70 km h−1

Road slope −30% to 30%
Action Desired acceleration (aDes) −2 m s−2 to 3.5 m s−2

The model-free, on-policy RL algorithm proximal policy optimization (PPO) is selected
for the feasibility study. Although the on-policy nature of PPO tends to make the algorithm
more data inefficient compared to state-of-the-art off-policy algorithms, PPO stands out in
different areas: first, it has a relatively low number of hyperparameters; hence, the training
process is easy to set up. Second, it is a stable algorithm due to the fact that it optimizes
a surrogate objective function which prevents huge update steps. [51] A fully connected
tanh-activated feed-forward NN with 3 layers, each consisting of 16 nodes, is utilized as
the policy networks inside the RL block.

3.3. Results

This section discusses the results of the feasibility study obtained with the cloud-based
framework presented in Section 2. Both the training of the agent and the validation are
executed via the route defined in Section 3.1.

3.3.1. Training Results

The ASM-SUMO co-simulation is distributed over 10 simulation nodes that calculate
the episodes in parallel. Each episode has a maximum length of 600 s simulation time,
which is equivalent to 3000 samples. In case the vehicle has reached its terminal position
earlier or one of the minions has crashed during the training episode, new episodes are
started until the number of samples requested by the master is reached.

Figure 7 shows the training and validation progress, both in terms of training cycles
and training duration in real time. All quantities obtained from the training episodes are
marked in black, whereas the red points represent results of the validation runs that are
executed after each tenth training cycle and therefore highlighted with a dot. The upper plot
contains the minimum, maximum and mean cumulative reward of the 10 training episodes



Vehicles 2023, 5 925

of each cycle as well as the total reward within the validation episodes. The average
reward increases relatively strongly in the first cycles and then plateaus as the training
duration progresses. It reaches its maximum after around 280 cycles and then begins
to decline slightly until the training is stopped after 310 cycles. This trend is replicated
in the validation episodes with minor deviations resulting from the deactivation of the
action sampling. Furthermore, the range between the minimum and maximum reward is
decreased during the training as the variance in the action steadily diminishes while the
agent becomes more experienced. This is indicated by the decreasing entropy in the middle
plot of Figure 7. The lower plot shows the average velocity as an examplary KPI that is
monitored during the training. It takes around 200 cycles for the agent to learn to complete
the entire route. In general, these KPIs can be used to evaluate the training progress with
regard to predefined control objectives.

0 27.5 54.8 80.2 107.4 134.8 162.2
Computation Time / h

0

R
ew

ar
d

Mean Training Reward
Min/Max Training Reward
Validation Reward

0

1

2

E
nt

ro
py

0 50 100 150 200 250 300
Cycle Number

0

10

20

   
   

A
ve

ra
ge

V
el

oc
ity

 / 
km

h

Figure 7. Training progress.

Computing the 310 cycles took a total of 160 h, approximately one week. Despite
some minor random deviations caused by slightly varying simulation times and overhead,
the training time is proportional to the cycles. The total execution time over all simulation
instances was 1212 h. Training, parametrization, model download and result upload as
well as validation runs took about 25% of the total execution time, whereas 75% of the
time has been used for parallel simulation. By distributing the simulation to 10 nodes,
the total training is thus accelerated by a factor of 7.5, demonstrating the effectiveness of
the distributed training approach. It must be taken into account that the cloud system has
been optimized for minimal operating cost and not for computational power. Increasing
the computational power and distributing additional nodes for parallel simulation can
further decrease the time required for training.

3.3.2. Validation Results

A validation run of the best performing agent from the training phase is used for
an analysis of the evolved strategy. A rule-based control function based on the intelli-
gent driver model (IDM) [52] (see Appendix B) with the parameters shown in Table A2,
modified to consider traffic lights and velocity restrictions, is chosen as a reference. For
a fair comparison, the simulations with the RL-based and the IDM-based controllers are
conducted using the same traffic scenario and initial conditions. All metrics evaluated in
this chapter refer to a single drive along the 3.7 km route shown in Figure 5.

Figure 8 shows the speed profile of the RL-based and the reference control function.
The red line represents the minimum of the legal speed limit and the curvature speed limit.
The locations of the traffic lights are marked at the x-axes. It can be seen that the agent
operates the vehicle in accordance with the given velocity boundaries. However, the agent



Vehicles 2023, 5 926

did not complete the route entirely without safety function interventions. At traffic lights 4
and 7, minor interventions are still required to regulate the exact stopping position behind
the preceding vehicle. Exceeding the legal speed limit is prevented before traffic light 3
and twice after traffic light 8. No safety interventions are necessary to adjust the cornering
speed or to prevent red light violations. A comparison of the velocity trajectories reveals
that the agent tends to accelerate and decelerate less and reaches a lower maximum speed.
While the reference control function fully exploits the velocity boundaries and thus the
vehicle is forced to brake more frequently, the RL-based control function usually maintains
a larger distance to the speed limit. This allows the agent to pass the first three traffic lights
without a stop and a subsequent acceleration phase and generally reduces the necessity to
brake for speed limit reductions or slower preceding vehicles.

TL1 TL2 TL3 TL4 TL5 TL6 TL7 TL8 TL9

Figure 8. Velocity profiles of the RL-based and the reference control functions.

The s–t diagram in Figure 9 visualizes the position of the ego vehicle over time for the
two control functions in relation to the traffic lights and the preceding vehicle as perceived
by the radar sensor in the RL controlled scenario. When no gray line is present, no preceding
vehicle is detected within the sensors range. This demonstrates the agent’s ability to handle
the noisy sensor data. The agent tends to leave a relatively large gap between the preceding
vehicle, but then catches up at the next red traffic light. With this strategy, the agent does
not only avoid stops at traffic lights 1–3, but also reduces the waiting time on other traffic
lights (4, 6, 9). Despite fewer standstill phases, the RL-based control strategy exhibits a
37% lower absolute acceleration on average and a more uniform speed profile compared to
the IDM-based controller. This means that less lossy energy conversion from mechanical
to electrochemical energy and vice versa is required. In combination with the lowered
driving resistances resulting from the reduced maximum vehicle speed, the wheel energy
demand is strongly reduced. In total, the energy consumption is lowered by 14%, from 16.2
to 13.9 kW h per 100 km, with almost identical travel times (IDM: 590 s, RL: 602 s).

TL1

TL2

TL3

TL4

TL5

TL6

TL7

TL8

TL9

RL-based control function

Reference control function

Preceding Vehicle

Traffic Light (TL)

Figure 9. s–t diagrams of the RL-based and the reference control functions.



Vehicles 2023, 5 927

4. Discussion and Outlook

In this article, an attempt integrating reinforcement learning into the automotive
control function development process is presented. The proposed framework represents
the first coupling of RL and a production-level, automotive development toolchain. The
methodology shows a possible setup and architecture for an RL integrated solution and
provides a first set of process steps for an RL-based development process. The combination
of the dSPACE Automotive Simulation Models tool suite with its diverse set of models
and the microscopic traffic simulator SUMO offers great flexibility in the control function
domain and realistic scenarios for various applications. By utilizing distributed cloud simu-
lations to meet the high demand for computationally intensive training episodes, RL-based
control functions can be generated within a reasonable time frame, as demonstrated in the
feasibility study. The compatibility of the simulation tools to the automotive development
process would now enable a seamless transfer of the evolved control function to the next
development stage, for example in a HiL environment. A valuable extension to be consid-
ered in future work is the introduction of an automated hyperparameter tuning procedure.
For the presented feasibility study, the choice of hyperparameters for the RL algorithm
and the reward function was still performed manually. For future applications, another
automation layer shall be added to the framework to distribute not only training episodes,
but complete training with different hyperparameters. Additionally, enhancing the tool’s
user-friendliness through the development of a general user interface and automating the
process of equipping models with the RL block would further streamline the workflow.

The feasibility study shows that the setup is working and that it is capable of auto-
matically generating a control function for a complex control problem. However, it still
offers improvement potential, as the agent so far is only trained and validated in a single
scenario. The future focus will be on automatically generating driving scenarios to evolve
a more generalized control function. Further, the current RL-based controller still relies to a
significant extend on manually created functions such as the sensor fusion and the safety
function. Therefore, the future goal is to develop an end-to-end policy that directly learns
from the raw sensor information and only requires minor state preparation. Lastly, future
work will make use of the toolchain’s flexibility regarding the computing hardware and
virtualization level and will focus on evaluating the capabilities of the RL-based controller
in real-world scenario by deploying it in a real vehicle using vehicle-in-the-loop simulation.

Author Contributions: Conceptualization, L.K.; methodology, L.K., D.R. and K.B.; software, L.K.,
D.R., K.B. and A.L.; validation, L.K., D.R., K.B. and A.L.; formal analysis, A.L.; investigation, L.K.;
resources, D.R. and J.A.; data curation, L.K., D.R. and K.B.; writing—original draft preparation,
L.K., D.R., K.B. and A.L.; writing—review and editing, J.A.; visualization, L.K., D.R., K.B. and A.L.;
supervision, J.A.; project administration, J.A.; funding acquisition, J.A. All authors have read and
agreed to the published version of the manuscript.

Funding: Research reported in this article was conducted in the context of the Hy-Nets4all project
(Grant No. EFRE-0801698), supported by the European Regional Development Fund (ERDF). More-
over, the work was partially performed in the Center for Mobile Propulsion funded by the German
Research Foundation and the German Council of Science and Humanities.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Ego Vehicle Specification

Table A1 specifies the parameters of the ego vehicle that is used for the feasibil-
ity study in Section 3. The vehicle dynamics and powertrain are calibrated to a BMW i3
(https://www.press.bmwgroup.com/global/article/attachment/T0284828EN/415571
(accessed on 28 May 2023)) vehicle.

https://www.press.bmwgroup.com/global/article/attachment/T0284828EN/415571


Vehicles 2023, 5 928

Table A1. Overview of ego vehicle, sensor and environment data.

Subject Data Value

Vehicle Dynamics

cW-value 0.27
Frontal area 2.38 m2

Unladen weight 1345 kg
Acceleration 0 to 60 km h−1 3.5 s

Top speed 150 km h−1

Powertrain

Motor power (rated/peak) 75 /125 kW
Motor torque 250 N m

Transmission ratio 9.75
Battery capacity 42 kW h

Battery technology Lithium-ion

Camera Sensor Range 50 m
Sensor position / direction front / front

Radar Sensor Range 150 m
Sensor position / direction front / front

V2I SPaT message

E-Horizon ADASIS v2 Standard [45]

Appendix B. Intelligent Driver Model

The IDM [52] is a mathematical model with the goal of reflecting a human driving
style with a relatively simple equation:

aIDM = a

1−
(

v
vLim

)δ

−

d0 + vs.T + v∆v
2
√

ab
d

2
 (A1)

The desired acceleration aIDM is calculated based on the relative speed ∆v and d to the
preceding vehicle or to the next red light, depending on which is closer. vLim is introduced
in the denominator of the velocity term in order to achieve compliance to the legal speed
limit. The parameters of the IDM are shown in Table A2.

Table A2. IDM parameters.

Parameter Description Value

a Maximum Acceleration 3.5 m s−2

b Comfortable Deceleration 2.5 m s−2

T Time headway 1 s
d0 Minimum distance 2 m
δ Acceleration exponent 3.25

References
1. Ebert, C.; Favaro, J. Automotive software. IEEE Softw. 2017, 34, 33–39. [CrossRef]
2. Vogel, M.; Knapik, P.; Cohrs, M.; Szyperrek, B.; Pueschel, W.; Etzel, H.; Fiebig, D.; Rausch, A.; Kuhrmann, M. Metrics in

automotive software development: A systematic literature review. J. Softw. Evol. Process 2021, 33, e2296. [CrossRef]
3. Antinyan, V. Revealing the complexity of automotive software. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, virtual, 8–13 November 2020;
pp. 1525–1528.

4. Greengard, S. Automotive systems get smarter. Commun. ACM 2015, 58, 18–20. [CrossRef]
5. Möhringer, S. Entwicklungsmethodik für Mechatronische Systeme; Heinz-Nixdorf Institut: Paderborn, Germany, 2004.
6. Isermann, R. Automotive Control: Modeling and Control of Vehicles; Springer: Berlin/Heidelberg, Germany, 2022.
7. Juhnke, K.; Tichy, M.; Houdek, F. Challenges concerning test case specifications in automotive software testing: Assessment of

frequency and criticality. Softw. Qual. J. 2021, 29, 39–100. [CrossRef]

http://doi.org/10.1109/MS.2017.82
http://dx.doi.org/10.1002/smr.2296
http://dx.doi.org/10.1145/2811286
http://dx.doi.org/10.1007/s11219-020-09523-0


Vehicles 2023, 5 929

8. Claßen, J.; Pischinger, S.; Krysmon, S.; Sterlepper, S.; Dorscheidt, F.; Doucet, M.; Reuber, C.; Görgen, M.; Scharf, J.; Nijs, M.;
et al. Statistically supported real driving emission calibration: Using cycle generation to provide vehicle-specific and statistically
representative test scenarios for Euro 7. Int. J. Engine Res. 2020, 21, 1783–1799. [CrossRef]

9. Mattos, D.I.; Bosch, J.; Olsson, H.H.; Korshani, A.M.; Lantz, J. Automotive A/B testing: Challenges and lessons learned from
practice. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Portoroz, Slovenia, 26–28 August 2020; pp. 101–109.

10. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
11. Cao, Z.; Xu, S.; Peng, H.; Yang, D.; Zidek, R. Confidence-aware reinforcement learning for self-driving cars. IEEE Trans. Intell.

Transp. Syst. 2021, 23, 7419–7430. [CrossRef]
12. Gutiérrez-Moreno, R.; Barea, R.; López-Guillén, E.; Araluce, J.; Bergasa, L.M. Reinforcement learning-based autonomous driving

at intersections in CARLA simulator. Sensors 2022, 22, 8373. [CrossRef]
13. Li, D.; Okhrin, O. Modified DDPG car-following model with a real-world human driving experience with CARLA simulator.

Transp. Res. Part C Emerg. Technol. 2023, 147, 103987. [CrossRef]
14. Cao, Z.; Bıyık, E.; Wang, W.Z.; Raventos, A.; Gaidon, A.; Rosman, G.; Sadigh, D. Reinforcement learning based control of imitative

policies for near-accident driving. arXiv 2020, arXiv:2007.00178.
15. Li, G.; Yang, Y.; Li, S.; Qu, X.; Lyu, N.; Li, S.E. Decision making of autonomous vehicles in lane change scenarios: Deep

reinforcement learning approaches with risk awareness. Transp. Res. Part C Emerg. Technol. 2022, 134, 103452. [CrossRef]
16. Zhang, Y.; Guo, L.; Gao, B.; Qu, T.; Chen, H. Deterministic promotion reinforcement learning applied to longitudinal velocity

control for automated vehicles. IEEE Trans. Veh. Technol. 2019, 69, 338–348. [CrossRef]
17. Tian, Y.; Cao, X.; Huang, K.; Fei, C.; Zheng, Z.; Ji, X. Learning to drive like human beings: A method based on deep reinforcement

learning. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6357–6367. [CrossRef]
18. Song, S.; Chen, H.; Sun, H.; Liu, M. Data efficient reinforcement learning for integrated lateral planning and control in automated

parking system. Sensors 2020, 20, 7297. [CrossRef]
19. Zhao, J.; Cheng, S.; Li, L.; Li, M.; Zhang, Z. A model free controller based on reinforcement learning for active steering system

with uncertainties. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2470–2483. [CrossRef]
20. Deng, H.; Zhao, Y.; Nguyen, A.T.; Huang, C. Fault-Tolerant Predictive Control With Deep-Reinforcement-Learning-Based Torque

Distribution for Four In-Wheel Motor Drive Electric Vehicles. IEEE/ASME Trans. Mechatron. 2023, 28, 668–680. [CrossRef]
21. Fuchs, F.; Song, Y.; Kaufmann, E.; Scaramuzza, D.; Dürr, P. Super-human performance in gran turismo sport using deep

reinforcement learning. IEEE Robot. Autom. Lett. 2021, 6, 4257–4264. [CrossRef]
22. Wurman, P.R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.; Subramanian, K.; Walsh, T.J.; Capobianco, R.; Devlic, A.; Eckert,

F.; Fuchs, F.; et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 2022, 602, 223–228.
[CrossRef]

23. Min, K.; Kim, H.; Huh, K. Deep distributional reinforcement learning based high-level driving policy determination. IEEE Trans.
Intell. Veh. 2019, 4, 416–424. [CrossRef]

24. Bai, Z.; Hao, P.; Shangguan, W.; Cai, B.; Barth, M.J. Hybrid reinforcement learning-based eco-driving strategy for connected and
automated vehicles at signalized intersections. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15850–15863. [CrossRef]

25. Kreidieh, A.R.; Wu, C.; Bayen, A.M. Dissipating stop-and-go waves in closed and open networks via deep reinforcement
learning. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018; pp. 1475–1480.

26. Feng, S.; Sun, H.; Yan, X.; Zhu, H.; Zou, Z.; Shen, S.; Liu, H.X. Dense reinforcement learning for safety validation of autonomous
vehicles. Nature 2023, 615, 620–627. [CrossRef]

27. Wang, P.; Chan, C.Y. Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6.

28. Guo, Q.; Angah, O.; Liu, Z.; Ban, X.J. Hybrid deep reinforcement learning based eco-driving for low-level connected and
automated vehicles along signalized corridors. Transp. Res. Part C Emerg. Technol. 2021, 124, 102980. [CrossRef]

29. Wegener, M.; Koch, L.; Eisenbarth, M.; Andert, J. Automated eco-driving in urban scenarios using deep reinforcement learning.
Transp. Res. Part C Emerg. Technol. 2021, 126, 102967. [CrossRef]

30. Norouzi, A.; Shahpouri, S.; Gordon, D.; Shahbakhti, M.; Koch, C.R. Safe deep reinforcement learning in diesel engine emission
control. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng. 2023, 09596518231153445. [CrossRef]

31. Lai, C.; Wu, C.; Wang, S.; Li, J.; Hu, B. EGR Intelligent Control of Diesel Engine Based on Deep Reinforcement Learning.
In Proceedings of the International Conference of Fluid Power and Mechatronic Control Engineering (ICFPMCE 2022), Kunming,
China, 22–24 March 2022; Atlantis Press: Amsterdam, The Netherlands, 2022; pp. 151–161.

32. Hu, B.; Yang, J.; Li, J.; Li, S.; Bai, H. Intelligent control strategy for transient response of a variable geometry turbocharger system
based on deep reinforcement learning. Processes 2019, 7, 601. [CrossRef]

33. Koch, L.; Picerno, M.; Badalian, K.; Lee, S.Y.; Andert, J. Automated function development for emission control with deep
reinforcement learning. Eng. Appl. Artif. Intell. 2023, 117, 105477. [CrossRef]

http://dx.doi.org/10.1177/1468087420935221
http://dx.doi.org/10.1109/TITS.2021.3069497
http://dx.doi.org/10.3390/s22218373
http://dx.doi.org/10.1016/j.trc.2022.103987
http://dx.doi.org/10.1016/j.trc.2021.103452
http://dx.doi.org/10.1109/TVT.2019.2955959
http://dx.doi.org/10.1109/TITS.2021.3055899
http://dx.doi.org/10.3390/s20247297
http://dx.doi.org/10.1177/0954407021994416
http://dx.doi.org/10.1109/TMECH.2022.3233705
http://dx.doi.org/10.1109/LRA.2021.3064284
http://dx.doi.org/10.1038/s41586-021-04357-7
http://dx.doi.org/10.1109/TIV.2019.2919467
http://dx.doi.org/10.1109/TITS.2022.3145798
http://dx.doi.org/10.1038/s41586-023-05732-2
http://dx.doi.org/10.1016/j.trc.2021.102980
http://dx.doi.org/10.1016/j.trc.2021.102967
http://dx.doi.org/10.1177/09596518231153445
http://dx.doi.org/10.3390/pr7090601
http://dx.doi.org/10.1016/j.engappai.2022.105477


Vehicles 2023, 5 930

34. Book, G.; Traue, A.; Balakrishna, P.; Brosch, A.; Schenke, M.; Hanke, S.; Kirchgässner, W.; Wallscheid, O. Transferring online
reinforcement learning for electric motor control from simulation to real-world experiments. IEEE Open J. Power Electron.
2021, 2, 187–201. [CrossRef]

35. Han, S.Y.; Liang, T. Reinforcement-learning-based vibration control for a vehicle semi-active suspension system via the PPO
approach. Appl. Sci. 2022, 12, 3078. [CrossRef]

36. Hu, Y.; Li, W.; Xu, K.; Zahid, T.; Qin, F.; Li, C. Energy management strategy for a hybrid electric vehicle based on deep
reinforcement learning. Appl. Sci. 2018, 8, 187. [CrossRef]

37. Sun, M.; Zhao, P.; Lin, X. Power management in hybrid electric vehicles using deep recurrent reinforcement learning. Electr. Eng.
2022, 104, 1459–1471. [CrossRef]

38. Liu, T.; Hu, X.; Li, S.E.; Cao, D. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric
vehicle. IEEE/ASME Trans. Mechatron. 2017, 22, 1497–1507. [CrossRef]

39. Choi, W.; Kim, J.W.; Ahn, C.; Gim, J. Reinforcement Learning-based Controller for Thermal Management System of Electric
Vehicles. In Proceedings of the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC), Merced, CA, USA, 1–4 November
2022; pp. 1–5.

40. Gu, S.; Yang, L.; Du, Y.; Chen, G.; Walter, F.; Wang, J.; Yang, Y.; Knoll, A. A review of safe reinforcement learning: Methods, theory
and applications. arXiv 2022, arXiv:2205.10330.

41. VDI/VDE 2206; Development of Mechatronic and Cyber-Physical Systems. The Association of German Engineers: Alexisbad, Germany, 2021.
42. Jacobson, I.; Booch, G.; Rumbaugh, J. The unified process. IEEE Softw. 1999, 16, 96.
43. ISO 26262; Road Vehicles—Functional Safety. International Organization for Standardization: Geneva, Switzerland, 2011.
44. Eisenbarth, M.; Wegener, M.; Scheer, R.; Andert, J.; Buse, D.S.; Klingler, F.; Sommer, C.; Dressler, F.; Reinold, P.; Gries, R. Toward

smart vehicle-to-everything-connected powertrains: Driving real component test benches in a fully interactive virtual smart city.
IEEE Veh. Technol. Mag. 2020, 16, 75–82. [CrossRef]

45. Forum, A. ADASIS v2 Standard. 2010. Available online: https://adasis.org/ (accessed on 28 May 2023).
46. dSPACE GmbH. SIMPHERA, the Cloud-Based, Highly Scalable Solution for the Simulation and Validation of Functions for

Autonomous Driving. 2023. Available online: https://www.dspace.com/en/pub/home/products/sw/simulation_software/
simphera.cfm (accessed on 29 May 2023).

47. Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gonzalez, J.; Goldberg, K.; Stoica, I. Ray RLLib: A Composable and Scalable
Reinforcement Learning Library. arXiv 2017, arXiv:1712.09381.

48. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite
micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.

49. Buse, D.S. Paderborn Traffic Scenario, version 0.1; CERN: Meyrin, Switzerland, 2021. [CrossRef]
50. OpenStreetMap Contributors. OpenStreetMap. 2022. Available online: https://www.openstreetmap.org (accessed on 21 May 2023).
51. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347.
52. Kesting, A.; Treiber, M.; Helbing, D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4585–4605. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/OJPEL.2021.3065877
http://dx.doi.org/10.3390/app12063078
http://dx.doi.org/10.3390/app8020187
http://dx.doi.org/10.1007/s00202-021-01401-7
http://dx.doi.org/10.1109/TMECH.2017.2707338
http://dx.doi.org/10.1109/MVT.2020.3008018
https://adasis.org/
https://www.dspace.com/en/pub/home/products/sw/simulation_software/simphera.cfm
https://www.dspace.com/en/pub/home/products/sw/simulation_software/simphera.cfm
http://dx.doi.org/10.5281/zenodo.4522058
https://www.openstreetmap.org
http://dx.doi.org/10.1098/rsta.2010.0084

	Introduction
	Methodology
	Reinforcement Learning
	Simulation Environment
	Physical Simulation
	Microscopic Traffic Simulation

	Distributed Learning Framework

	Feasibility Study
	Scenario
	Route
	Ego Vehicle
	RL Control Function

	Problem Formulation
	Results
	Training Results
	Validation Results


	Discussion and Outlook
	Appendix A
	Appendix B
	References

