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Abstract: Transient car emission tests generate huge amount of test data, but their results are usually
evaluated only using their “accumulated” cycle values according to the homologation limits. In
this work, two machine learning models were developed and applied to a truck RDE test and
two light-duty vehicle chassis emission tests. Different from the conventional approach, the engine
parameters and fuel consumption were acquired from the Engine Control Unit, not from the test
measurement equipment. Instantaneous engine values were used as input in machine-learning-based
digital twins. This novel approach allows for much less costly vehicle tests and optimizations. The
paper’s novel approach and developed digital twins model were able to predict both instantaneous
and accumulated fuel consumption with good accuracy, and also for tests cycles different to the one
used to train the model.
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1. Introduction

To reduce vehicle emissions and fuel consumption, manufacturers invest enormous
resources for developing different strategies and methodologies to increase the efficiency
of vehicles. Some strategies do not require substantial hardware modification, such as the
introduction of low viscosity/friction engine oils [1–17]. Fuel savings with improved oil
formulations in the order of 1 to 3% [8,9,11] are evaluated by specific test protocols such as
the API sequence VI-A, Mercedes Benz M111 and ECE-15 cycle for truck chassis [11]. For
these, costly hardware and test programs are needed since the impact of oil formulation
and other engine components on fuel consumption is of same magnitude of experimental
measurement deviations in fuel consumption.

Computer and/or empirical models are usually used to predict individual contribu-
tions prior to more expensive engine and vehicle tests; see for example [11,13–16]. During
engine development, numerical models are used for optimizing fuel consumption (as well
as other parameters). Such models can be divided into two main categories:

• Physical-based models: the system physics is described with mathematical equations.
Extensive know-how and a theoretical background are usually required to obtain
reliable and useful models. A trade-off between CPU consumption and model details
is frequently found. These models can range from a detailed subsystem of the engine
using 3D CFD to study an accurate solution that then is extrapolated to the whole
engine [18,19] to a 1D/0D model offering a lower computational cost, but also lower
details of the problem’s physics for reducing fuel consumption [11,16,17,20,21].

• Empirical data models: Such models are data driven, not physics based. Test data
are used to create an abstract mapping of the system and to select the variables to be
studied. A crescent field of investigation involves the use of Artificial Intelligence (AI).
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AI uses computer codes to perform cognitive functions, such as perceiving, reasoning,
learning, and problem solving. It is used in, for example, robotics and autonomous
vehicles, computer vision, language, virtual agents, and machine learning. AI machine
learning involves the use of AI tools to analyze very large data sets. Machine-learning
algorithms detect patterns and learn how to make predictions and recommendations
by processing data and experiences. In this way, a machine learning model can be
considered a digital twin: a nonphysical model that has been designed to accurately
reflect an artificial or physical system, wherein sensors are placed to acquire a variety
of data about the system performance (see Figure 1).
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Figure 1. Machine learning scheme applied to transient vehicle tests.

Transient vehicle tests generate a huge amount of data, making them a potential
subject for analysis using machine learning tools. In an author’s previous publication [22],
data from fuel consumption transient vehicle tests carried out at the Argonne National
lab were analyzed using both semi-empirical and machine learning models to predict
the influence of lower viscosity oils on fuel consumption. The machine learning model
was “trained” using only the cold test phase results, and it was able to predict with good
accuracy the fuel consumption in the hot phase cycle, when the oil temperature is higher
and consequently the oil viscosity is lower.

Various types of machine learning algorithms exist, such as supervised, unsupervised,
semi-supervised, and reinforcement learning algorithms. The literature on these and the
tools they use are abundant and constantly updated. A recent overview can be found
in [23]. Machine learning models have been used to predict vehicle fuel consumption. For
instance, Hien [24] made use of a multilinear regression model to predict the CO2 emissions
and fuel consumption of a light duty vehicle. Katreddi [25] predicted the fuel consumption
of a heavy-duty engine using a Random Forest model, obtaining an error of 0.04% between
the prediction and measurements. Gong et al. [26] trained a Random Forest model with
200 trees and obtained an R2 of 0.86 and an error equal to 0.15%.
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Although more complex and CPU intensive, Artificial Neural Network (ANN) models
tend to have better performance than other models. An ANN provides different config-
urations to train and improve model predictions. The variables that perform the neural
network are the input data, the hidden layers, and the neurons per layer. He [27] used seven
control parameters for the optimization of diesel engine emissions. The developed ANN
predicted the cylinder temperature, cylinder wall heat transfer, cylinder pressure, NOx and
soot emissions. Cruz-Peragon [28] used a combination of angular speed measurements
and an ANN for combustion fault diagnosis. Ziolkowski [29] used an ANN with 12 input
variables to predict the fuel consumption of passenger cars, obtaining an R2 equal to 0.98.
Perrota [30] trained an ANN with 12 input variables to predict the fuel consumption of
trucks, obtaining an R2 equal to 0.85. Du [31] trained 5 ANN for predicting fuel consump-
tion with 8 input variables. Parlak [32] predicted the brake specific fuel consumption and
exhaust temperature of a diesel engine, obtaining a maximum error equal to 0.02%.

Most of the mentioned references trained and tested the models using the same test
data, with usually 75% of the data used for model training, and the other 25% used for
assessing (“testing” in AI jargon) the model fitness. In the current work, two machine
learning model types, the Random Forest and Artificial Neural Network types, were trained
to predict instantaneous fuel consumption using just part or given emission tests, e.g., the
FTP75 cold start. A machine learning digital twin was created and then used to predict
instantaneous fuel consumption for different transient emission tests not used during the
model development. The models were optimized regarding their input variables and
number of trees or neurons per layer. The model accuracy was evaluated using different
engine parameters and sub-data sets. The risk of trusting “only” the statistical values, such
as the model’s R2 value and the error between the model and reality, is discussed.

2. Methodology
2.1. Vehicle Characteristics

ECU or OBD data from three vehicles were used to investigate the use of AI models in
transient tests (see Table 1).

Table 1. Tested vehicle characteristics.

N3 Class Truck
18-Ton Euro 6

SUV *
2016 Mazda CX-9

Light Truck *
2017 Ford F-150

7.0-L, I6 2.5 L I4 3.5 L, V6
CI, TDI SI TDI SI, PFI and DI
210 kW 186 kW 280 kW

1150 Nm 420 Nm 637 Nm

9-speed manual 6-speed automatic 10-speed automatic
* Test data from the Downloadable Dynamometer Database [28] from the Advanced Mobility Technology Labora-
tory (AMTL) at Argonne National Laboratory under the funding and guidance of the U.S. Department of Energy
(DOE) [33].

2.2. Cycle Characteristics
RDE Truck Test

The test conformed to the Brazilian RDE (Real Drive Emissions) specifications, with a
143 km length and time ratios of 14% acceleration, 13% deceleration, 71% cruising and 2%
stop. Figures 2 and 3 show various truck OBD readings during the RDE test.

For the SUV and light truck, data from 4 emission tests from the ANL laboratory [33] were
used: FTP75 cold and hot start, Highway cycle and US06 cycles. Figure 4 shows the mandatory
vehicle speed profile for each cycle, and Table 2 shows the main cycle characteristics.
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Figure 2. Truck OBD readings (km/h and rpm) during the truck RDE test.
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Figure 3. Truck OBD readings during the truck RDE test. Engine torque was calculated from the
OBD torque%.

To comply with the mandatory speed profile, different vehicles will demand different
engine rpm/torque combinations. Figures 5 and 6 show the engine usage maps for the
SUV and the light truck during the different transient cycles. For the light truck, engine
load is referenced as the quantity of air in the cylinder. The nominal displacement volume
is represented by 100%, while values higher than 100% indicate boosting. Notice that
although the FTP75 cold and hot start cycles had the same vehicle speed profile, they
demanded a different engine usage. Notice also that the Highway cycle and especially the
US06 cycle demanded higher rpms and loads from the engine.
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Table 2. Emission cycle characteristics.

FTP75 Highway US06

Stop and Go
Urban Traffic

Free-Flow Traffic at
Highway Speeds

Higher Speed, Harder
Acceleration & Braking

Engine startup Cold and warm Warm Warm
Top speed (km/h) 90 97 129

Average Speed (km/h) 34 77.7 77.9
Max. accel. (m/s2) 1.47 1.43 3.78

Distance 17.7 16.6 8
Time (min) 23 12.73 12.9

Stops 23 None 4
Idling time (%) 18 None 7

2.3. Machine Learning Models

All modern vehicles have an ECU (or OBD) reading and controlling engine parameters.
Using a simple datalogger, detailed and instantaneous readings can be carried out in real
time at a much lower cost than engine or car dynamometer tests. Figure 7 shows a scheme
of using ECU reading and machine learning models to predict, e.g., instantaneous fuel
consumption for different cycles, engine calibrations and even oils with different viscosities
by imposing a different oil temperature to match the oil viscosity to be studied (see example
in [16]).
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Figure 6. Light truck. Engine Operation Points. (a) FTP75 cold start, (b) FTP75 hot start, (c) Highway
cycle, and (d) USA06 cycle.

In transient tests, it is common for more than one hundred variables to be read. These
variables are obtained from external vehicle instrumentation and from the engine control
unit (ECU). Most of the variables are not related to vehicle fuel consumption and can lead
to a machine learning model receiving poor training. The following variables were chosen,
a priori, for most of investigations ahead: vehicle speed and acceleration, engine rpm,
torque, and oil temperature.
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Figure 7. Scheme of using machine learning models and only car ECU reading.

Two different supervised machine learning models were used to predict the instanta-
neous fuel consumption during the cycles. As usual for machine learning, the two models
were only trained with a random subset of 75% of data. For the car and light truck, model
was trained and validated with the FTP 75 Cold phase, and then the model was used to
predict instantaneous fuel consumption for the other three transient cycles.

• Random Forest: The Random Forest method uses bootstrapping to create subsets of
the original dataset containing a random portion of all the elements. The method
involves a combination of multiple tree predictors (see Figure 8) that aggregates the
results, casting the most popular outcome and thus reducing variation compared to
normal decision trees. To find the threshold that best separates the data, random
subsets of features are used. Many trees will be trained in a weaker way and each of
them will produce a different prediction. However, these weaker predictions tend to
cancel out each other, and the stronger predictions tend to dominate. For regression
tasks, the mean or average prediction of the individual trees is used [34].
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• Artificial Neural Network: An ANN is a group of interconnected artificial neurons
interacting with one another in a concerted manner, loosely reproducing the interaction
of neurons in a biological brain (see Figure 9). Each artificial neuron has several inputs
and produces a single output which can be sent to multiple other neurons, meaning
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it exhibits a high degree of connectivity, which is also called multilayer perceptrons.
In this work, multilayer perceptrons with 3 hidden layers and up to 20 neurons per
layer were trained to predict the instantaneous fuel consumption of a given vehicle
during the vehicle test cycle. Hidden layer selection has been used by other authors
to predict fuel consumption in light-duty vehicles [35–40]. In the present study, the
backpropagation (BP) method was used to train the neural network. This is common
practice of fine-tuning the weights of a neural net based on the error rate obtained
in previous epoch (iteration). Proper tuning of the weights ensures lower error rates,
making the model reliable by increasing its generalization.
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Figure 9. Artificial Neural Network model scheme. To evaluate the models’ fitness, three different
indicators were considered.

• R2: R-squared value is used to measure the goodness of fit or best-fit line. The higher
R2, the better the regression model, as most of the variation in actual values from the
mean value is explained by the regression model.

• Mean Squared Error (MSE): Measures the average squared error of the model predic-
tions. For each data point, the squared difference between the predictions and the
target is calculated and used for the averages. The lower the MSE, the better the model.
MSE is calculated as:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

Accumulated error in the cycle (∆%): in the cases discussed in this work, ∆% is the
percentage difference between the model prediction for fuel consumption and the actual
fuel consumption.

3. Results
3.1. Truck RDE

Figure 10 shows the Pearson correlation values for the OBD variables obtained during
the RDE test. As expected, engine torque was the variable with the highest influence on
the fuel rate. The ECU oil temperature was read in the main oil gallery. Notice that truck
acceleration, calculated from the truck speed, had the second highest influence on the
fuel rate.
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Figure 10. Pearson correlation with fuel consumption for the complete RDE truck test.

Three data sets, 0–3000 s, 0–4000 s and the complete RDE test, were used to in-
vestigate the developed Random Forest model’s ability to predict fuel consumption.
Figures 11 and 12 show the results when 75% of the complete RDE test was used for train-
ing. The error for the accumulated fuel consumption during the test, ∆%, was only −0.69%.
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Figure 12. Instantaneous fuel rate: model versus OBD reading.

Figure 13 illustrates the impact of the datasets used for model training/validation.
When using only the 0–3000 s, and when the truck had not yet reached the highway, the
model’s performance was relatively poor. Even though the model was able to predict
the instantaneous fuel rate trends and the R2 was 0.86, the error, ∆%, was 7.6% for the
accumulated fuel during the cycle. When using 0–4000 s, which included one of the four
periods of the highway journey, the R2 was almost unchanged, but the ∆% was reduced to
4.2. When using the complete RDE test (i.e., always 75% random data of the test) to train
the model, the R2 reached 0.95 and the ∆% was only 0.03.
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Figure 14 illustrates the impact of the variables chosen to train the Random Forest
model for the truck RDE test:

• For only the truck speed, the model’s performance was, of course, very poor. The
R2 was 0.06 but the accumulated cycle error for the fuel consumption, ∆%, was only
+1.3%. One should be careful when analyzing the model’s performance. The total
error was (almost by chance) very low, but the model very poorly represented the
actual truck, as indicated by Figure 14a.

• When including the truck acceleration, calculated from the OBD truck speed, the
model’s performance increased significantly. The R2 remained low, but the spiky fuel
rate was reproduced relatively well by the model. See Figure 14b.

• When including the engine torque and oil temperature, the model’s performance was
very good. The R2 increased to 0.95 and the ∆% was only 0.03. See Figure 14c.

• Due to the low variation in the engine rpm during the test, including the rpm led to
almost no difference in the model’s performance. See Figure 14d.

3.2. SUV

In the ANL database, both instantaneous dynamometer measurements and ECU
readings are available. The measured fuel consumption and ECU fuel rate correlated quite
well, as expected. Figure 15 compares the dynamometer equipment measurements with
the ECU readings after bringing the latter to the same unit. For the original 0.1 s time
acquisition, there were some deviations between the ECU readings and dynamometer
measurements. Such deviations almost disappeared when the values were averaged to a
1.0 s data rate.
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Figure 15. ECU fuel flow: dynamometer measurements versus ECU readings. (a) Original data set
(0.1 s); (b) averaged each 1.0 s.

To demonstrate the model’s ability when using only ECU data, the ECU variables
listed in Figure 16 were analyzed. The oil temperature was externally measured by a sensor
installed in the oil dipstick.
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Figure 16. SUV Pearson correlation for the FTP75 cold start.

The variables selected to train the model were as follows:

• From the external vehicle instrumentation: The fuel consumption with the mass flow
meter (target variable), engine coolant temperature and engine oil temperature.

• From the Engine Control Unit (ECU): the engine torque, vehicle speed, engine speed,
intake air pressure, air flow, spark advance, throttle, EGR percentage and lambda.

These variables were selected as, a priori, they were considered to potentially have a
large impact on engine fuel consumption. However, as mentioned earlier, some variables
may be more or less influential depending on the cycle characteristics. Figure 17 shows the
correlation factors for the instantaneous fuel consumption. Figure 18 shows the interdepen-
dency of the different parameters. Some important comments can be made here, which
serve to both illustrate which engine parameters were more influential in each cycle as well
as highlight the machine learning models’ development:

- The air flow, air pressure and engine torque were obviously the major influences on
the instantaneous fuel consumption.
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- Some correlated parameters, such as the engine air pressure and air flow, were proba-
bly able to be omitted, with only engine torque needing to be used instead.

- While the oil temperature had a relatively high influence in the FTP75 cold and hot
start cycles, its influence was negligible in the highway and US06 cycles, in which the
engine was already hot and the engine loading was much more severe.

- The fuel injection, read from the ECU, obviously correlated well with the measured
fuel consumption. As mentioned earlier, this creates the opportunity to use only
the vehicle ECU data (or the truck/bus OBD data) instead of much more expensive
dynamometer or specific measurement equipment. This will be explored further in
Section 3.4.
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Table 3 shows the fitness of the two machine learning models during their training and
the overall cycle in which they were trained (FTP75 Cold start) after model optimization.
The Random Forest model recorded a higher R2 value but also a higher MSE. Most of the
values fitted well with the measurements but with a little higher deviation than the trained
set. Table 4 shows the fuel consumption predictions for each cycle and for the two machine
learning models.

In the training cycle (FTP75 cold start), the Random Forest model was the best fitting
model for estimating the instantaneous fuel consumption. However, it recorded worse
predictions for the other considered cycles, obtaining, for instance, an error of almost 8%
for the US06 cycle. The reasons for this behavior include the fact that there were different
engine operating points in each test cycle. The Random Forest model is less flexible when
the values used are not those used for training. While the HWY operating points were in
the same engine map region of the cycle used for model training (FTP75), during the more
aggressive US06 cycle, the engine reached higher power than that covered in the model
training (see Figure 6).
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Table 3. Results for SUV—FTP75 cold start.

Training Overall Cycle

R2 MSE R2 MSE
Random Forest 0.92 0.004 0.97 0.011

ANN 0.95 0.041 0.95 0.042

Table 4. Fuel consumption of SUV.

Measured [g] Model Error [%]
Random Forest ANN

Cold Start 832.9 0.1 0.1
Hot Start 745.3 1.4 0.7

HWY 750.4 2.4 −0.2
US06 995.7 −7.9 −0.2

Figures 19 and 20 compare the ANN predictions with the actual measurements for the
instantaneous fuel consumption of the SUV. The instantaneous behavior was well predicted,
with the model only failing in the very abrupt peaks.
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Figure 19. ANN model predictions versus actual measurements of instantaneous fuel consumption
of the SUV. (a) FTP75 cold start; (b) FTP75 hot start; (c) Highway; (d) US06.

3.3. Light Truck

The results for the light truck presented similar trends to those for the SUV, but the
model errors were higher. Table 5 shows the model predictions and actual measurements
for the four cycles.
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Figure 20. ANN model predictions versus actual measurements of the instantaneous fuel consump-
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Table 5. Fuel consumption of light truck.

Measured [g] Model Error [%]
Random Forest ANN

Cold Start 1019.5 0.25 −0.08
Hot Start 924.8 6.50 −1.21

HWY 881.0 −0.20 −1.78
US06 1194.4 −10.4 −1.56

3.4. Using Only ECU Data for the Light Truck Test

Figure 21 shows the ANN model results when it was trained with the ECU fuel
rate data and, as earlier, when it used the FTP 75 cold start data. The model was then
used to predict the instantaneous fuel rates for the other three cycles. The R2 values
were 0.99, 0.96 and 0.96 for the cold start, hot start, and highway cycles, respectively. All
of these R2 values were higher than those obtained when using the dynamometer fuel
consumption measurements. Only the US06 showed a lower R2 value of 0.84, which
was still very similar to the R2 value of 0.85 obtained when using the dynamometer fuel
consumption measurements.
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4. Discussion

In this study, the machine learning models used were able, with reasonable accuracy,
to predict instantaneous fuel consumption during different vehicle cycles. The engine map
of the training data needed to cover the ones used for prediction. For example, using the
US06 cycle as the training data for the other three cycles significantly decreased the model
accuracy. For the SUV, the R2 drastically reduced from 0.89 to 0.20 and from 0.88 to 0.56 for
the FTP75 cold and hot start cycles, respectively.

Transient cycles produce a huge amount of measurement data. Fuel consumption, as
well as other performance criteria, is affected differently by various engine parameters,
such as oil temperature, EGR%, spark timing, etc. A simple plot of the correlation factors,
as shown in Figures 10 and 16, Figures 17 and 18, can indicate the parameters that are more
influential in the different cycles and regarding the optimization goals.

Some of the predictions carried out measured several parameters (the engine lambda,
EGR%, etc.). Information on these parameters was available in the measured data. In more
realistic cases, fewer instantaneous parameters would probably be available. Regardless,
the proposed AI method can be used to carry out much cheaper studies, especially those
using transient cycles with huge amounts of data, as demonstrated in Sections 3.1 and 3.4.

Further, the number of trees and neurons in the Random Forest and ANN digital twins
methods, respectively, was optimized. This optimization was applied in addition to the
intrinsic model training, in which each tree or neuron was “optimized”. For the Random
Forest method, the intrinsic optimization process occurs in each tree after it receives a
subset of the training data. In each node, the dataset is divided in two and a threshold value
is obtained by minimizing the sum of squared residuals. The process of creating nodes
continues until a “leaf node” is reached and a prediction value is obtained; this can occur
for different reasons, but the simplest is because the minimum number of observations
has been hit. For the ANN method, the optimization process uses gradient descent via
backpropagation to define the value for each weight, wi, bias and activation transfer to
achieve the “best” model performance. See Figure 22 for more details.
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4.1. Optimizing Number of Trees in Random Forest

Theoretically, the number of decision trees in a Random Forest model can range from
one up to infinity. The higher the number of decision trees, the higher the precision of the
model. However, a high number of decision trees can cause high CPU consumption, so
in this study, the model was optimized. The model was trained using 1 to 1000 decision
trees. After this, the R2 coefficient and MSE training and validation values were used to
select the optimum number of trees. It was found that for the studied cases, 50 trees already
produced a good prediction. See Figure 23 for more details.
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Figure 23. For the SUV case, R2 and MSE values for different numbers of trees in the Random
Forest model.

After the training and validation with the FTP75 cold cycle was carried out, the
number of trees with a good balance between the prediction error and CPU time was
found to be 62 and 41 for the SUV and light truck, respectively. Using a higher number of
trees did not increase the fit of the model and increased the CPU time. Table 6 shows the
model indicators.
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Table 6. Model indicators for the cold start cycle used for training.

SUV Light Truck

Number of Trees 62 41
R2 0.92 0.88
MSE training 0.004 0.003
MSE validation 0.031 0.075

4.2. Optimizing Number of Neurons in the ANN Model

Three hidden layers were chosen for predicting the fuel consumption during each
vehicle test cycle. Each hidden layer had a maximum of 20 neurons. The criterion to
select the number of neurons per hidden layer was that the maximum difference between
the measured and predicted fuel consumption in the cycle should be 1.5%. A total of
15 combinations accomplished that criterion. With those combinations, the neural network
selected was that which had the lowest average absolute error in predicting the fuel
consumption. See Table 7.

Table 7. Different combinations of hidden neurons per layer for the SUV.

Hidden Neurons Accumulated Pred. vs. Measured [%] Avg Absolute Error [%]
Layer 1 Layer 2 Layer 3 Cold Start Hot Start HWY US06

1

1 2 0.10 0.76 −0.82 −0.89 0.65
2 7 0.08 0.66 −0.15 −0.19 0.27
3 11 −0.02 0.48 −0.72 −0.63 0.46
14 1 0.10 0.75 −0.87 −0.89 0.65

2

1
6 −0.59 −0.03 0.57 0.03 0.31

11 −0.12 0.33 −0.43 −0.90 0.44
4 18 0.05 0.72 −0.78 −0.53 0.52
8 19 0.19 0.66 −0.35 −0.43 0.40
13 9 −0.22 0.33 −0.76 −0.53 0.46
5 2 −0.08 0.71 0.19 −0.49 0.37
7 2 −0.14 0.72 −0.18 −0.20 0.31

7
2 6 0.03 0.71 0.41 −0.59 0.43
9 11 −0.29 −0.02 0.76 −0.11 0.30

15 15
7

−0.90 −0.51 0.58 −0.41 0.60
19 10 −0.07 −0.49 0.54 −0.91 0.50

For the SUV, the combination that fitted best with the criterion selected was the ANN
with one, two and seven for the first, second and third neurons, respectively. See Table 6
for more details. For the light truck, the same approach led to a best combination with 5, 18
and 14 neurons, with an average absolute error of 1.2% obtained.

4.3. Future Work

The developed digital twins methods can be used to carry out much less costly vehicle
tests and optimizations. As an example, the authors are currently using this method to
predict fuel consumption and CO2 emissions. See Figure 24 for more details.
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