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Abstract: This paper attempts to develop a Dynamic Mode Decomposition (DMD)-based Reduced
Order Model (ROMs) that can quickly but accurately predict the forces and moments experienced by
a road vehicle such that they be used by an on-board controller to determine the vehicle’s trajectory.
DMD can linearize a large dataset of high-dimensional measurements by decomposing them into
low-dimensional coherent structures and associated time dynamics. This ROM can then also be
applied to predict the future state of the fluid flow. Existing literature on DMD is limited to low
Reynolds number applications. This paper presents DMD analyses of the flow around an idealized
road vehicle, called the Ahmed body, at a Reynolds number of 2.7× 106. The high-dimensional
dataset used in this paper was collected from a computational fluid dynamics (CFD) simulation
performed using the Menter’s Shear Stress Transport (SST) turbulence model within the context of
Improved Delayed Detached Eddy Simulations (IDDES). The DMD algorithm, as available in the
literature, was found to suffer nonphysical dampening of the medium-to-high frequency modes.
Enhancements to the existing algorithm were explored, and a modified DMD approach is presented
in this paper, which includes: (a) a requirement of higher sampling rate to obtain a higher resolution
of data, and (b) a custom filtration process to remove spurious modes. The modified DMD algorithm
thus developed was applied to the high-Reynolds-number, separation-dominated flow past the
idealized ground vehicle. The effectiveness of the modified algorithm was tested by comparing future
predictions of force and moment coefficients as predicted by the DMD-based ROM to the reference
CFD simulation data, and they were found to offer significant improvement.

Keywords: dynamic mode decomposition (DMD); computational fluid dynamics (CFD); reduced
order method (ROM); Ahmed body; turbulent flows; high-Reynolds-number flows; improved delayed
detached eddy simulations (IDDES); road vehicle aerodynamics

1. Introduction

The reduction of the aerodynamic drag force remains a core objective of vehicle
aerodynamic development and is motivated by the desire to reduce fuel consumption [1,2].
Researchers have attempted to achieve aerodynamic drag reduction through different types
of passive flow control devices such as the front bypass ducts [3], rear bypass ducts [4], and
various deflector designs [5–7]. One of the major limitations of passive flow control devices
is that, once installed, they can be difficult to remove or modify. Thus, researchers have
turned to active flow control devices to achieve flexibility in optimization [8]. Examples of
active flow control include a variety of synthetic jet and suction systems [8–12]; interested
readers are referred to the review articles by [13,14] for further details.

Recent technological advances in the automotive industry have shifted the focus of
transportation research from human-operated-and-controlled fossil-fuel-based vehicles to
electrified (EV) connected and automated vehicles (CAVs). As a result, there is a growing
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interest in the prediction of aerodynamic characteristics in adaptive driving conditions. An
example is platooning, where drag reduction is desired via vehicle-to-vehicle interaction of
aerodynamics where one or more trailing cars follow a lead car in close proximity. Active
control systems are believed to make platooning feasible for all vehicles, as autonomous
vehicles allow for closer proximity due to reduced reaction times [15–17]. Before a control
signal can be applied to the moving vehicle, predictions of the future state of aerodynamic
forces and moments are required. A Reduced Order Model (ROM) can be used to make
future state predictions of the aerodynamic flow field [1]. For adaptive systems, the
future state predictions can then be coupled with a control input to obtain the desired
performance characteristics [18].

Previous studies on the adaptation of aero-devices largely relied upon time-averaged
wind tunnel experiments or Reynolds-Averaged Navier–Stokes (RANS)-based numerical
methods. Fluid flows around road and race vehicles are highly turbulent and consist
of many dynamic coherent structures that are characterized by a wide range of length
and time scales. The evolution and convection of these structures produce macroscopic
spatio-temporal patterns [1,19–21]. Hybrid turbulence modeling simulation approaches,
such as the Improved Delayed Detached Eddy Simulation (IDDES), have shown greater
success in elucidating these finer vortical structures embedded in the flow field. The
challenge with such Scale-Resolved Simulation (SRS) approaches comes from the grid
resolution requirements for the high-Reynolds-number flow fields that these methods try to
resolve. It is conjectured that the spatio-temporal domain must be resolved to the so-called
Taylor scales [21–23] in order achieve a desirable accuracy. Thus, such SRS approaches
are resource-prohibitive for the onboard controllers on a moving vehicle, as these would
likely not have the processing power and time needed to solve a transient flow field while
attempting to implement real-time control of the vehicle’s trajectory. As such, there is a
need for a Reduced Order Model (ROM) that can provide fast, accurate, and reliable flow
predictions utilizing feasible computational resources. Decomposing the fluid flow into its
constituent components can be very helpful in this regard. Researchers in this field have
largely resorted to methods of modal decomposition to analyze the flow field [1,24,25].

Proper Orthogonal Decomposition (POD) has been a popular method for the modal
decomposition of fluid flows [26–29]. However, the POD modes are arranged by energy and
not by dynamical importance, contain a mix of frequencies, and have unclear truncation
criteria [30]. In recent times, researchers have used Dynamic Mode Decomposition (DMD),
which is a data-driven linearization algorithm that can decompose a set of data into its
constituent modes and extract the associated oscillation frequencies of each mode [31].
These constituent modes and their associated oscillation frequencies can then be used to
make future state predictions of the system [32,33]. DMD has shown success when applied
to a variety of fluid dynamic problems, including water jets [33], backward-facing step [34],
circular cylinder wakes [35–37], Poiseuille flow, supersonic jet [38], open cavity flows [39],
boundary layer flows [36], airfoil, and hydrofoil flows [40,41]. DMD has been seen to be
adaptable, and many variants exist. Interested readers are directed to Kutz’s book [24] and
Schmid’s review paper [25] for further details.

All of the studies cited above applied DMD to relatively simple flow fields at low
Reynolds numbers. A Ground Vehicle (GV) has an associated flow field that is much more
complex, and is at orders of magnitude higher Reynolds numbers, which implies a larger
spread of length and time scales within the flow field [20,21]. Only a handful of studies have
applied DMD to such separation-dominated, high-Reynolds-number flows. Ahani et al. [1]
performed DMD on a DrivAer geometry at a Reynolds number of 4.8× 106; note that the
DrivAer model, developed by [42], is a simplified rendering of a highly complex vehicle
geometry. This work was primarily focused on comparing the obtained mode shapes from
the DMD to those obtained from the POD. Another study with the DrivAer geometry
by [43] performed a low-pass filtering with a cutoff frequency of 10 Hz before the data were
processed by the DMD algorithm and thus filtered out all the complexities associated with
a high-Reynolds-number flow.
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As mentioned earlier, the development of a ROM capable of producing reliable future
state predictions will be very useful for the on-road adaptation of the CAVS. However, we
needed an engine for this ROM development. Based on the currently available mathemat-
ical tools for fluid flow characterization, we anticipated that DMD is a strong candidate.
Thus, the objective of this study is to analyze the effectiveness of the DMD methodology
in reconstructing the flow field round a moving Ground Vehicle (GV) at a high Reynolds
number using data generated from an IDDES-based CFD simulation. Taira et al. [30] states
that the weaknesses of DMD include the requirement to obtain time-resolved data with
high resolution and determining the metrics to identify dominant modes. In order to obtain
such a “reliable” DMD model for high Reynolds number fluid flows, certain parameters
pertaining to the DMD requirements must be determined: (a) length of one data-sampling
window, (b) data-sampling frequency, and (c) number of data samples for converged en-
semble averaging. Additionally, we need to know whether it is necessary to go through the
Singular Value Decomposition (SVD) step, as seen in the existing DMD algorithm, and if
so, the truncation criteria for the SVD need to be defined. In addition, it is important to
know whether the inverse transformation, i.e., the reconstruction of the flow field from the
DMD modes, suffers from the artifacts of spurious high-frequency modes or other noise in
the training data. As well, we need to know how much flow energy is conserved when the
flow field is reconstructed and what is the minimum energy that must be retained when
performing a low-dimensional transformation of the system.

In this paper, we attempted to address these questions by applying DMD to a high
Reynolds number, separated flow past an idealized road vehicle, the Ahmed body
geometry [44]. This choice is driven by the fact that extensive experimental and CFD
data are available for correlation and validation of this idealized GV model. Among many
variants of the Ahmed Body model, we, however, chose to proceed with the 35◦ slant-angle
Ahmed body model, as the flow over this model shows all the salient features of the flow
over a Sport Utility Vehicle (SUV)-type of vehicle, which is the subject of the next phase of
our work [45].

The work flow of this study involves first perming DMD on a canonical 2D cylinder
flow at a low Reynolds number to verify and validate the accuracy of the DMD approach to
be used. Next, we performed the CFD simulation of the GV and validated the CFD results
against published experimental data [44,46]. We then performed a DMD analysis using the
data collected from the CFD simulation. Based on our findings on the failure of existing
DMD methodologies to produce the desired outcome for such flows, we proposed in this
paper: (a) modifications to the CFD data generation strategy and (b) a filtering process for
removing spurious modes obtained from the model decomposition. As can be found in the
subsequent sections, although not perfect yet, these significantly improved the adaptability
of the DMD approach to high-Reynolds-number GV flows.

The subsequent sections further explain the development of the methodologies used
and the results that were obtained. The methodology developed in this paper can be
applied to generic vehicle shapes, such as the DrivAer, and subsequently to more complex
real-life road vehicles to develop ROMs, which can predict on-road characteristics of the
vehicle, subject to changes in vehicle operating conditions, such as the CAVs in a platoon.

As a final note, this paper forms a part of the lead author Adit Misar’s doctoral
dissertation work [47]. Finally, this paper is approved by the US Army Combat Capabilities
Development Command, Ground Vehicle Systems Center (GVSC) as “DISTRIBUTION A.
Approved for public release; distribution unlimited. OPSEC#7440.”

2. DMD Mathematical Framework

The first step in the DMD process involves storing the data in a vector form,
Xn

i = {x1
i , x2

i , ..., xn
i }. Here, the subscript i represents the i-th element of the grid in which

the snapshots of the flow field were taken, and n is the total number of time snapshots
collected. Thus, each time snapshot xn is a vector containing data from all m grid elements
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at time instant n. If we expand the vectors for the grid elements, we can build the complete
dataset in matrix form as shown in Equation (1):

X =

 x1
1 · · · xn

i
...

. . .
...

x1
m · · · xn

m

 (1)

In the DMD approach, the collected dataset from a dynamical system is represented as
a coupled system of ordinary differential equations, as given in Equation (2), which itself
contains non-linear relations in the spatial and temporal domains.

dx/dt = f (x, t) (2)

The idea is to represent data from the non-linear, complex system as a locally linear
regression such that xk+1 = Axk, where A is then chosen to minimize ‖xk+1 − Axk‖2 over
k = 1, 2, 3, ..., n − 1. Since we have collected the data from the system, xk+1 and xk are
known, but the function relating them is unknown.

xk+1 = F(xk) (3)

The DMD approach then constructs a locally linear approximation of the dynami-
cal system:

dx
dt

= Ax (4)

This ordinary differential equation (ODE) form of the dynamical system is advanta-
geous, as with initial conditions, we have a well-known solution:

x(t) =
N

∑
k=1

φk exp(ωkt)bk = Φ exp(Ωt) b (5)

where bk is the amplitude of each mode, φk are the DMD modes (mode shapes involving
the eigenvectors of A), and ωk are the continuous-time eigenvalues of A. The matrix that
results as a product of terms, exp(Ωt) b, is also referred to as the “time dynamics” of the
system, as it contains the information associated with the frequency, amplitude, and growth
rates for all of the modes. Now, when the dimensions of X are large, A becomes impossibly
large to mathematically work with. The existing DMD process circumvents this through
eigen-decomposition of A by considering a rank–reduced representation, Ã, which has
the same non-zero eigenvalues as A, and is obtained by performing SVD of X using the
collected data.

X ≈ UΣV∗ (6)

In Equation (6), X is a rectangular data matrix of size m× n, U is a complex unitary
matrix of size m× n that contains the left singular vectors, which are the POD modes, Σ is
a rectangular diagonal matrix of size m× n having a positive real number as its diagonal
elements, V∗ is a complex unitary matrix of size n× n, and ∗ represents a complex conjugate
transform. The diagonal elements σi of Σij are the singular values of X. Matrix A may be
obtained by using the pseudo-inverse of X, shown in Equation (7):

A = X
′
VΣ−1U∗ (7)

In practice, since A can be computationally prohibitive to calculate, Ã is computed
through a unitary transform of A as shown in Equation (8):

Ã = U∗AU = U∗X
′
VΣ−1 (8)
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Using Ã, we now can create a low-dimensional subspace of A, such that:

x̃k+1 = Ãx̃k. (9)

The eigen decomposition of Ã can now be computed as:

ÃW = WΛ (10)

where columns of W are the eigenvectors of Ã, and the diagonal elements, λk, of Λ are
the DMD eigenvalues. We can now use the eigen decomposition of Ã to reconstruct the
high-dimensional DMD modes. The eigenvalues of A, ωk, are expressed in terms of the
diagonal elements of Λ (λk), which are scaled logarithmically according to the relation
ωk = ln(λk)/∆t. The eigenvectors of A are given by Equation (11):

Φ = X
′
VΣ−1W (11)

The mode amplitudes may be calculated as:

b = Φ†x1 (12)

where † denotes the adjoint operator, φk, and ωk and bk may now be used in Equation (5) to
obtain the system state predictions. Interested readers are again directed to the original
articles and review papers for a more detailed description of the DMD process [25,48,49].
Lastly, Equation (5) can be rewritten as Equation (13) [50]:

xi =
N−1

∑
j=1

bijΦNorm,j(x, y) (13)

Kou and Zhang [50] then used this representation to extract a new parameter Ij, which
denotes the influence of a mode on the entire sampling window as opposed to only at the
initial condition. Ij is defined as:

Ij =
∫
|bj(t)| ≈

∫ N

i=1
|bij|dt (14)

The parameter Ij was proposed as an improved method of mode selection. This
concept was further modified by Ahani and Uddin [1], and the integral term was replaced
with a root mean squared (RMS) term. This new RMS method was used in this paper for
mode selection.

3. Methodology

We investigated three cases in this study. Case 1 (C1 here in after) involves a low
Reynolds number flow past a 2D circular cylinder. This is a simple and relatively well-
known case and was used for initial validation and verification of the DMD process. The
second and third cases (C2 and C3, respectively) used the Ahmed body geometry in a high-
Reynolds-number flow. Cases C2 and C3 differ in regard to the extents of the computational
domain and the associated boundary conditions. Case C2 used Ahmed’s (1984) [44] wind
tunnel dimensions as the computational domain. However, the wind tunnel setup used by
Ahmed results in a blockage ratio of 4% and necessitates blockage ratio corrections. Since
most vehicles are run in an open-air (OA) configuration, we considered it important to
switch our Virtual Wind Tunnel (VWT) setup to an OA configuration to better resemble a
real-world driving environment. For C3, based on the authors prior experience, the extents
of the computational domain were significantly increased [51] to create a computational
domain that has a negligible model blockage.
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3.1. CFD Simulation Process Details

All CFD simulations were carried out using a commercial finite volume code STAR-
CCM+ version 2020.2. For C1, a laminar, incompressible solver was used. The time-step
size, ∆t, was set to 0.3× t∗, where t∗ represents one Large Eddy Turn Over Time (LETOT).
A LETOT is defined as the amount of time required for the freestream flow to pass over the
characteristic length of the geometry a single time, i.e., t∗ = (t×U∞)/L, where U∞ is the
freestream velocity, and L is the characteristic model length scale.

As flow case C2 and C3 represent turbulent flows, an incompressible Improved
Delayed Detached Eddy (IDDES) solver was used [52,53]. The IDDES approach repre-
sents extensions of the original Detached Eddy Simulation (DES) approach proposed by
Spalart and coworkers [54,55]. DES is a hybrid approach that combines, for computa-
tional efficiency, Large Eddy Simulation (LES) in the regions far away from the wall and
Reynolds-Averaged Navier–Stokes (RANS) in the boundary layer region. The switching
between LES and RANS is performed by computing a local turbulent length scales, lT , and
a local grid size, lLES. However, the existing literature reports that LES may incorrectly be
applied inside the boundary layer when lT and lLES drop below a critical value. This can
then cause a phenomenon called Grid-Induced Separation (GIS), which is a prediction of
nonphysical separation due to the local grid size. In the Delayed DES (DDES) approach,
GIS is prevented by introducing a delay in the switching function based on the wall normal
distance and local eddy viscosity [56]. IDDES, proposed by [52], is the next extension of
the DES, which combines the DDES and wall-modeled LES (WMLES) [57]. In WMLES,
RANS is limited to a much thinner near-wall region where the wall distance y is very small
compared to the boundary layer thickness, but y+ ≡ yuτ/ν is significantly large; note that
with τw, ρ, and ν representing the wall-shear stress, fluid density and viscosity, respectively,
the friction velocity uτ is defined as uτ ≡

√
τw/ρ. The IDDES approach was reported to

resolve the issue of mismatch between the modeled log layer and the resolved log layer,
and it broadened the application area by providing a well-balanced simulation approach
for high-Reynolds-number turbulent flows.

The RANS region in the IDDES approach used in this study is solved using Menter’s
Shear Stress Transport (SST) k− ω turbulence model [58,59]. For brevity, mathematical
equations related to the RANS, IDDES and SST models are omitted from this paper, as
there are plentiful resources for these. Interested readers are referred to the original articles
by Menter and coworkers [58–60] for the development of the k − ω model and to the
automotive external aerodynamics article by [61] for all relevant equations.

In C1 and C2, a two-layer wall treatment was used to ensure accurate capturing of
the boundary layer characteristics. This time-step-independency study carried out by the
authors concluded that a time-step size of ∆t = 1× 10−4 × t∗ is sufficient for this setup
and is consistent with the time-step size used in previous similar IDDES investigations
(c.f. [1,22,62]). To minimize the effects of domain decomposition in CFD predictions, all
simulations were run on UNC Charlotte High Performance Computing (HPC) clusters
using 144 processors across 3 nodes having 48 processors each [63].

3.2. Geometry, Domain, and Boundary Conditions

For case C1, the circular cylinder with a diameter D = 0.01 m was placed in the
simulation domain. The longitudinal extents of the computational domain were 5D up-
stream and 20D downstream of the object. The cross-stream extents were 5D on both sides.
The upstream edge was specified as a velocity inlet having a stream-wise velocity set to
0.15 m/s, the down-stream edge was specified as a zero gauge pressure outlet, and the top
and bottom edges were specified as zero-gradient boundaries. This setup is found in the
user guide of Star-CCM+ version 2020.2, which references the work of Daily et al. [64]. This
flow corresponded to a Reynolds number of 75. The C1 case was run for 120 LETOTs, and
the last 80 LETOTs of data were used for analyses.

For case C2, the Ahmed body geometry was placed in a VWT of 8L× 5H × 5W in
the stream-wise, vertical and lateral extents, respectively; here L, W and H represents the
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length, width, and height of the Ahmed body, respectively. These dimensions are similar
to the physical wind tunnel used in Ahmed’s original experiment. The vehicle body was
placed at a distance of 2L from the upstream boundary. Boundary conditions were applied
to the computational domain to match the wind tunnel setup of [44,46]. These included a
velocity inlet of 40 m/s applied to the upstream face with a turbulence intensity of 0.25%, a
turbulence length scale of 10 mm, and a 0 Pa gauge pressure applied as an outlet condition
to the downstream face, and all other boundaries were specified as no-slip walls. This
configuration results in a blockage ratio of 4%.

For case C3, the domain extents were significantly increased to 31L× 35H × 31W in
the stream-wise, vertical and lateral extents, respectively, with the Ahmed body placed at
a distance of 10L from the upstream boundary. The side wall boundaries were changed
to a velocity inlet and a pressure outlet to prepare for crosswind simulations, which will
be the subject of a subsequent study. This setup for the side-wall boundary conditions is
different from the one used by Fu et al. [65], involving turbulence modeling effects on the
aerodynamic characterizations of a stock race car subject to yaw, in which a zero-gradient
boundary condition was used for the side walls. However, later studies by [51] show
that a zero-gradient boundary condition poses nonphysical pressure reflections unless the
virtual tunnel is infinitely wide. Finally, to imitate a moving-ground simulation, the floor
of the tunnel was given a tangential velocity equal to the free-stream velocity, and the
ceiling of the VWT was set as a zero-gradient boundary. This setup was taken from the
authors’ experience of performing CFD of crosswind simulations [51]. Both C2 and C3 had
a Reynolds number of 2.86× 106, which is several orders of magnitude larger than the 2D
cylinder case.

For cases C2 and C3, each time-step was run for 10 inner iterations to ensure that
residuals had reduced by at least three orders of magnitude. The last 30 LETOTs of data
were used for analyses. A C2 simulation was run for 160 LETOTs. It was found that the
initial transients subsided after 30 LETOTs. Thus, C3 was run for 130 LETOTs. In both
C2 and C3, the last 80 LETOTs were used for averaging and data collection; note that
80 LETOTs correspond to about 2 s of physical time and provide the opportunity to capture
a lowest possible frequency of 0.5 Hz.

3.3. Discretization Scheme

The flow case C1 was discretized using polyhedral cells. It has a near wall cell size
of 0.05D near the cylinder surface, and grows to 0.1D elsewhere in the domain. It has
five prism layers on the cylinder boundary, resulting in a total cell count of 20,000.

For cases C2 and C3, the simulation domain was discretized using unstructured
hexahedral cells. To properly resolve the flow around the GV, five refinement volumes
were used around the geometry. The finest mesh was set to a size close to an approximated
estimate of Taylor length scale, λ [19,22,46]. Further, to properly resolve the boundary layer
flows on all the surfaces, a prism layer mesher was used to ensure that the wall y+ values
are less than unity. In the final mesh, more than 99% of surfaces had a y+ value less than
unity. For C2, the mesh consisted of 15.24 million cells. For C3, the meshing parameters are
kept the same as in C2, resulting in a mesh of 21.94 million cells.

3.4. Workflow for DMD Analyses

The step-by-step process required to perform a classical DMD is available in detail
in [24]; however, a brief summary of these steps is provided below:

• Step 1: Collect multiple time snapshots of the system of interest.
• Step 2: Create a low-dimensional subspace using the SVD or Truncated SVD (TSVD)

method.
• Step 3: Obtain an eigen decomposition of the low-dimensional subspace.
• Step 4: Using the eigen decomposed low-dimensional subspace, assemble the mode

shapes and their associated oscillation frequencies, called the “Time Dynamics” (TD).
• Step 5: Use the mode shapes and TD to assemble the DMD output equations.
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• Step 6: Use the DMD solution to predict (or reconstruct) the flow field.

3.5. Data Collection Strategy

Storing the entire 3D flow field data associated with all of the time-averaging window
time-steps would impractically require more than 3 petabytes of data. Therefore, since we
are more focused on the GV aerodynamic force and moment predictions, we collected the
static pressure field on the Ahmed body surface. Additionally, to capture the flow field
around the GV, we chose eight reference planes around the Ahmed body. For some of
these planes, experimental data are available and may be used for future validation steps,
such as the wake planes at x/L = 1.077, 1.192, 1.479 [20,46]. The other chosen planes are
anticipated to capture flow characteristics in critical flow regimes when crosswind and
vehicle interaction simulations are to be performed for future investigations. These include
planes at y/W = 0.5, 0.88, and 1.27, and at z equal to half of vehicle ground-clearance of
0.5, 1.15, and 1.3 H. Over each of theses planes, seven scalar quantities were collected,
viz., pressure coefficient, three components of velocity, turbulent kinetic energy (TKE)
or k, vorticity, and the Q-criterion [66]. Thus, instead of storing the entire 3D flow field,
we stored only the data from the Ahmed body surfaces and these eight reference planes.
Even then, by using this strategy, we extracted about 3.4 TB of data per GV simulation,
which is also huge. This is because STAR-CCM+ exports these data in ASCII format with
redundancies in exporting spatial locations. Converting the data to binary format and
removing the redundancies result in about 400 GB of binary data per case, which is deemed
to be a feasible approach. However, this study is limited to the analyses of vehicle surface
static pressure data. Note that the CFD simulation time-step size used in C2 implied that
the data are sampled at a rate of 4 kHz, and thus, the Nyquist criterion implies that flow
structures with frequencies of up to 2 kHz can be captured by the DMD reconstruction.

4. Results
4.1. Validation of CFD Simulation Process

The simulation process used in this study was validated by comparing CFD predictions
of the drag coefficient (CD) against the wind tunnel measurements of Ahmed et al. [44],
shown in Figure 1, which also contain the IDDES CFD simulation results of Guilmineau
et al. [22], as well as predictions using the OA configuration. The error bars in Figure 1
indicate uncertainties for each of the cases. Clearly, our CFD prediction of drag matches
very well with the experimental result when the vehicle is placed in a VWT. A 6% reduction
in CD was observed for the OA configuration, which has a blockage ratio of <0.25%. The
existing literature suggests that up to a 12% drop in CD prediction can be expected [67,68].

Figure 1. Validation of the CFD simulation approach and methodology.

4.2. Application of DMD to a Canonical Flow Case

As a first learning exercise, we performed the DMD of a canonical flow past a 2D
circular cylinder at a Reynolds number of 75, similar to a number of DMD works found in
the existing literature [35–37]. Figure 2 shows scalars of stream-wise velocity normalized
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by the freestream velocity at the instant t∗ = 120, which is essentially the very last time-
step. This very last time instance was chosen for validation as a test case because the
DMD predictions from Equation (5), which are in exponential form, are expected (and
reported) to diverge with large values of time. As such, the greatest discrepancy between
the CFD-predicted and DMD-reconstructed flow fields are more likely to be observed
for this time instant. From a comparison of the flow fields as obtained from the DMD
reconstruction and the CFD simulation in Figure 2a,b, we can conclude that the DMD
reconstruction was qualitatively similar to the CFD prediction. This was an encouraging
sign for the ability of the DMD to reconstruct the flow field. Further, in Figure 2c, we
plotted the difference in the normalized stream-wise velocity predictions between the DMD
reconstruction and CFD simulation. This figure clearly demonstrates that the difference
between the DMD-reconstruction and CFD-simulation results for this time instance is very
small, with the order of magnitude of the differences being 10−4. Thus, we inferred that the
DMD reconstruction of the flow field is very well correlated to the CFD simulation results.

Figure 2. Instantaneous normalized stream-wise velocity for flow past a 2D cylinder; (a) CFD
prediction, (b) DMD re-construction, and (c) differences between (b) and (a).

However, we note that it is pointless to compare two instantaneous snapshots for
turbulent flows. Thus, similar to the Reynolds decomposition approach used in the analysis
of turbulent flows, we will be looking at the mean and fluctuating components of the flow
field separately. As an example, using the above 2D cylinder case, we present in Figure 3,
a comparison of the CFD and DMD results of the normalized mean stream-wise velocity.
For both CFD and DMD results, the flow field statistics are taken from the last 30 LETOTs
of the simulation data. Similar to the analysis of Figure 2, in Figure 3a,b, we saw that the
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mean of the DMD reconstructed flow field is qualitatively similar to the one obtained from
the CFD simulation. Furthermore, in Figure 3c, we can see that the differences in the mean
of the normalized stream-wise velocity prediction between the DMD reconstruction and
CFD simulation are very small, O(10−4).

Figure 3. Mean stream-wise velocity for flow past a 2D cylinder: (a) CFD prediction, (b) DMD
re-construction, and (c) differences between (b) and (a).

In Figure 4, we see a comparison between the RMS values of normalized stream-wise
velocity fluctuations as obtained from the CFD computation and DMD reconstruction.
Similar to the previous results, in Figure 4a–c, we see a very negligible difference between
the RMS values obtained using the CFD calculations and DMD reconstruction of the flow
fields. In Figure 4c, we see that the maximum prediction difference is O(10−3), which
is one order larger than the difference seen for the mean component. This indicates that
the DMD modes associated with higher frequencies may have more reconstruction error
compared to the modes associated with lower frequencies. In subsequent discussions, this
frequency-based bias of the DMD-reconstruction error will be explored further using the
force and moment time-series data obtained from the Ahmed body CFD simulations.
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Figure 4. RMS of the stream-wise velocity fluctuations for flow past a 2D cylinder: (a) CFD prediction,
(b) DMD reconstruction, and (c) differences between (b) and (a).

4.3. Ahmed Body Simulations

The Ahmed body simulation of cases C2 and C3 were run first with a time-step of
∆t = 0.001× t∗, which corresponds to a physical time-step of 2.5× 10−4 s, implying a
sampling frequency of 4 KHz when data were collected from every time-step. As an initial
exploration of the question, “How much data are required to perform an effective DMD?”,
we took about 25% of the collected data for the DMD analysis. To address one of the other
fundamental questions pertaining to DMD, “What is the necessary sampling frequency
for reliable DMD analyses of high-Reynolds-number flows?”, the sampling frequency was
increased to 10 kHz, and the necessity and implications of this smaller time-step on the
overall veracity of the DMD-reconstruction process will be discussed in later sections.

4.3.1. Effectiveness of the DMD Approach Using CFD Data Sampled at 4 kHz

Figure 5a–d show the distribution of mean pressure coefficient CP ≡ p/(0.5ρU2
∞) on

the surface of the Ahmed body; here, p and U∞ represent pressure and reference free-
stream velocity, respectively. Note that all sub-figures, unless stated otherwise, are an
isometric bottom-right view of the GV. The spatial extents of the coordinate system are
non-dimensionalized by the length of the Ahmed body, L. Similar to Figure 3, we see
that the distribution of mean Cp on the GV surface is qualitatively the same in both the
DMD-reconstruction and CFD-computation results. Note that in subsequent discussions,
for simplified references, “results using the DMD-reconstruction” and “results using the
actual CFD computations” will be referred to as DMD and CFD results, respectively.
Figure 5c,d show the discrepancy in mean Cp prediction by the DMD relative to the CFD
results; in Figure 5d, we changed the camera viewing angle to a bottom-right orientation
to accommodate visualization of the hidden portions of Figure 5c. In both Figure 5c,d,
we noted that the discrepancies were O(10−3). In Figure 5c, we observed that the result
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differences are mostly toward the rear of the GV and around the edges of the front face.
From Figure 5d, we observed that the discrepancies are most pronounced on the rear slant,
rear fascia, and around the two downstream stilts, which are regions with recirculation
and where smaller vortical structures can exist; see [20,45]. We will revisit this when
analyzing Figure 6.

Figure 5. Distributions of mean of surface Cp as obtained using data sampled at 4 kHz: (a) from
DMD, (b) from CFD, (c) differences between (a) and (b), and (d) same as (c), but a bottom-right
isometric view.

Figure 6. RMS of the surface Cp fluctuations obtained using data sampled at 4 kHz: (a) from DMD,
(b) from CFD, (c): differences between (a) and (b), (d): same as (c) but a bottom-right isometric view.

Figure 6a,b show the RMS of surface Cp fluctuations from DMD reconstruction and
CFD calculations, respectively. We see a notable discrepancy in the region immediately
downstream of the stilts. Figure 6c,d show the discrepancies between the DMD-predicted
and CFD-simulated values of the RMS surface Cp; note that in Figure 6d, we changed the
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camera angle to a top-left orientation to accommodate visualization of the hidden portions
of Figure 6c. In both Figure 6c,d, we noted that the discrepancies were O(10−2), which is
an order of magnitude worse compared to the mean-flow DMD predictions in Figure 5. In
addition, in Figure 6d, we observed that the DMD result discrepancy (relative to the CFD
results) was due to an underprediction of the fluctuating components along the stilts, rear
edges, rear slant and rear face. These were the same regions observed in Figure 5d.

To better quantify the implications of these flow field discrepancies, we integrated
the surface static pressure field to obtain the pressure component of force and moment
coefficients from both the CFD data and the DMD reconstruction. Figure 7a–f show the time-
series data of coefficients of drag, lift, sideforce, and pitching, rolling, and yawing moments,
respectively. On each subplot, the CFD simulation data-series is shown in blue, and the
DMD reconstruction data-series is shown in red. We can see that DMD reconstruction was
able to capture the mean of all the coefficients reasonably well; however, the fluctuating
components were seen to exist only in the first 10% of the time-series and then dissipated
rapidly thereafter. Even a low-frequency motion in the CFD data was seen to be initially
captured by the DMD, but that too dissipated to 5 LETOTS. By investigating the time
dynamics component of Equation (5), we found nonphysical growth rates that caused the
eventual dissipation of the higher-frequency DMD modes. This is further corroborated by
the following frequency analysis.

Figure 7. Time histories of force and moment coefficients obtained from CFD calculations and DMD
reconstructions, sampled at 4 kHz: (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling
moment, and (f) yawing moment.

The Power Spectral Density (PSD) of all six force and moment coefficients obtained
using the recorded time-series data are shown in Figure 8a–f. In these figures, PSDs ob-
tained using the actual CFD data and DMD reconstruction of the time-series are shown in
blue and red, respectively. It can be seen that all of the DMD spectra were missing many of
the characteristic frequencies of the flow. The PSDs obtained form the DMD calculations
underpredicted energy contributions form the flow structures in the frequencies from
30 to 300 Hz. Additionally, except for drag, many of the medium-frequency motions from
100–400 Hz are entirely missed for all other components of force and moment in Figure 8b–f.
In Figure 8a,b,d, the characteristic PSD peaks around 200 Hz and, amplitude-wise, are
significantly underpredicted by the DMD. Thus, we inferred that the present implemen-
tation of the DMD process is suffering energy loss due to a nonphysical dampening of
medium-to-high-frequency motions.
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Figure 8. PSD of forces and moments obtained from CFD calculations and DMD reconstructions,
sampled at 4 kHz: (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment, and
(f) yawing moment.

4.3.2. Effectiveness of the DMD Approach Using CFD Data Sampled at 10 kHz

To address one of the fundamental questions pertaining to DMD, “What is the neces-
sary sampling frequency for DMD of high-Reynolds-number flows?”, and to help resolve
the issues highlighted in Figures 7 and 8, we increased our sampling frequency to 10 kHz
as used by [1] for a much higher Reynolds-number flow. This necessitated a reduction in
our CFD time-step size by 60% to ∆t = 4× 10−5t∗, a re-run of the CFD simulation, and
fresh data collection for DMD at the 10 kHz sampling frequency. To facilitate a consistent
comparison of DMD performance between the two CFD runs (using these two different
time-steps), the size of the data matrix of Equation (1) was kept constant. Thus, the subse-
quent plots were generated using about 8 LETOTs of converged CFD data, which represents
about 0.2 s of physical time, and a lowest resolved frequency of 4.8 Hz.

Figure 9a,b show the mean Cp distribution on the Ahmed body surface as obtained
from the DMD and CFD, respectively, similar to those presented in Figure 5a,b, but de-
termined using data sampled at 10 kHZ. As before (i.e., for the 4 KHz case), we see that
the distribution of mean Cp on the GV surface is qualitatively the same in both DMD and
CFD. Figure 9c,d show the differences in mean Cp prediction of DMD relative to CFD;
in Figure 9d, we changed the camera angle to a bottom-right orientation to help better
visualize the hidden portions of Figure 9c. In both of these figures, we noted that the
discrepancies were O(10−4), which is an order of magnitude less than that associated with
Figure 5c,d, which corresponds to the data sampled at 4 kHz. In Figure 9c, we observed that
the discrepancies are nearly eliminated from the upper surface, and the process shows a
marked improvement along the edges of the front face, compared to Figure 5c. In Figure 9d,
we, however, observed that the discrepancies were still very prominent on the rear slant,
the rear fascia, and around the two downstream stilts.

In Figure 10, we observed the distribution of RMS of Cp fluctuations on the surface
of the Ahmed body. Figure 10a,b show the RMS of Cp as predicted by DMD and CFD,
respectively. In comparison to Figure 6a,b, we see a significant improvement in the region
immediately downstream of the stilts. Figure 10c,d show the difference in RMS Cp pre-
diction of DMD relative to CFD; similar to before, in Figure 10d, we changed the camera
angle to a top-left orientation to help visualize the hidden portions of Figure 10c. In both
Figure 10c,d, we noted that the discrepancies were O(10−2), which was similar to the
order of magnitude seen in Figure 6c,d. In Figure 10d, we observed that the discrepancies



Vehicles 2023, 5 670

in DMD are due to underpredictions of the fluctuating components along the stilts, rear
edges, rear slant and rear face. These were the same regions highlighted in Figure 6d. Thus,
Figures 9 and 10 indicate that the low-to-medium frequency response of DMD improved,
but the high frequencies may remain unresolved.

Figure 9. Distributions of mean surface Cp as obtained using data sampled at 10 kHz: (a) from
DMD, (b) from CFD, (c) difference between (a) and (b), and (d) is the same as (c), but a bottom-right
isometric view.

Figure 10. RMS of the surface Cp fluctuations obtained using data sampled at 10 kHz: (a) from DMD,
(b) from CFD, (c): differences between (a) and (b), (d) is the same as (c) but a bottom-right isometric view.

We again integrated the surface static pressure field to get the pressure component of
force and moment coefficients from both the CFD simulation and the DMD reconstruction.
Figure 11a–f show the time-series data for coefficients of drag, lift, sideforce, and pitching,
rolling, and yawing moments, respectively. We can see in Figure 11a–f that the DMD
reconstruction was now able to capture the moving mean of all the coefficients, which
is a notable improvement from Figure 7a–f. However, in the DMD reconstruction, the
higher-frequency fluctuating components are still seen to be dissipated. By investigating
the time dynamics component of Equation (5), and plotting the mode amplitudes obtained
from Equation (14) vs. their frequency, we found non-physical energies among the higher-
frequency DMD modes. This suggested that some of the time dynamics obtained by the
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DMD reconstruction in Equation (5) involve aspects of frequency, amplitude, and growth
rates that are non-physical, which may be due to a consequence of noise in the algorithm.
This is further investigated by the following frequency space analysis.

Figure 11. Time histories of force and moment coefficients obtained from CFD calculations and DMD
reconstructions, sampled at 10 kHz: (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling
moment, and (f) yawing moment.

We analyzed the Power Spectral Density (PSD) of all six force and moment coefficient
signals in Figure 12a–f; note that the subfigures show the PSD of the coefficients of drag, lift,
sideforce, pitching moment, rolling moment, and yawing moment, respectively. Each PSD
is plotted on the ordinate, and the frequency on the abscissa. On each subplot, the CFD
simulation data-series is shown in blue, and the DMD reconstruction data-series is shown in
red. Comparing Figures 8 and 12, we can already tell that, for the medium-frequency range,
the performance of the DMD reconstruction is far better when the data are sampled at
10 kHz as opposed to 4 kHz (as used earlier). The high-frequency ranges from 1000 Hz and
above are well correlated in Figure 12a,c,e,f, with a minor underprediction in Figure 12b,d.
In Figure 12a,b,d,f, we see that the DMD spectra manifested some underprediction in
the PSDs for the medium-range frequencies, from 30 to 700 Hz. Within these frequency
ranges shown in Figure 12c,e, a good correlation between the DMD reconstruction and
the CFD simulation results is evident. At a sampling rate of 10 kHz, flow structures in the
frequency range up to 1 kHz can be expected to have reasonably good anti-aliasing. Thus,
the medium-frequency energies in the DMD reconstructed flow may still be adversely
affected by the noise from the decomposition algorithm. These necessitated us to explore
the development of a procedure for the removal of these undesired artifacts from the
decomposed modes and time dynamics, which are described in the next section.
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Figure 12. PSD of forces and moments obtained from CFD calculations and DMD reconstructions,
sampled at 10 kHz: (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment, and
(f) yawing moment.

4.3.3. Custom Filtering with Data Sampled at 10 kHz

To circumvent the issues discussed above, we made a modification to the commonly
used DMD algorithm. Two changes were made. The first involves the removal of the trun-
cation step of the SVD, and the second involves the introduction of our own custom filtering
of the DMD modes. We filtered the time dynamics based on their predicted amplitudes,
frequencies and contribution toward the total energy using a series of three sequential filters
to identify and remove nonphysical modes. We acknowledge that both the design of the
filtration process and the cutoff criteria each require their own methodological optimization,
which is left for a subsequent investigation. Here, we briefly describe the filtration process.
However, the objective here is to show the concept of filtering out nonphysical modes
and how it improved the DMD predictions. After several trials with many strategies and
alternatives, we developed a custom filtering approach as described below:

• The first filter was a low-pass filter applied to the modes, identified based on their
maximum instantaneous amplitude in the time dynamics term as obtained from
Equation (5). The modes with a maximum instantaneous amplitude greater than 50%
of the zero-frequency mode were removed.

• The second filter was applied to the modes based on their frequency and their ampli-
tude, given by the RMS version of Equation (14). The second filter was designed to
remove high-frequency modes with non-physically excessive energy. To accomplish
this, the modes were plotted in frequency space against the amplitudes; among the
high-frequency modes ( f > 250 Hz), the spurious modes were identified using a
clustering-based anomaly-detection algorithm. Outliers were defined as modes with
an amplitude greater than a moving mean of 10 samples by more than a single local
standard deviation. The outliers thus identified had their associated modes removed.

• The third filter was designed to remove modes that contribute negligible energy to the
system. The remaining modes were sorted based on their contribution toward the total
cumulative energy in the system. In this example, modes contributing collectively less
than 5% to total energy were removed; we suspect that these modes may arise from
the numerical noise. However, this aspect and the effects of the mode cut-off energy
limit need to be further investigated.
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When this modified DMD process was applied to the 10 kHz sampled data, about 30%
of the modes were removed.

Now, let us analyze the same 10 kHz sampled dataset, this time with custom filtering,
in the same manner as before. Figure 13a,b show the mean Cp as predicted by DMD
reconstruction and CFD prediction, respectively. We see that the distribution of mean Cp
on the GV surface is qualitatively the same for both the DMD and CFD results. Figure 9c,d
show the discrepancy in the mean Cp prediction of the DMD results relative to the CFD
results. In both Figure 13c,d, we noted that the discrepancies were O(10−4), which is
the order of magnitude as in Figure 9c,d. However, in Figure 13d, we observed that the
errors are nearly absent from the rear slant face, are reduced on the rear face of the GV,
and are markedly improved along the edges of the front face—all of which are notable
improvements relative to Figure 9d.

Figure 13. Distributions of mean of surface Cp distribution obtained by sampling the data at 10 kHz
and then applying the custom filtering approach: (a) from DMD, (b) from CFD, (c) differences
between (a) and (b), and (d) is the same as (c), but a bottom-right isometric view.

Figure 14a,b show the RMS of the fluctuating component of Cp as obtained from the
DMD reconstruction and CFD simulations, respectively. In contrast to Figure 10a,b, here the
DMD results are virtually identical to the CFD results. Figure 14c,d show the discrepancy
in the RMS of the fluctuating component of Cp predicted by DMD reconstruction relative
to those predicted by the CFD results; similar to before in Figure 14d, we changed the
camera angle to a top-left orientation to visualize the hidden portion of Figure 14c. In
both Figure 14c,d, we noted that the discrepancies were O(10−3), which were similar to
the order of magnitude seen in Figure 10c,d. This indicates a significant improvement in
the prediction of the fluctuating component of the flow field. In Figure 14d, we observed
that the discrepancies in the DMD reconstruction are concentrated along the rear edges
between the stilts. Thus, Figures 13 and 14 indicate that the medium-frequency response of
DMD reconstruction improved through the filtration process. We corroborate this with the
subsequent analysis.

We again integrated the surface static pressure field to obtain the pressure component
of force and moment coefficients from both the CFD simulation and the DMD reconstruc-
tion. Figure 15a–f show a comparison of the time-series data for coefficients of drag, lift,
sideforce, pitching moment, rolling moment, and yawing moment, respectively, against
the CFD predictions. On each subplot, the CFD simulation data are shown in blue, and
the DMD reconstruction data are shown in red. We can see in Figure 15a–f that the DMD
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reconstruction and CFD simulation predictions are very well correlated, which is a notable
improvement from Figure 11a–f. In the DMD reconstruction of Figure 15b,c,e,f, some of
the local peaks associated with the CFD simulation are not captured. This could be due to
excessive losses in the filtration process and is a subject of our next investigation.

Figure 14. RMS of the fluctuating component of surface Cp: (a) from DMD reconstruction obtained
by sampling the data at 10 kHz and then by applying the custom filtering approach, (b) from CFD,
(c) differences between (a) and (b), and (d) is the same as (c), but a bottom-right isometric view.

Figure 15. Comparison of the time histories of CFD-predicted and DMD-reconstructed force and
moment coefficients (obtained by sampling the data at 10 kHz and then applying the custom fil-
tering approach): (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment, and
(f) yawing moment.

Figure 16a–f show the PSD of coefficients of drag, lift, sideforce, and pitching, rolling,
and yawing moments, respectively. Comparing Figures 12 and 16, we can see that the
performance of DMD reconstruction using filtered modes, called fmDMD, is better in the
medium-frequency range. While there remains some room for improvement within the
medium- and high-frequency ranges, we understand that data collected from an IDDES
simulation cannot resolve the very high-frequency flow characteristics; in other words,
this imitation may be due more to the limitations of the CFD approach and less to the
limitations of the DMD approach.
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Figure 16. PSD of forces and moments obtained from CFD calculations and DMD reconstructions
obtained by applying the custom-filtering approach to the data sampled at 10 kHz: (a) drag, (b) lift,
(c) sideforce, (d) pitching moment, (e) rolling moment, and (f) yawing moment.

In order to investigate the effectiveness of DMD to predict force and moment coeffi-
cients, a comparison of statistical quantities (mean and RMS of the fluctuating component)
obtained from the DMD-reconstructed reduced-order flow field against those from the
CFD simulations are presented in Table 1. Clearly, the predictions associated with this
DMD method (developed in this paper) match very well to the CFD data. Note that the
CFD simulation of 2 s of physical time requires 14,400 central processing unit (CPU) hours,
where as the DMD averaging over the same period took 15 s of CPU time.

Table 1. Mean of all aerodynamic coefficients and RMS of their fluctuations as obtained from the
CFD simulation and DMD reconstruction.

CD CL CS CPM CRM CY M

Mean Value from CFD 0.220 −0.062 −0.002 0.019 0.000 0.000

Mean Value from DMD 0.220 −0.062 −0.002 0.019 0.000 0.000

RMS Value from CFD 0.003 0.012 0.006 0.004 0.002 0.001

RMS Value from DMD 0.003 0.012 0.006 0.004 0.001 0.002

4.4. Future State Predictions Using DMD

We next present the effectiveness of the DMD to make future state predictions of the
aerodynamic forces and moments. This was achieved by updating the initial condition
vector, b, in Equation (5), to represent the last time-step shown in Figure 15. Then, the
same coefficients of matrices Φ and Ω were used in Equation (5) to generate future state
predictions of static pressure distribution on the Ahmed body surface. This pressure
distribution was then integrated to calculate the aerodynamic forces and moments.

Figure 17a,b show the differences between the future prediction by the DMD relative
to the known CFD data (the true value). The instantaneous future predictions by the
DMD have small and oscillating differences with reference to the known CFD data. This is
expected, as it is unrealistic to expect to perfectly recreate an instantaneous snapshot of a
stochastic process, such as the turbulent flow past a ground vehicle. As the existing texts
and literature would suggest, for such cases, the parameters of interest are the statistical
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quantities, such as the mean and RMS of fluctuations and spectral distributions. Thus,
we presented a comparison of these time-averaged quantities in Table 2. Generally, the
predictions from the DMD method developed in this paper well matched to the CFD data.
There is a small discrepancy in the mean CFD and mean DMD coefficients of CD, CL and
CPM of between two and six counts. This is hypothesized to come from the low-frequency
oscillations within the flow field that was not captured in the CFD data used to generate the
ROM and is thus not predicted by the DMD. The RMS of the fluctuating components of the
DMD and CFD shown in Table 2 are very well matched. This suggests that the proposed
ROM successfully predicts the medium- and high-frequency motions.

Figure 17. Differences between future predictions of DMD and CFD computations: (a) delta of force
coefficients, (b) delta of moment coefficients. Note that delta implies the DMD predictions relative to
the true CFD simulation data.

Table 2. Mean of all aerodynamic coefficients and RMS of their fluctuations as obtained from the
CFD simulation and future predictions by the DMD-based ROM developed in this study.

CD CL CS CPM CRM CY M

Mean (CFD) 0.220 −0.059 −0.001 0.022 0.000 −0.001

Mean (DMD) 0.218 −0.065 −0.001 0.018 0.000 −0.001

RMS (CFD) 0.002 0.011 0.005 0.003 0.001 0.001

RMS (DMD) 0.001 0.011 0.005 0.003 0.001 0.001

Figure 18a–f show the PSD of future predictions of the DMD relative to the known
CFD data. Similar to Figure 16, spectra of the DMD future prediction are shown in blue,
and spectra of the known CFD data are shown in red. Again, the future predictions by
DMD are able to capture the PSD of the flow field very well. Small discrepancies are seen
in the low-to-medium frequencies in Figure 16e, which indicate that there remains a scope
for improvement of the proposed ROM. A sensitivity analysis and optimization are left for
future work.
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Figure 18. PSDs of future predictions of forces and moments obtained from the the DMD compared
to the known CFD data: (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment, and
(f) yawing moment.

4.5. A Note on Computational Resource Requirements

Finally, in Table 3, we compare the computational resources required to run the DMD
solution shown in Equation (5) against the requirements to run a full-blown CFD simulation.
We can see that the DMD is able to reduce the total CPU time and storage requirements by
two orders of magnitude. The resources required by DMD are thus expected to be within
the capability of an on-board controller on a moving vehicle. The modified DMD process
proposed in this paper has the potential to be combined with a control modification, such as
the DMD with Control (DMDc) algorithm proposed by [18], and effect real-time control of
a moving vehicle. This is a very promising result as a full-blown CFD for real-time control
by an on-board computer is not possible.

Table 3. Computational resources required by DMD and CFD.

Parameter CFD DMD

Processors 144 1

CPU time for the entire time-series 100 h <15 s

CPU time for a single time snapshot 5 s <0.01 s

Storage needed 20 GB <0.20 GB

5. Conclusions

In this paper, we intended to apply the Dynamic Mode Decomposition (DMD) ap-
proach to a high-Reynolds-number flow around an idealized ground vehicle with an
objective of using the DMD as the engine to develop a Reduced-Order predictive Model
(ROM). We observed that the standard DMD algorithm, as available from the existing
literature, can successfully reconstruct the low-Reynolds-number flow fields past a 2D
cylinder. However, when the same algorithm was applied to a high-Reynolds-number
Re, separation-dominated complex flow over an idealized ground vehicle, the existing
methods failed to accurately reconstruct the flow fields using the derived DMD modes.
This implies that a reduced-order reconstruction of the flow field based on the DMD modes
obtained using the existing algorithm would be not very reliable for such flows.
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It was found that even though a time-step may be sufficiently small for a CFD simula-
tion to resolve the flow field accurately, it may be inadequate to generate a well-resolved
dataset required for developing a well-resolved DMD reconstruction methodology. A larger
than adequate time-step caused nonphysical growth rates of the modes, which caused
excessive energy dissipation of the medium-to-high-frequency modes, which eventually
led to total decay of the higher-frequency DMD modes during future-state predictions.
Thus, for high Re flows, the data sampling frequency needs to be higher than what may be
sufficient on the basis of the time-step size needed for a well-resolved IDDES simulation;
this implies that the CFD simulation is needed to be run with a much smaller time-step
than necessary for a well-resolved IDDES. Although the higher sampling rate improves
the observed discrepancies between the DMD reconstructed values and the ground truth
(values from the CFD simulation in this case) for the mean flow variables, the RMS of the
fluctuating quantities still shows significant errors. In addition, spectral analyses show
that the medium-frequency motions reconstructed by the DMD still show nonphysical
dampening. This was hypothesized to be due to the presence of dampening modes ema-
nating from the generation of spurious DMD modes due to the numerical noise present
in the CFD training data. Thus, a mode filtration process was developed to remove the
offending modes from the DMD reconstruction. This resulted in an order of magnitude
improvement in the errors observed in the DMD predictions of the RMS of the fluctuating
components when compared to the ground truth. The ROM synthesized via the proposed
mode filtration process was able to make a future state prediction that had time-averaged
quantities and PSD well correlated to the known CFD data.

The modified DMD reconstruction algorithm presented in this paper was able to
overcome the challenges in the medium-to-high-frequency DMD modes. Thus, we demon-
strated that the method, called mfDMD, is capable of flow field reconstruction that is
correct in the accuracy of the CFD modeling scheme used to generate the training data.
The computational resources required by the mfDMD algorithm look feasible for the im-
plementation alongside a DMD with control modification to effect real-time control of a
moving vehicle by an on-board controller. Applications of the modified DMD algorithm to
aerodynamic interactions between vehicles in close proximity, such as dynamic platooning
conditions [45], and NASCAR race cars subject to ride height and crosswind changes [21,51]
are the subjects of future research.
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