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Abstract: The main objective of this research paper was to develop two intelligent state estimators
using shallow neural network (SNN) and NARX architectures from a large class of deep learning
models. This research developed a new modelling design approach, namely, an improved hybrid
adaptive neural fuzzy inference system (ANFIS) battery model, which is simple, accurate, practical,
and well suited for real-time implementations in HEV/EV applications, with this being one of the
main contributions of this research. On the basis of this model, we built four state of charge (SOC)
estimators of high accuracy, assessed by a percentage error of less than 0.5% in a steady state compared
to the 2% reported in the literature in the field. Moreover, these estimators excelled by their robustness
to changes in the model parameters values and the initial “guess value” of SOC from 80–90% to
30–40%, performing in the harsh and aggressive realistic conditions of the real world, simulated by
three famous driving cycle procedure tests, namely, two European standards, WLTP and NEDC,
and an EPA American standard, FTP-75. Furthermore, a mean square error (MSE) of 7.97 × 10−11

for the SOC estimation of the NARX SNN SOC estimator and 5.43 × 10−6 for voltage prediction
outperformed the traditional SOC estimators. Their effectiveness was proven by the performance
comparison with a traditional extended Kalman filter (EKF) and adaptive nonlinear observer (ANOE)
state estimators through extensive MATLAB simulations that reveal a slight superiority of the
supervised learning algorithms by accuracy, online real-time implementation capability, in order to
solve an extensive palette of HEV/EV applications.

Keywords: lithium-ion battery; state of charge; nonlinear observer estimator; EMC battery model;
deep-learning-based models; extended Kalman filter state estimator; MATLAB Simulink software

1. Introduction

The lithium-ion battery (LIB) is an essential electrical component of the energy storage
system (ESS) for a hybrid/electric vehicle (HEV/EV). It is an electrochemical device that
stores chemical energy to convert it into electricity. Compared to other battery technologies,
it is recommended due to its high energy density, low memory effects, lighter weight, long
life, and low self-discharge rate, thus outperforming all other competitors in the automotive
battery market [1]. Lithium-ion batteries (LIBs) power many HEVs and EVs due to their low
CO2 emissions concentration in the air; it is an essential environmental factor in reducing
the greenhouse effect on our planet. This is why the energy sources needed for these

Vehicles 2023, 5, 535–564. https://doi.org/10.3390/vehicles5020030 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles5020030
https://doi.org/10.3390/vehicles5020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0002-2742-5119
https://doi.org/10.3390/vehicles5020030
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles5020030?type=check_update&version=3


Vehicles 2023, 5 536

vehicles have a continuous dynamic evolution, and battery manufacturing technology is
revolutionary in this field. Moreover, at the same time, there is an attempt to discover new
sources of renewable energy and to build the most perfect and highly complex infrastructure
for fast-charging vehicles at a reasonable cost. From an immediate perspective, there are
high expectations for the realization of electricity supply networks capable of covering
a large area of the locations belonging to main routes between cities so that they can be
powered while travelling by remote control from the nearest electricity supply station.
Along with remarkable improvements in Li-ion batteries, making a considerable progress
in anode and cathode material technologies, the HEVs/EVs will continue to be powered by
LIBs and nickel metal hydride (NiMH) as the leading competitors for some time from the
battery market. Readers interested in learning more about the strengths and weaknesses
of the primary different battery chemistries can refer to [1]. The vulnerability of LIBs to
“short circuit and overcharge in dangerous situations”, which in the worst-case scenario
could lead to a battery explosion and fire, might be prevented by integration of the battery
into a battery management system (BMS) structure [2–4]. The BMS is also integrated
into the HEV/EV architecture and monitors internal battery parameters at the cell and
battery pack levels. Battery state of charge (SOC) is a critical internal parameter that
must be monitored due to its strong impact on the battery health and lifetime [3–10].
This parameter is defined as remaining battery capacity during the time period when the
battery discharges. The main drawback is that LIB SOC cannot be measured directly due
to the lack of an accurate measurement sensor; thus, a proper estimation technique is
required to prevent dangerous situations and battery performance degradation [4–18]. The
majority of Li-ion battery SOC estimation algorithms are model-based, among them the
most popular extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter
(PF), and adaptive nonlinear observers (ANOE) are intensively used and well documented
in the literature of the field [4–17]. The performance of these SOC estimators and terminal
voltage predictors, such as estimation accuracy, convergence, and robustness to changes
in the battery model parameters and initial “guess value” for battery SOC, as well as
to the real-world driving conditions, is limited by many factors, such as the type of the
application, the aggressivity of the battery model nonlinearity, uncertainties and unmodeled
battery dynamics, battery model accuracy, and the difficulties experienced to find the best
values for tuning parameters, among others. A viable alternative to these state estimation
algorithms is a large class based on online input–output dataset measurement algorithms
developed under machine and deep learning models [18–26]. The overall quality of their
performance is limited also by the accuracy and the complexity of the input–output dataset
measurements, number of samples, an appropriate choice of the learning parameters of
neural networks’ structures, selection of the training data set, validation and testing, type of
the application, and so on. An interesting review that summarizes the three main LIB SOC
estimation methods implemented in HEV/EV applications, i.e., model driven (for example,
electrochemical, ECM RC, and hybrid models to build SOC estimation estimators), data
driven (i.e., filter algorithms such as H-infinity and Kalman filters), model and data driven,
and machine learning (ML) (such as fuzzy learning, support vector machine (SVM), neural
networks (NNs) from the traditional ML category, and the second category that includes
deep learning (DL)) reported in the literature in the field is found in [27]. A full picture of
these methods is provided in a detailed diagram presented in same reference [27]. Moreover,
the interested readers can gather additional and complete information on some of the cited
works in [27] for each of mentioned category. A large dataset of input–output measurement
related to a particular Li-ion battery, considering the impact of the changing of temperature
on battery SOC, terminal voltage, and battery model parameters, very useful for algorithms
validation, is provided in [28]. On the basis of this large dataset in [29] is a LIB SOC
estimator in Simulink built using a deep learning network (DLN) written in MATLAB
code, thus being a valuable inspiring source for the interested implementers in the field.
Compared to the traditional EKF SOC estimator and terminal voltage predictor that usually
require precise parameters and knowledge of the battery composition and its physical
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response, the deep learning neural networks are a data-driven approach that require
minimal knowledge of the LIB or its nonlinear behavior [28,29]. Moreover, it is worth
mentioning that the durability and reliability of BMSs in HEV/EV applications to estimate
the SOC is a tedious task since “as the process of battery degradation is usually non-linear,
it is extremely cumbersome work to predict SOC with substantially less degradation”, as is
mentioned in [30]. Furthermore, in [30] is an extraordinary research work for a full review
on the full state of the art of six machine learning methods with great inspiring potential
from the implementers to make the difference between machine learning and deep learning
modeling approaches and to apply or adapt in different HEV/EV applications one or more
of these methods, namely, artificial neural network (ANN), support vector machine (SVM),
linear regression (LR), Gaussian process regression (GPR), ensemble bagging (EBa), and
ensemble boosting (EBo). In [30], the authors made a rigorous error analysis of the model
that “is carried out to optimize the LIB’s performance parameter”. Performance analysis
was also made for all six algorithms by comparison on the basis of the MSE and RMSE
statistic performance indices that revealed a superior performance of ANN and GPR in
contrast to SVM, LR, EBa, and EBo methods with attractive values of (0.0004, 0.00170) and
(0.023, 0.04118), respectively [30]. Motivated by the experience accumulated over the years
in the field of control systems, this research article focused on the choice of the most accurate
LIB model as a form of practical support for the design and implementation of four SOC
state estimators, two traditional (EKF and NOE) and two intelligent based on deep learning
models (NARX shallow neural network (SNN) and a simple shallow neural network
(SNN)), through intensive simulations performed in an attractive MATLAB Simulink
R2022b software programming environment. In this research work, the application of
model-based SOC estimators and data-driven deep learning methods in HEVs/EVs’ Li-ion
battery SOC estimation followed the following main aspects: (1) an overview of the EKF,
NOE, NARX, and shallow deep learning SOC estimators built on a simple, accurate, and
robust LIB model in real-world driving conditions (WLTC, DENC, EFT-75); (2) the accuracy
of the LIB model and of the input–output dataset generated by this model in EV applications
being the most important in building the four LIB SOC estimators, as well as the fact that
the deep learning neural network structure can determine the performance of LIB SOC
estimation in the deep learning method; (3) about two different neural networks structures
of deep learning in HEVs/EVs’ LIB SOC estimation problem application; (4) analysis and
evaluation of the characteristics of two neural networks as well as the future development
of SOC estimation in the deep learning methods. The remaining chapters of this paper are
structured as follows. Section 2 discusses the design, implementation, and validation of
the ECM RC LIB model and the development of the most smooth and accurate adaptive
neural fuzzy inference system (ANFIS) model for OCV(SOC) nonlinear function. On the
basis of this battery model is the development of two accurate and robust traditional SOC
estimators, namely, an EKF and an ANOE. A benchmark at the end of the section was
built with the statistical criteria assessment (RMSE, MSE, MAE) only for the FTP-75 driving
current cycle profile test, due to space limitations in the manuscript, for performance
comparison results. In Section 3 is the design and implementation online in MATLAB
R2022b, a NARX shallow neural network SOC estimator and a simple shallow neural
network voltage predictor. The MATLAB simulation results are presented at the end of
the third section. Section 4 contains the discussion, and Section 5 concludes the research
paper’s contributions.

2. Materials and Methods
2.1. Li-Ion Battery—Equivalent Electric Circuit Schematics

For a better understanding of the battery model concept and further developments
for the design and implementation of state estimation (SOC) algorithms, a first-order
RC equivalent circuit model (ECM) was chosen [12]. This straightforward model has
been proven to be efficient and well suited in real-time implementations for many HEV
applications. In the case study, for “proof of concept” and simulation purpose proposes a
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Li-ion cobalt oxide ECM battery model with a nominal capacity of 6.6 Ah and a nominal
cell voltage of 11.1 V for a possible integration into a battery pack of a hybrid electric car.
The electronic schematic of the battery cell built in a NI MULTISIM 14 Editor is shown
in Figure 1. The values of the components are also shown for each component, where R
represents the internal resistance of the battery, assumed for simplicity purposes to have
the same values for the charging cycle (the input current u(t) = i(t) < 0), Rch = 15.9 mΩ,
and for the discharging cycle (u(t) > 0), Rdsch = 15.9 mΩ. Both components of the parallel
bias cell, the resistor R1 and the capacitor C1, play an essential role in ensuring the fast
dynamics of the adopted model. For the simplicity of the model, it is assumed that they
have constant values, so they do not depend on temperature. The OCV represents the open
circuit voltage of the battery (Thevenin voltage of the ECM model), highly nonlinearly
dependent of SOC (state variable x1); V1 (state variable x2) denotes the polarization voltage
of the R1C1 cell, and the output voltage y(t) = Vbat represents the terminal output voltage
of the Li-ion battery.
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2.2. Li-Ion Battery—Simulink Simscape Rint Model Simulation

A Simulink Li-ion cobalt oxide generic battery model is proposed as a valuable tool
for model validation as long as it is widely used for Simulink simulations in the automotive
industry as a viable alternative to the old NREL ADVISOR simulator [31,32]. For “proof of
concept” and simulation purposes, we selected a pre-set Li-ion cobalt oxide (LiCO2) Rint
Simscape generic model of 6.6 Ah and 11.1 V rated nominal voltage, with the setup shown
in Figure 2a–d. Each of these figures comes with one of the following pieces of information,
namely, the Simscape model of the battery experimental setup shown in Figure 2a, a Li-ion
battery setup with the initial conditions for SOC (90%) and ambient temperature (20 ◦C),
the characteristic curves for three constant discharging current rates shown in Figure 2b. A
two-cycle repeated New European Driving Cycle (NEDC) as an urban/suburban driving
European regulated procedure test is shown in Figure 2c, which is valuable to proving
the battery model SOC estimation accuracy and robustness performance. The Simulink
simulation results (focused on the NEDC driving cycle current profile test and on the
LIB SOC) are shown in Figure 2d,e. To analyze the robustness performance of the SOC
estimators EKF and NOE in real-life driving operating conditions, three driving cycles
current profile tests were used in the case study. The first procedure test consists of running
an FTP-75 cycle followed by a highway fuel economy test (HWFET) cycle. The EPA FTP-
75 is the standard federal exhaust emissions driving cycle in a city that uses an Urban
Dynamometer Driving Schedule (UDDS) and consists of a series of tests defined by the
U.S. Environmental Protection Agency to measure tailpipe emissions and the fuel economy
of passenger cars (excluding light trucks and heavy-duty vehicles). The total test time for
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the FTP-75 is 2457 s (i.e., 40.95 min), the top speed is 56.7 mph, and the average speed is
21.4 mph. The distance is approximately 11 miles. The second current profile test NEDC
is a European standard regulated procedure that combines the European Union Urban
Driving Cycle and Extra-Urban Driving Cycle (EUDC), almost two times shorter than the
FTP-75 test (i.e., approx. 20 min). Until now, it has been used on a large scale for emission
certification of light duty vehicles in Europe and for HEV/EV energy consumption and
regenerative breaking performance testing applications. Introduced in 2017, the second one-
procedure test is a new European Worldwide Harmonized Light Vehicle Test Procedure
(WLTP) including the version WLTC, which comes up with substantial methodology
improvements to NEDC. It has the ability to test vehicles under conditions that are more
realistic and better mimic on-road performance. For the case study, NEDC is suitable
enough for the choice of a HEV Small Car (SMCAR) of 75 Kw rated power applications.
The MATLAB simulation results shown in Figure 2c–e for the NEDC procedure test are
completed in Section 2.6.3 with the performance of SOC estimation and battery terminal
voltage prediction. This performance is obtained by using a high SOC accuracy Extended
Kalman Filter (EKF) LIB SOC estimator and reveals the EKF SOC estimator effectiveness,
demonstrating its popularity gained over the years as the most suitable SOC estimator for
real-time deployments of many HEV applications, for whose parameter fine-tuning values
and design are presented in Appendix A [11,14,15].

2.3. Li-Ion ECM RC Continuous Model in State-Space Description

The proposed first-order ECM RC Li-ion battery model can be easily implemented in
a state-space representation by two first-order differential equations, one for the battery
state-of-charge, designated as state variable x1, to describe the remaining battery capacity
(Qrem) after discharging the battery, and second one that describes the fast dynamics of
the RC polarization cell, designated as state variable x2. The state space of the equivalent
model is combined with a third static output–states–input equation to produce the battery
terminal voltage y = Vbat, well known as a single-input and single-output (SISO) model.
The last equation of the battery model is also a combination of a highly nonlinear function
representing the open-circuit voltage (OCV), known also as Thevenin voltage, and the
voltage dropped on the RC polarization cell. Finally, this combination generates the
terminal battery voltage designated by output variable y.
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Figure 2. The Simscape generic model experimental setup for Simulink simulations of a LiCO2 bat-
tery with 6.6 Ah and 11.1 V nominal voltage for possible integration into the battery pack of a HEV: 
(a) Experimental setup. (b) The pre-set battery setup. (c) The FTP-75 driving cycle current profile. 
(d) NEDC profiles tests in miles per hour (mph) and current profile in amps (A). (e) SOC Simulink 
generic model simulation result (focus to the interest input driving cycle current profile NDEC and 
Battery SOC Simscape generic model). 
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The whole Li-ion battery model (LIBM) provided by Equation (1) excels in its sim-
plicity, high capability of capturing the entire dynamics of the battery, ease in real-time
implementation, and usefulness as a form of support to build the proposed state estima-
tion algorithms:

dx1

dt
= − η

Qnom
u(t), u(t) ≥ 0, f or battery discharging, u(t) ≤ 0, f or battery charging (1)

dx2

dt
= − 1

R1C1
x2 +

1
C1

= − 1
T1

x2 +
1

C1
, T1 = R1C1[s], denoting the time constant (2)

y = h(x1)− x2 − Ru(t), h(x1) = OCV(SOC) = k0 − k1
1
x1
− k2x1 + k3 ln(x1) + k4 ln(1− x1) (3)

where k0, k1, k2, k3, k4 represent the coefficients of the combined model that is well known as
the Shepherd, Unnewehr universal, and Nernst combined model [13–15]. Their values are
estimated by using the least squares errors for a curve fitting identification method that is
based on the data extracted from the manufacture OCV specifications sheet of the Li-ion bat-
tery selected for this case study [9–13]. In the LIBM described by the set of Equations (1)–(3),
the input variable u(t) = i(t) has the physical denotation of a DC instantaneous current
that flows through the battery, and the physical meaning for output variable y(t) = Vbat(t)
is a DC instantaneous terminal battery voltage. Moreover, T1 = R1C1[s] represents the time
constant of the polarization R1C1 cell to describe the fast battery dynamics. To simulate and
validate the LIBM and to demonstrate the effectiveness of the real-time SOC estimators that
are developed and implemented in an attractive MATLAB Simulink software environment,
as is shown in the following sections, the nominal values for the LIBM ECM parameters,
namely, for R, R1, C1, and the coefficients of nonlinear function OCV(SOC), are similar
to those used in [13–15]. The impact of the output terms of the nonlinear representation
of OCV(SOC) function shown in Equation (3) in the combined model is significant in
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increasing the accuracy of the Li-ion battery EMC combined model, which proves also that
it is amongst the most accurate formulations seen in the literature in the Evs/HEVs field.

2.4. LIBM ECM RC Discrete Time State-Space Representation

In most cases, to implement the battery model and SOC estimation algorithms, a
compact discrete-time equivalent equation in matrix form is required, derived from the
continuous-time description (1), (2), and (3) by using the first-order term Taylor series
development, as follows,

x(k + 1) = Ax(k) + Bu(k),
dx1

dt
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𝑔(𝑥1(𝑘)) = 𝑘0 − 𝑘1
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𝑥1(𝑘)
+ 𝑘3 𝑙𝑛(𝑥1(𝑘)) + 𝑘4 𝑙𝑛(1 − 𝑥1(𝑘)) (7) 

where Ts is the sampling time in [s], 𝑡 = 𝑘𝑇𝑠, 𝑘 ∈ 𝑍+, 𝑥(𝑘) = 𝑥(𝑘𝑇𝑠), 𝑦(𝑘) = 𝑦(𝑘𝑇𝑠), 𝑢(𝑘) =
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x1(k + 1)− x1(k)
Ts
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dt

Vehicles 2023, 5 542 
 

 

represents the time constant of the polarization 𝑅1𝐶1 cell to describe the fast battery dy-

namics. To simulate and validate the LIBM and to demonstrate the effectiveness of the 

real-time SOC estimators that are developed and implemented in an attractive MATLAB 

Simulink software environment, as is shown in the following sections, the nominal values 

for the LIBM ECM parameters, namely, for R, R1, C1, and the coefficients of nonlinear func-

tion OCV(SOC), are similar to those used in [13–15]. The impact of the output terms of the 

nonlinear representation of OCV(SOC) function shown in Equation (3) in the combined 

model is significant in increasing the accuracy of the Li-ion battery EMC combined model, 

which proves also that it is amongst the most accurate formulations seen in the literature 

in the Evs/HEVs field. 

2.4. LIBM ECM RC Discrete Time State-Space Representation 

In most cases, to implement the battery model and SOC estimation algorithms, a 

compact discrete-time equivalent equation in matrix form is required, derived from the 

continuous-time description (1), (2), and (3) by using the first-order term Taylor series de-

velopment, as follows, 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),
𝑑𝑥1

𝑑𝑡
≝

𝑥1(𝑘 + 1) − 𝑥1(𝑘)

𝑇𝑠
,
𝑑𝑥2

𝑑𝑡
≝

𝑥2(𝑘 + 1) − 𝑥2(𝑘)

𝑇𝑠
 (4) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑔(𝑥1) (5) 

𝑥(𝑘) = [
𝑥1(𝑘)
𝑥2(𝑘)

] = [
𝑆𝑂𝐶(𝑘)
𝑉1(𝑘)

] , 𝐴 = [

1 0

0 1 −
𝑇𝑠

𝑇1

] , 𝐵 =

[
 
 
 −

𝜂𝑇𝑠

𝑄𝑛𝑜𝑚

𝑇𝑠

𝐶1 ]
 
 
 

, 𝐶 = [−𝑘2 −1], 𝐷 = [−𝑅] (6) 

𝑔(𝑥1(𝑘)) = 𝑘0 − 𝑘1

1

𝑥1(𝑘)
+ 𝑘3 𝑙𝑛(𝑥1(𝑘)) + 𝑘4 𝑙𝑛(1 − 𝑥1(𝑘)) (7) 

where Ts is the sampling time in [s], 𝑡 = 𝑘𝑇𝑠, 𝑘 ∈ 𝑍+, 𝑥(𝑘) = 𝑥(𝑘𝑇𝑠), 𝑦(𝑘) = 𝑦(𝑘𝑇𝑠), 𝑢(𝑘) =

𝑖(𝑘) = 𝑢(𝑘𝑇𝑠) = 𝑖(𝑘𝑇𝑠). Moreover, the constants 𝜂 and 𝑄𝑛𝑜𝑚 represent the coulombic ef-

ficiency for charging and discharging cycles, which for simulations are assumed to have 

same value for both cycles and nominal value of the battery capacity, respectively. 

In the next sections, the nonlinear function 𝑔(𝑥1(𝑘)) is maybe linearized around an 

operating point to develop real-time SOC estimators, similar to in [13–15]. To analyze the 

behavior of the proposed LIBM EMC RC combined model for different driving conditions, 

such as urban, suburban, and highway, the FTP-75 driving cycle current profile tests were 

introduced in the previous Section 2.2. 

2.5. LIBM ECM RC OCV(SOC) ANFIS Model 

Starting from the trainingData set, consisting of the collection of LIB SOC and OCV 

of input–output measurements generated from the LIB ECM RC model, a helpful specific 

MATLAB function anfis (trainingData) is required to build the LIB OCV output Sugeno 

fuzzy inference system (SFIS) and to tune the FIS parameters. Using a grid partition 

method, an FIS object is automatically generated, as is shown in Appendix A.2 [11,18]. The 

LIB trainingData set (SOC, OCV) is trained to generate the most accurate ANFIS model of 

the LIB ECM RC by using the fastest training algorithm, for example, a Levenberg–Mar-

quardt “trainlm”, or others, on the basis of a combination of the least-squares error (LSE) 

and a backpropagation gradient descent method to model the training data. An important 

step in the training dataset is to choose the options, as a second argument of the MATLAB 

function syntax anfis (trainingData, options), and to tune a FIS using the specified train-

ingData and options, as one can see in the ANFIS algorithm summary steps from Appen-

dix A.2. Beneficial for the implementer in using this MATLAB function is its excellent flex-

ibility in the selection of an initial FIS object for tuning, validation, and overfitting 
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g(x1(k)) = k0 − k1
1

x1(k)
+ k3ln(x1(k)) + k4ln(1− x1(k)) (7)

where Ts is the sampling time in [s], t = kTs, k ∈ Z+, x(k) = x(kTs), y(k) = y(kTs),
u(k) = i(k) = u(kTs) = i(kTs). Moreover, the constants η and Qnom represent the coulom-
bic efficiency for charging and discharging cycles, which for simulations are assumed to
have same value for both cycles and nominal value of the battery capacity, respectively.

In the next sections, the nonlinear function g(x1(k)) is maybe linearized around an
operating point to develop real-time SOC estimators, similar to in [13–15]. To analyze the
behavior of the proposed LIBM EMC RC combined model for different driving conditions,
such as urban, suburban, and highway, the FTP-75 driving cycle current profile tests were
introduced in the previous Section 2.2.

2.5. LIBM ECM RC OCV(SOC) ANFIS Model

Starting from the trainingData set, consisting of the collection of LIB SOC and OCV
of input–output measurements generated from the LIB ECM RC model, a helpful specific
MATLAB function anfis (trainingData) is required to build the LIB OCV output Sugeno
fuzzy inference system (SFIS) and to tune the FIS parameters. Using a grid partition
method, an FIS object is automatically generated, as is shown in Appendix A.2 [11,18]. The
LIB trainingData set (SOC, OCV) is trained to generate the most accurate ANFIS model
of the LIB ECM RC by using the fastest training algorithm, for example, a Levenberg–
Marquardt “trainlm”, or others, on the basis of a combination of the least-squares error
(LSE) and a backpropagation gradient descent method to model the training data. An
important step in the training dataset is to choose the options, as a second argument of
the MATLAB function syntax anfis (trainingData, options), and to tune a FIS using the
specified trainingData and options, as one can see in the ANFIS algorithm summary steps
from Appendix A.2. Beneficial for the implementer in using this MATLAB function is
its excellent flexibility in the selection of an initial FIS object for tuning, validation, and
overfitting prevention in training data; its training algorithm options; and its ability to
display training progress information. Currently, remarkable research in the artificial
intelligence (AI) field is conducted to develop a strong theoretical background related
to stochastic, machine learning, and deep learning models using shallow or deep neural
network architectures, fuzzy logic design, and the ANFIS modelling approach, helpful
in developing new and suitable algorithms and techniques for real-time implementation
in the most attractive and comprehensible software programming platforms, such as
MATLAB, Simulink, and Phyton, in an extensive palette of HEV/EV applications [11,19].
In Appendix A.2 is a summary of the most significant MATLAB code key lines, beneficial
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for MATLAB readers and implementers for fast implementation and online generation of
the ANFIS models entirely on the basis of the input–output measurement dataset suggested
in [11,19]. The MATLAB simulation results are depicted in Figure 3a–c, for the OCV(SOC)
ANFIS model during the training phase (a), for the LIB ECM RC OCV(SOC) model (b), and
for LIB SOC for a complete discharging cycle of the battery (c). Figure 3a reveals a very
accurate OCV(SOC) ANFIS model of LIB, a model that is required to build all four accurate
SOC estimation algorithms in the following sections.
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full battery discharge occurs for a total duration of 8030 s, to be exact, equivalent to re-
peating 3.2 times the standard FTP-75 discharge current profile (2478 s), as shown in Fig-
ure 4a–d. The SOC for a full discharge battery is revealed in Figure 4a. Figure 4b presents 
the evolution of the battery OCV over the same period of time as for SOC in Figure 3a. 
The MATLAB simulations result during training phase to build the most accurate ANFIS 
battery model OCV(SOC), which is depicted in Figure 4c. A careful analysis of this result 
reveals that the OCV(SOC) nonlinearity described in Equation (3) was approximated with 
high accuracy by a smooth ANFIS model. The following developments mainly focus on 
the OCV(SOC) ANFIS model. Figure 4d shows the evolution of the battery terminal volt-
age on the same duration as is in Figure 4a–c. 

Figure 3. MATLAB simulation results for the ANFIS model of nonlinear function OCV(SOC): (a) OCV
ANFIS model—training phase; (b) OCV representation in time; (c) Li-ion battery SOC during a
complete cycle discharge (4800 s) for a constant input current 6 A.

In the next developments presented in the following sections and subsections, the
ANFIS OCV(SOC) battery model should cover the entire operating range for battery SOC,
approximately between 0.001 and 0.999. In all developments in the case study, the Li-ion
battery was tested for all three input current profiles mentioned in the previous section,
namely, FTP-75, WLTC, and NEDC driving cycles. Thus, using an FTP-75 driving cycle,
a full battery discharge occurs for a total duration of 8030 s, to be exact, equivalent to
repeating 3.2 times the standard FTP-75 discharge current profile (2478 s), as shown in
Figure 4a–d. The SOC for a full discharge battery is revealed in Figure 4a. Figure 4b presents
the evolution of the battery OCV over the same period of time as for SOC in Figure 3a.
The MATLAB simulations result during training phase to build the most accurate ANFIS
battery model OCV(SOC), which is depicted in Figure 4c. A careful analysis of this result
reveals that the OCV(SOC) nonlinearity described in Equation (3) was approximated with
high accuracy by a smooth ANFIS model. The following developments mainly focus on the
OCV(SOC) ANFIS model. Figure 4d shows the evolution of the battery terminal voltage on
the same duration as is in Figure 4a–c.

2.6. EKF SOC Estimator for the LIBM ECM RC Model in Discrete Time State-Space
Representation and Model Validation

The EKF SOC LIB estimator is the most popular state estimator, being a very strong
state estimation tool used by implementers in various applications that cover almost all
fields. The main steps of this algorithm are briefly presented in Appendix A.1 to provide a
good insight for readers and implementers that is inspired from the fundamental research
works in this field [13–15].
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2.6.1. FTP-75 Driving Current Test Profile

The FTP-75 driving cycle for the input current profile is shown in Figure 5a. Figure 5b
presents the MATLAB Simulink simulation result of the EKF SOC estimate versus the
SOC Simulink generic model value and the actual SOC value for the LIB ECM RC model.
Additionally, since Figure 5b shows on the same graph the actual SOC value of the LIB
ECM RC model, EKF SOC estimated value, and Simscape SOC value, it is helpful for
performance comparison and model validation. The curves in Figure 5c depict the LIB
ECM RC SOC value and Simscape SOC extracted value from the experimental setup
presented in Figure 2a and provide valuable information that both values of the SOC
were close enough to prove the validity of the proposed LIB ECM RC model. Figure 5d,e
represents the residuals corresponding to the graphs shown in Figure 5b,c, respectively.
From both residuals, we can extract information of genuine interest for validation of the
ECM RC battery model, such as that shown in Figure 5d, where the percentage of the
SOC error between the estimated EKF value and the actual LIB ECM RC model value
was under 0.22% compared to 2%,which is a typical value reported in the literature of
the field; thus, these results validate, without a doubt, the accuracy and the robustness of
the initial “guess value” of LIB ECM RC SOC value of the proposed EKF SOC estimator
built on the accurate Li-ion battery model, having as a baseline the Simscape SOC generic
model experimental setup values shown in Figure 5e. The percentage of the SOC error for
the second residual from Figure 5e in the steady state (approximately after 500 s) tended
towards zero and revealed a high accuracy SOC that validated the proposed LIB ECM
RC model. The MATLAB simulation results from the last three in Figure 5f–h disclose
the battery voltage (Figure 5f) and its highly nonlinear curve fitting OCV to battery SOC
(Figure 5g). For a better insight of the charging and discharging cycles of the battery, we
see that the SOC in Figure 5h corresponded to a complete discharging cycle (4000 s) at
approximately a 1C discharging rate for a constant current u(t) = 6 A.
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2.6.2. WLTC Class 3 Driving Current Test Profile

The WLTC class 3 driving cycle profile is a chassis dynamometer test used to determi-
nate the emissions and fuel consumption from light-duty vehicles. It is used for all HEVs
and EVs with a power mass rate (PMR) greater than 34 and the maximum speed exceeding
120 km/h for class 3a or smaller than this limit for class 3b [33–35]. Moreover, all the
WLTC cycles are part of the Worldwide Harmonized Light Vehicle Test Procedures (WLTP)
introduced in Europe since 2017 [33]. The WLTP was conceived to replace the European
NEDC-based procedure “for type approval testing of light-duty vehicles with the transition
from NEDC to WLTP occurring over the period 2017–2019” [33]. In comparison to the
NEDC European standard procedure test, the WLTC procedure test is more realistic when
simulating usual real-world driving conditions and also is more dynamic, covering a large
spectrum of engine working states. Additionally, the WLTC class 3 obtained a high level
interest for its introduction into vehicle certification in Japan. For interested readers, some
details on the driving cycle diagrams on output displacement (km), velocity (km/h), and
acceleration (m/s2) in speed in km/h for all three classes (classes 1, 2, and 3) and details
on these are found in [33–35]. The case study provided features of the proposed Li-ion
battery model, such as simplicity, high accuracy, and ability for real-time implementations,
which were validated, without a doubt, by the model behavior in terms of the impact of all
three driving cycle procedures tests, the quality of the SOC estimation and terminal voltage
prediction accuracy performance, and the robustness of the estimators built using such a
model. The impact of the WLTC-class-3 current profile test on the overall performance of
the EKF estimator was revealed by a rigorous analysis of the MATLAB simulation results
shown in Figure 6. The WLTC class 3 is suggested in [34] on the basis of the data collected
from an acceleration diagram in m

s2 , which were obtained from an input signal, such as a
displacement in (km) or velocity in (km/h). To obtain an approximate current profile for
the Li-ion battery required to charge or discharge the battery during a cycle or repeated
cycles, the acceleration signal was amplified by a proportional correction factor. This
correction factor can be defined on the basis of the power balance, i.e., the power required
by the Li-ion battery to match the rated electric motor’s power. A rough driving cycle
current profile test WLTC class 3 is shown in Figure 6a. The impact of this test can be
seen in Figure 6b by comparison of the battery model SOC and battery Simulink generic
model. In Figure 6c, we compare the EKF terminal predicted voltage and the true value
of the terminal voltage of the model, and similarly, in Figure 6f, we show the EKF SOC
estimate and the SOC true value of the battery model. The results of these comparisons
were obtained by a simple visualization of the corresponding residuals from Figure 6d,e,g.
All three residuals revealed an excellent accuracy performance and robustness of the EKF
SOC estimator to the changes in an initial “guess value” of SOC from 80% to 40% with
almost zero steady-state errors in Figure 6e,g, and smaller than 1.2% in Figure 6d. Therefore,
even though this test was much more aggressive than the other two competitors, FTP-75
and NEDC, the results proved that the EKF SOC estimator had excellent performance (SOC
estimation accuracy and terminal voltage prediction, as well as an excellent robustness to
this aggressive driving cycle).

2.6.3. NEDC Driving Current Test Profile

Similarly, as for WLTC class 3 described in Section 2.6.2, in Figure 7a–g are depicted
the MATLAB Simulink results for the European driving cycle current profile test NEDC.
The NEDC driving cycle current profile test is provided in Figure 7a. Its impact on the
overall performance of the EKF estimator in terms of the SOC accuracy and terminal
voltage prediction is visible in Figure 7b,c,f by comparison with the battery model SOC
and battery SOC of the Simulink generic model (Figure 7b) of the EKF terminal predicted
voltage and the true value of the battery model terminal voltage (Figure 7c), and finally of
the EKF SOC estimate and the battery model SOC true value shown in Figure 7f. A simple
visualization of the corresponding residuals depicted in Figure 7d,e,g indicates a great
performance of the EKF SOC estimator and terminal battery voltage predictor in terms of
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accuracy and robustness, very close to the WLTC class 3 driving cycle current profile test.
Therefore, the impact of changing the FTP-75 driving cycle by the NDEC procedure test is
strongly attenuated by the ability of the EKF SOC estimator and terminal voltage predictor
to perform accurately, to be robust, and to perform very well in real-time implementations.

2.6.4. EKF SOC Estimator and Terminal Voltage Prediction Using OCV ANFIS
Mod–l–MATLAB Simulink Simulation Results for FTP-75 Driving Cycle Current
Profile Test

On the basis of the Li-ion battery OCV ANFIS model, for the same FTP-75 driving
cycle current profile test developed in Section 2.6.1, the accuracy and the robustness of the
EKF SOC estimator and terminal voltage prediction to changes in the SOC initial value
from 90% to 40% were revealed by the MATLAB simulations results shown in Figure 8a–c.
In Figure 8a, we show the EKF SOC estimate of the ECM RC ANFIS model versus its
true SOC value, and in Figure 6b, we disclose a high accuracy and estimator robustness
to predict the battery terminal voltage. The SOC residual for the ANFIS model indicated
an SOC percentage error smaller than 0.7%, thus being a very good level of performance
compared to those reported in the literature, typically at approximately 2%. Additionally,
the EKF SOC estimator based on the American FTP-75 EPA standard procedure was very
robust in terms of the changes of operating conditions. These changes were the result of
replacing the FTP-75 driving cycle by NEDC or WLTC class 3, well known as the most
representative regulated procedure tests used in Europe for gas emission certification of
HEVs/EVs from the automotive industry.. Intentionally, the initial value for SOC for the
battery model was changed from 80% to 90% to reach the target of 60% of normal operation.
A rigorous analysis of the behavior of the EKF SOC estimator to all three driving cycle
procedure tests revealed an excellent robustness of the EKF SOC estimator, and additionally,
this was very accurate in the SOC estimation and terminal voltage prediction. Moreover,
it was robust to changes in the initial “guess” value for LIB ECM SOC. Its capability for
real-time implementation in a large number of HEV/EV applications recommends this
traditional algorithm as a strong SOC estimator.
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Figure 5. FTP-75 driving cycle current profile-MATLAB Simulink simulation results. Legend: (a) 
FTP-75 driving cycle current profile; (b) ECM SOC true model value versus EKF and Simscape SOC 
experimental extracted value; (c) SOC ECM RC value versus SOC Simscape generic model value; 
(d) SOC residual between the true value of the ECM RC model and the EKF SOC estimate; (e) SOC 
residual between the true value of the ECM RC model and the Simulink SOC experimental value; 
(f) ECM Li-ion battery terminal voltage at a 1 C discharging rate for a constant discharging current 
of 6 A during 4000 s; (g) the nonlinear OCV(SOC) Li-ion battery fitting curve at a 1 C discharging 
rate for a constant discharging current of 6 A for 4000 s; (h) the Li-ion battery SOC generated by 
ECM versus the EKF SOC estimated value generated at a 1 C discharging rate for a constant dis-
charging current of 6 A for 4000 s. 

  

Figure 5. FTP-75 driving cycle current profile-MATLAB Simulink simulation results. Legend: (a) FTP-
75 driving cycle current profile; (b) ECM SOC true model value versus EKF and Simscape SOC
experimental extracted value; (c) SOC ECM RC value versus SOC Simscape generic model value;
(d) SOC residual between the true value of the ECM RC model and the EKF SOC estimate; (e) SOC
residual between the true value of the ECM RC model and the Simulink SOC experimental value;
(f) ECM Li-ion battery terminal voltage at a 1 C discharging rate for a constant discharging current of
6 A during 4000 s; (g) the nonlinear OCV(SOC) Li-ion battery fitting curve at a 1 C discharging rate
for a constant discharging current of 6 A for 4000 s; (h) the Li-ion battery SOC generated by ECM
versus the EKF SOC estimated value generated at a 1 C discharging rate for a constant discharging
current of 6 A for 4000 s.

2.7. NOE SOC Estimator for the LIBM ECM RC Model in Discrete Time
State-Space Representation

A viable alternative to the traditional SOC EKF estimator is proposed for comparison
purposes for one of the most robust nonlinear estimators, namely, an LIB SOC adaptive
nonlinear observer estimator (ANOE) [5]. The main steps of this algorithm are suggested
by [5] and are summarized in Appendix B, being valuable for readers and implementers for
a better understanding and implementation. The MATLAB simulation results are displayed
in Figure 9a–d for the original LIB ECM RC model described by Equations (4)–(7), and as
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shown in Figure 10a–e, similar results were obtained by replacing in the LIB ECM RC model
the nonlinear function OCV(SOC) by an ANFIS model developed in a previous section.
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Figure 6. MATLAB simulation results for WLTC class 3 driving cycle current profile test: (a) WLTC
class 3 current profile test; (b) Li-ion ECM RC battery SOC model versus SOC Simscape model;
(c) EKF ECM battery terminal voltage estimate versus the true value of the ECM model battery
terminal voltage; (d) SOC residual between the SOC model and the SOC Simscape model; (e) terminal
battery voltage residual between the EKF estimate and the ECM model true value; (f) Li-ion ECM RC
EKF SOC estimate versus the ECM RC true value model; (g) SOC residual between the EKF estimate
and the true value.
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Figure 6. MATLAB simulation results for WLTC class 3 driving cycle current profile test: (a) WLTC 
class 3 current profile test; (b) Li-ion ECM RC battery SOC model versus SOC Simscape model; (c) 
EKF ECM battery terminal voltage estimate versus the true value of the ECM model battery terminal 
voltage; (d) SOC residual between the SOC model and the SOC Simscape model; (e) terminal battery 
voltage residual between the EKF estimate and the ECM model true value; (f) Li-ion ECM RC EKF 
SOC estimate versus the ECM RC true value model; (g) SOC residual between the EKF estimate and 
the true value. 

2.6.3. NEDC Driving Current Test Profile 
Similarly, as for WLTC class 3 described in Section 2.6.2, in Figure 7a–g are depicted 

the MATLAB Simulink results for the European driving cycle current profile test NEDC. 
The NEDC driving cycle current profile test is provided in Figure 7a. Its impact on the 
overall performance of the EKF estimator in terms of the SOC accuracy and terminal volt-
age prediction is visible in Figure 7b,c,f by comparison with the battery model SOC and 
battery SOC of the Simulink generic model (Figure 7b) of the EKF terminal predicted volt-
age and the true value of the battery model terminal voltage (Figure 7c), and finally of the 
EKF SOC estimate and the battery model SOC true value shown in Figure 7f. A simple 
visualization of the corresponding residuals depicted in Figure 7d,e,g indicates a great 
performance of the EKF SOC estimator and terminal battery voltage predictor in terms of 
accuracy and robustness, very close to the WLTC class 3 driving cycle current profile test. 
Therefore, the impact of changing the FTP-75 driving cycle by the NDEC procedure test 
is strongly attenuated by the ability of the EKF SOC estimator and terminal voltage pre-
dictor to perform accurately, to be robust, and to perform very well in real-time imple-
mentations. 

 
(a) 

  
(b) (c) 

Vehicles 2023, 5 550 
 

 

  
(d) (e) 

  

(f) (g) 

Figure 7. MATLAB simulation results for the NEDC driving cycle current profile test: (a) NEDC 
current profile test; (b) Li-ion ECM RC battery SOC model versus the SOC Simscape model; (c) EKF 
ECM battery terminal voltage estimate versus the true value of the ECM model battery terminal 
voltage; (d); SOC residual between the SOC model and the SOC Simscape model; (e) terminal bat-
tery voltage residual between the EKF estimate and the ECM model true value; (f) Li-ion ECM RC 
EKF SOC estimate versus the ECM RC true value model; (g) SOC residual between the EKF estimate 
and the true value. 

2.6.4. EKF SOC Estimator and Terminal Voltage Prediction Using OCV ANFIS  
Mod–l–MATLAB Simulink Simulation Results for FTP-75 Driving Cycle Current Profile 
Test 

On the basis of the Li-ion battery OCV ANFIS model, for the same FTP-75 driving 
cycle current profile test developed in Section 2.6.1, the accuracy and the robustness of the 
EKF SOC estimator and terminal voltage prediction to changes in the SOC initial value 
from 90% to 40% were revealed by the MATLAB simulations results shown in Figure 8a–
c. In Figure 8a, we show the EKF SOC estimate of the ECM RC ANFIS model versus its 
true SOC value, and in Figure 6b, we disclose a high accuracy and estimator robustness to 
predict the battery terminal voltage. The SOC residual for the ANFIS model indicated an 
SOC percentage error smaller than 0.7%, thus being a very good level of performance 
compared to those reported in the literature, typically at approximately 2%. Additionally, 
the EKF SOC estimator based on the American FTP-75 EPA standard procedure was very 
robust in terms of the changes of operating conditions. These changes were the result of 
replacing the FTP-75 driving cycle by NEDC or WLTC class 3, well known as the most 
representative regulated procedure tests used in Europe for gas emission certification of 
HEVs/EVs from the automotive industry.. Intentionally, the initial value for SOC for the 

Figure 7. MATLAB simulation results for the NEDC driving cycle current profile test: (a) NEDC
current profile test; (b) Li-ion ECM RC battery SOC model versus the SOC Simscape model; (c) EKF
ECM battery terminal voltage estimate versus the true value of the ECM model battery terminal
voltage; (d); SOC residual between the SOC model and the SOC Simscape model; (e) terminal battery
voltage residual between the EKF estimate and the ECM model true value; (f) Li-ion ECM RC EKF
SOC estimate versus the ECM RC true value model; (g) SOC residual between the EKF estimate and
the true value.
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battery model was changed from 80% to 90% to reach the target of 60% of normal opera-
tion. A rigorous analysis of the behavior of the EKF SOC estimator to all three driving 
cycle procedure tests revealed an excellent robustness of the EKF SOC estimator, and ad-
ditionally, this was very accurate in the SOC estimation and terminal voltage prediction. 
Moreover, it was robust to changes in the initial “guess” value for LIB ECM SOC. Its ca-
pability for real-time implementation in a large number of HEV/EV applications recom-
mends this traditional algorithm as a strong SOC estimator. 
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Figure 8. The accuracy of the EKF ECM RC ANFIS model versus the ECM RC model: (a) OCV ECM 
RC model versus OCV ECM RC ANFIS model; (b) ECM RC model terminal voltage versus ECM 
RC ANFIS model terminal voltage; (c) ECM RC model SOC residual between the ECM RC ANFIS 
model and the EKF ECM RC ANFIS model. 

2.7. NOE SOC Estimator for the LIBM ECM RC Model in Discrete Time State-Space 
Representation 

A viable alternative to the traditional SOC EKF estimator is proposed for comparison 
purposes for one of the most robust nonlinear estimators, namely, an LIB SOC adaptive 
nonlinear observer estimator (ANOE) [5]. The main steps of this algorithm are suggested 
by [5] and are summarized in Appendix B, being valuable for readers and implementers 
for a better understanding and implementation. The MATLAB simulation results are dis-
played in Figure 9a–d for the original LIB ECM RC model described by Equations (4)–(7), 
and as shown in Figure 10a–e, similar results were obtained by replacing in the LIB ECM 

Figure 8. The accuracy of the EKF ECM RC ANFIS model versus the ECM RC model: (a) OCV ECM
RC model versus OCV ECM RC ANFIS model; (b) ECM RC model terminal voltage versus ECM RC
ANFIS model terminal voltage; (c) ECM RC model SOC residual between the ECM RC ANFIS model
and the EKF ECM RC ANFIS model.
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RC model the nonlinear function OCV(SOC) by an ANFIS model developed in a previous 
section. 
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Figure 9. MATLAB simulation results for the Li-ion battery NOE estimator: (a) SOC ECM RC model 
true value versus SOC ECM RC NOE estimate; (b) terminal voltage ECM RC model true value ver-
sus terminal voltage ECM RC NOE estimate; (c) SOC residual-ECMRC model versus model NOE 
estimate; (d) OCV voltage residual-ECMRC model versus ECM RC model NOE estimate. 

Figure 9. MATLAB simulation results for the Li-ion battery NOE estimator: (a) SOC ECM RC model
true value versus SOC ECM RC NOE estimate; (b) terminal voltage ECM RC model true value
versus terminal voltage ECM RC NOE estimate; (c) SOC residual-ECMRC model versus model NOE
estimate; (d) OCV voltage residual-ECMRC model versus ECM RC model NOE estimate.
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Figure 10. MATLAB simulation results for the Li-ion battery OCV ANFIS model NOE estimator: (a) 
SOC ECM RC model true value versus SOC ECM RC OCV ANFIS NOE estimate; (b) terminal volt-
age ECM RC model true value versus terminal voltage ECM RC OCV ANFIS model; (c) SOC 

Figure 10. MATLAB simulation results for the Li-ion battery OCV ANFIS model NOE estimator:
(a) SOC ECM RC model true value versus SOC ECM RC OCV ANFIS NOE estimate; (b) terminal
voltage ECM RC model true value versus terminal voltage ECM RC OCV ANFIS model; (c) SOC
residual-ECM RC model versus ECM RC model OCV ANFIS NOE estimate; (d) terminal voltage
residual-ECM RC model versus ECM RC model NOE; (e) Battery Terminal voltage model NOE
estimate versus ANFIS model NOE estimate.
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For performance comparison purposes, in Table 1, we present the MATLAB simulation
results collected from both traditional algorithms in terms of convenient statistics, such as
root mean square error (RMSE), mean square error (MSE), and the mean absolute error
(MAE), all calculated by using the specific MATLAB functions, such as RMSE (estimates,
observations, “all”), MSE (estimates, observations, “all”), and MAE (estimates, observations,
“all”). One of these statistics, MSE, is used to measure the training performance of the
data set for both intelligent estimators, developed in Section 3, and thus is beneficial for
performance comparisons of all four estimators and then to choose the most appropriate
and accurate estimator for these kinds of applications.

Table 1. Statistics for performance evaluation (SOC estimate, SOC advisor estimate, Li-Ion battery
terminal voltage).

Estimates vs. Observations RMSE MSE MAE

SOC EKF ECM RC model vs. SOC ECM RC model 0.0867 0.0075 0.0284

Terminal voltage EKF ECM model vs. terminal voltage ECM RC model 0.0071 5.0707 × 10−5 7.5499 × 10−4

Terminal voltage EKF ECM model vs. terminal voltage ECM RC ANFIS model 0.0072 5.242 × 10−5 0.0019

Terminal voltage NOE ECM ANFIS model vs. terminal voltage ECM RC
ANFIS model 0.0137 1.885 × 10−4 0.0035

SOC NOE ECM RC ANFIS model vs. SOC ECM RC ANFIS model 0.0562 0.0031 0.0157

SOC ADVISOR Rint model vs. SOC ECM RC model 0.0652 0.004 0.0330

The statistics from this table reveal a very accurate LIB SOC estimation and terminal voltage prediction for LIB
EMC RC for the OCV(SOC) model.

3. Shallow SISO and MISO Neural Network Estimators for SOC and Terminal Voltage
of Li-Ion Battery

Compared to deep learning neural networks (DLNNs) that have multiple hidden
layers in their architecture, their number being a key parameter to adjust the increase in
accuracy of the target estimation, shallow neural networks (SNNs) have only one hidden
layer with a reasonable capacity to approximate any non-linear function but with some
limitations to improve prediction accuracy for all types of applications [26]. A single-
input single-output (SISO) SNN estimator is a feedforward neural network with a simple
architecture consisting of an input layer with a single-input predictor (feature), a single
hidden layer with multiple neurons, and an output layer with a single-output target
(response [22–26]). A multiple-input and single-output (MISO) SNN includes into its
architecture an input layer with multiple predictors, a single hidden layer with a different
number of neurons, and an output layer with a single-output target [25]. In the case
study, we chose two SNN architecture configurations. The first was a SISO nonlinear
autoregressive SNN with exogenous inputs (NARX) that estimates Li-ion battery SOC on
the basis of the input–output measurement data set, namely, battery discharge current
u(t) as an input predictor, namely, an FTP-75 standard current profile, and the estimated
SOC of the battery as the output target y(t) [22,24]. The second is a MISO SNN used to
predict the LIB terminal voltage on the basis of the input–output measurement data set,
consisting of two input predictors, namely, LIB SOC (u1(t)) and battery discharge current
(u2(t)) and an output target represented by the battery terminal voltage (y(t)) [26]. This
section reveals the estimation accuracy of both outstanding SNN architectures that excel in
low complexity and simplicity of real-time implementation in an attractive and friendly
MATLAB programming environment for a specific application in HEV/EVs presented in
the case study.

3.1. Time Series NARX Feedback SNN as LIB SOC Estimator—MATLAB Design
and Implementation

The NARX architecture is usually encountered in multiple modelling time series and
is nothing more than a simple recurrent dynamic network with feedback connections
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spanning various network layers [22,24]. The NARX model is based on the following linear
ARX model [23]:

y(t) = f (y(t− 1), y(t− 2), . . . , y(t− n), u(t− 1), u(t− 2), . . . , u(t−m)) (8)

where the value of the output target signal y(t) depends on previous values of the output
signal y(t− 1), y(t− 2), . . . , y(t− n) and on previous values of an independent (exogenous)
input predictor signal u(t), i.e., u(t− 1), u(t− 2), . . . , u(t−m), where m and n are the
number of the input and output measurement data set samples, respectively. The NARX
model given by Equation (8) can be implemented in a MATLAB Simulink R2022b software
environment as a dynamic recurrent feedforward neural network applied to approximate
the function f, with various details shown in [22–26]. Applications of the NARX SSN
architecture include its use as a predictor to predict the next value of the input signal,
nonlinear filtering, where the target output is “a noise-free version of the input signal” and
modeling nonlinear dynamical systems [22,24]. Two main configurations for the NARX
architectures are reported for training in the literature, well explained in [22–24]. In general,
the output variable value for NARX SNN configurations can be considered as an estimate of
the output variables of certain nonlinear dynamical system models. First, configuration is a
parallel configuration for which the output value is fed back to the input of the feedforward
neural network integrated in the standard NARX architecture. As long as the true output
value of the NARX SNN configuration is available during the network training phase of
the network, a revolutionary series parallel architecture, which uses the true output instead
of feeding back the estimated output, proves itself as having two significant advantages,
namely, a high accuracy of the input to the feedforward network and a purely feedforward
architecture such that a static backpropagation can be used for training [22,24]. The main
objective of this subsection is to build the NARX estimator for LIB SOC estimation, starting
by using a series-parallel architecture in open loop and then closing this architecture to
exploit the features of a parallel architecture, such as is presented in Figures 11 and 12a,b.
The input–output data set was generated and collected from the LIB model, represented
by Equations (4)–(7) at the sampling interval of 1 s. Typically for designing any SNN, it is
required for one to follow the standard steps, such as the following:

Vehicles 2023, 5 556 
 

 

 
Figure 11. NARX estimator of LIB SOC estimation-neural network training phase designer. 
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Figure 11. NARX estimator of LIB SOC estimation-neural network training phase designer.
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Step 1. Collect the input–output measurement data set (i.e., load one or many files,
generate directly from the model in a main program, etc.).

Step 2. Create a neural network.
Step 3. Configure the neural network.
Step 4. Initialization of the weights and biases.
Step 5. Training phase of the data set (predictors and targets).
Step 6. Validate the neural network performance.
Step 7. Deployment of the neural network model (hardware implementation).
There are two inputs to the series-parallel network in open-loop configuration, x(t)

and y(t) sequences, each one delayed by 4 s, wherein the training phase begins with the
fifth data point, as is depicted in Figure 12a. To estimate the battery SOC, a series parallel
NARX SNN was created by using a particular MATLAB function “narxnet”. In the hidden
layer were used 50 neurons, and the training MATLAB function” trainlm” was used that is
based on the fastest Levenberg–Marquardt training algorithm. The collected measurement
data set was prepared by using the MATLAB function” preparets” [22]. It is noteworthy
that the y sequence is considered a feedback signal, which is an input that is also an output
(target) [22]. Later, when the loop is closed, the appropriate output will be connected to the
appropriate input. From here, the NARX SSN is ready to be trained, using the following
MATLAB code line [22]:

NARX_SSN_net = train (NARX_SSN_net, p, t, Pi)
A complete visualization of training results, training progress, and performance

tabs appear in Figure 11. A statistic criterion assessment of the NARX SSN estima-
tion performance employed the mean square error (mse), which reached approximately
2.304087353387711 × 10−8, revealing a very good performance. The NARX SNN dia-
grams for open loop and closed loop are shown in the Figure 12a,b, obtained by using the
MATLAB code line [22]:

view (NARX_SSN_net)

Vehicles 2023, 5 556 
 

 

 
Figure 11. NARX estimator of LIB SOC estimation-neural network training phase designer. 

  
(a) (b) 

Figure 12. Cont.



Vehicles 2023, 5 555Vehicles 2023, 5 557 
 

 

  
(c) (d) 

 

 

(e) (f) 

 
(g) 

Figure 12. Cont.



Vehicles 2023, 5 556Vehicles 2023, 5 558 
 

 

 
(h) 

Figure 12. NARX–SOC prediction MATLAB simulation results; (a) open-loop network diagram; (b) 
close-loop network diagram; (c) neural network–training time series response for SOC Li-ion battery 
ECM RC model (training phase); (d) neural network training std performances; (e) neural network 
regression (plot regression)-Epoch 151; (f) neural network training performance-Epoch 151; (g) neu-
ral network error autocorrelation (ploterrcorr)-Epoch 151; (h) neural network histogram (ploter-
rhist)-Epoch 151. 

There are two inputs to the series-parallel network in open-loop configuration, x(t) 
and y(t) sequences, each one delayed by 4 s, wherein the training phase begins with the 
fifth data point, as is depicted in Figure 12a. To estimate the battery SOC, a series parallel 
NARX SNN was created by using a particular MATLAB function “narxnet”. In the hidden 
layer were used 50 neurons, and the training MATLAB function” trainlm” was used that 
is based on the fastest Levenberg–Marquardt training algorithm. The collected measure-
ment data set was prepared by using the MATLAB function” preparets” [22]. It is note-
worthy that the y sequence is considered a feedback signal, which is an input that is also 
an output (target) [22]. Later, when the loop is closed, the appropriate output will be con-
nected to the appropriate input. From here, the NARX SSN is ready to be trained, using 
the following MATLAB code line [22]: 

NARX_SSN_net = train (NARX_SSN_net, p, t, Pi) 
A complete visualization of training results, training progress, and performance tabs 

appear in Figure 11. A statistic criterion assessment of the NARX SSN estimation perfor-
mance employed the mean square error (mse), which reached approximately 
2.304087353387711 × 10−8, revealing a very good performance. The NARX SNN diagrams 
for open loop and closed loop are shown in the Figure 12a,b, obtained by using the 
MATLAB code line [22]: 

view (NARX_SSN_net) 

Remark 1. All the MATLAB simulations for training phase were performed for a NARX SNN 
series-parallel architecture (open loop). Thus, the main goal of this subsection was to fully create a 
NARX SNN in open loop architecture. Then, when the training phase was finished, we also in-
cluded the validation and testing steps, and the NARX SNN open loop architecture was converted 
to a closed loop form for a “multistep-ahead prediction” [25]. Moreover, the R-values in the Sim-
ulink GUI, depicted in Figure 12c,f, were computed on the basis of the open-loop training results. 

Finally, the NARX SNN closed loop (parallel) configuration could be used to perform 
an iterated prediction on the length of the testing samples time steps. The MATLAB “pre-
paret” function was used to prepare the data such that the new configuration of NARX 
SNN in closed loop was loaded with both initial inputs and both initial outputs as initial 
conditions. The network structure was used to determine the way in which to divide and 
shift the data appropriately, with the details provided in [16,19]. Figure 12c shows the 

Figure 12. NARX–SOC prediction MATLAB simulation results; (a) open-loop network diagram;
(b) close-loop network diagram; (c) neural network–training time series response for SOC Li-ion
battery ECM RC model (training phase); (d) neural network training std performances; (e) neural
network regression (plot regression)-Epoch 151; (f) neural network training performance-Epoch
151; (g) neural network error autocorrelation (ploterrcorr)-Epoch 151; (h) neural network histogram
(ploterrhist)-Epoch 151.

Remark 1. All the MATLAB simulations for training phase were performed for a NARX SNN
series-parallel architecture (open loop). Thus, the main goal of this subsection was to fully create a
NARX SNN in open loop architecture. Then, when the training phase was finished, we also included
the validation and testing steps, and the NARX SNN open loop architecture was converted to a
closed loop form for a “multistep-ahead prediction” [25]. Moreover, the R-values in the Simulink
GUI, depicted in Figure 12c,f, were computed on the basis of the open-loop training results.

Finally, the NARX SNN closed loop (parallel) configuration could be used to perform
an iterated prediction on the length of the testing samples time steps. The MATLAB
“preparet” function was used to prepare the data such that the new configuration of NARX
SNN in closed loop was loaded with both initial inputs and both initial outputs as initial
conditions. The network structure was used to determine the way in which to divide
and shift the data appropriately, with the details provided in [16,19]. Figure 12c shows
the excellent accuracy of the LIB SOC estimate (target, red curve) versus the LIB ECM
RC model SOC (the output y = SOC, blue curve) during training phase, as a response to
the FTP-75 driving condition current profile (the input predictor, x(t) = u(t)). Figure 12d
shows the NARX SNN state performances (gradient, momentum, and validation fail). The
best mse validation performance of the NARX SNN open-loop configuration was reached
faster after epoch 151 and was revealed in Figure 12f, and the errors between the SOC
estimated value and SOC true target value generated by the LIB EMC RC model given
by Equation (4) are shown in Figure 12g (error autocorrelation) and Figure 12h (error
histogram). A rigorous analysis of the NARX SNN performance by comparison with
traditional estimators, namely, EKF SOC and NOE SOC, implemented in a previous section,
revealed the excellent accuracy of the LIB SOC estimate, slightly superior to the last two
SOC estimators. This outstanding result was confirmed by the residual steady state error
from the bottom graph shown in Figure 12c, which was almost zero.

3.2. Shallow MISO Neural Network Terminal Voltage Estimator of LIB

Similar to NARX SNN, a reasonably simple shallow neural network (SNN) proved its
ability to fit any practical function in any situation [25,26]. SNNs are widely used in control
system modelling applications to match (fit, regression) or predict online and offline with
high accuracy any output variable related through the control system model to certain
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input variables based on the input–output measurement data set. This kind of matching
or prediction problem can be solved by using the MATLAB Simulink software package in
two different ways [25,26]:

1. using the Simulink Neural Net Fitting app, which can be opened using the Simulink
Toolbox “nftool” command, as a line in the MATLAB command window, or as a code
line in script, as well as in a live script.

2. using command-line functions, as described in [25,26].

We preferred the second way due to its simplicity, user approachability, and flexibility
in using command-line functions.

Inspired by [25,26], the following summarizes the most used command-line functions
in a beneficial way and with better understanding given to the readers and implementers.
Additionally, many more details can be found on the same MathWorks documentation
site for MATLAB R2023a. The design steps and real-time implementation in MATLAB
Simulink are almost the same as those defined for NARX SNNs in the previous subsection.

Step 1. Select the data for the case study generated by the Li-ion ECM RC bat-
tery model.

Step 2. Choose a training algorithm, preferably the fastest Levenberg–Marquardt
backpropagation algorithm.

‘ ’ trainFcn = ‘trainlm’
Step 3. Create a shallow neural network (select the number of neurons in the hid-

den layer).
hiddenLayerSize = 25 (selected for the case study)
net = fitnet (hiddenLayerSize, trainFcn)
Step 4. Set up the dataset for training, validation, and testing phases (the implementer

has the flexibility to select the percentages depending on the data set size).
net. divideParam.trainRatio = 0.7 (70%), (selected for the case study)
net. divideParam.valRatio = 0.15 (15%), (selected for the case study)
net. divideParam.testRatio = 0.15 (15%), (selected for the case study)
Step 5. Train the shallow neural network created at step 3.
[net, tr] = train (net, Predictor_X, Target_T)
Step 6. Test the shallow neural network trained at step 5, on the basis of the indexes

set up at step 4.
Y = net (Predictor_X)
Error = gsubtract (Target_T, Y)
performance = perform (net, Target_T, Y), for the case study approximately 1.1081 × 10−4

Step 7. Visualize the shallow neural network tested at step 5, as is shown in Figure 13a.
view(net)
Step 8. Plots the graphs using the following MATLAB plot functions:

3. plotperform(tr) with the simulation results shown in Figure 13d;
4. plottrainstate(tr), which is similar to the previous Figure 12d for NARX SNN;
5. ploterrhist (Error) with the simulation result shown in Figure 13c;
6. plot regression (Target_T, Y), as is depicted in Figure 13g;
7. All these graphs have the same meaning as for NARX SNN in open-loop configuration,

represented previously in Figure 12.
8. Step 9. Analyze the results.

For the case study, the MATLAB simulation results presented in Figure 13e,f reveal
the excellent estimation accuracy of LIB terminal voltage (Figure 13e); this valuable infor-
mation was obtained from the residual voltage error depicted in Figure 13f, small enough
(approximately less than 0.03 V) to be able to make a remark on the superiority of the
SNN voltage terminal estimator compared to the traditional estimators (EKF and NOE)
implemented in the previous section.

Step 10. Deployment of the SNN created, trained, validated, and tested for hardware
implementation (FPGA board or simulator, microcontrollers, etc.).
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4. Discussion

This research work provided us with a great opportunity to develop our skills to
design, model, and develop SOC estimators of high accuracy, simplicity, robustness. The
MATLAB simulations results revealed the great performance of SOC accuracy; the robust-
ness to changes of “guess value” of a battery SOC from 90% to 30%; and the operating
conditions in a harsh environment, assessed on the basis of the statistical criteria, such as
RMSE, MSE, and MAE, or direct visualization of the graphs, especially of SOC residual
errors such those from Figure 5d,e, Figures 9c and 10c, that are less than 0.5% during the
steady state, compared to 2% reported in the literature of the field. As shown in Table 1,
three statistical criteria (RMSE, MSE, and MAE) are used for performance assessment. Their
values provide valuable information on the most suitable SOC estimator or battery termi-
nal voltage predictor, thus on an appropriate choice between EKF and ANOE estimators
introduced in Sections 2.5 and 2.7. It is worth mentioning the fact that for both intelligent
LIB SOC and terminal voltage, the common statistical criterion for performance assessment
is MSE. Therefore, it is necessary to find the most suitable SOC state estimator based on
an accurate LIB model, such as the one proposed in the case study. The performance of
each SOC estimator is validated through an extensive number of MATLAB simulations
conducted on an experimental Simulink setup that generates for performance comparison
purpose an alternative accurate Li-ion battery generic model. By MSE performance com-
parison, it seemed that the ANOE SOC estimator (MSE = 0.0031) performed in a slightly
superior manner to the EKF SOC estimator (MSE = 0.0075) from a SOC accuracy perspective,
with robustness to changes in the “SOC guess” value from 90% to 30%, smooth conver-
gence, and a time response. Thus, by comparison with the NARX SNN SOC estimator
(MSE = 7.97 × 10−11) to the winner of the competition between ANOE SOC and EKF SOC,
i.e., ANOE SOC (MSE = 0.0031), it was obviously the case that the NARX SNN SOC estima-
tor outperformed the ANOE SOC estimator, and thus the most suitable SOC estimator for
this kind of applications is the NARX SNN SOC deep learning estimator. However, from the
battery terminal voltage prediction perspective, the winner of the competition is the EKF
estimator, as long as MSE_ANOE = 1.885 × 10−4 vs. MSE_EKF = 5.07 × 10−5,thus a slight
superiority. Finally, by comparing the same perspective of terminal voltage prediction,
the MSE_SNN = 5.43 × 10−6 vs. MSE_EKF = 5.07 × 10−5 led the intelligent SNN terminal
voltage estimator to become the winner of the competition. Overall, the most suitable SOC
estimator and the best LIB terminal voltage prediction was the intelligent NARX SNN SOC
deep learning estimator. Additionally, the intelligent NARX SNN SOC deep learning was
dataset input–output measurement based, and thus it is implementable online and is suited
for real-time HEV applications.

5. Conclusions

The main contributions involved in this research paper are highlighted in the follow-
ing list:

(a) Model selection—a pre-set Li-ion cobalt oxide (LiCO2) Rint Simscape generic model of
6 Ah and 11 V nominal voltage, ECM RC nonlinear model, simple, practical, accurate,
easy to implement in real time in MATLAB environment, and validated using an
experimental Simulink setup (Section 2.2).

(b) Model hybridization including the most accurate ANFIS model of OCV(SOC) (Section 2.5,
Appendix A.2, Figures 3 and 4).

(c) Extended Kalman filter SOC estimator design and MATLAB implementation (Section 2.5,
Appendix A.1) for original and ANFIS models (Section 2.6, Figures 5–7).

(d) Adaptive nonlinear observer SOC (Section 2.7, Appendix B) and MATLAB SOC
simulations Figures 8 and 9).

(e) Performance analysis benchmark (SOC accuracy and robustness)—Table 1 for statisti-
cal errors RMSE, MSE, and MAE. The LIB ECM RC original and ANFIS models are
both of high simplicity and SOC accuracy, easy to be implemented in real-time, and
provide beneficial support in building two real-time EKF and ANOE SOC estimators.
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The robustness and accuracy of both SOC estimators was investigated for one of the
most used driving cycle tests in the automotive industry FTP-75 and changes in the
SOC initial value (“guess” value) from 0.9 to 0.3. Based on the statistical errors calcu-
lated for each driving cycle test in terms of RMSE, MSE, and MAE, it was possible to
choose from both traditional competitors the most suitable SOC estimator. The result
of the overall performance analysis indicated that the ANOE SOC estimator for the
ANFIS model performed better than the EKF SOC estimator ANFIS model.

(f) NARX SNN LIB SOC estimator design and MATLAB implementation (Section 3.1,
Figure 10) and SNN LIB terminal voltage design and MATLAB implementation.

(g) Intelligent shallow NARX SNN SOC estimator that performs better than the traditional
winner ANOE SOC estimator for the ANFIS model.

(h) The second SNN performed better than the ANOE for the LIB terminal voltage
prediction ANFIS model, with the comparison based on the MSE performance reached
during the training phase.

In future works, we will continue our investigations on lithium batteries regarding an
improved modelling approach by “integrating the effect of degradation, temperature and
SOC effects”, and for possible extensions for more accurate ANFIS OCV(SOC) estimation
techniques and new intelligent deep learning approaches.
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SNN shallow neural network
NARX nonlinear autoregressive with exogenous input time-series
MIMO multi-input, multi-output systems
MISO multi-input, single-output systems
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Appendix A

Appendix A.1. Extended Kalman Filter (EKF) Algorithm—Summary Steps [11–15]

The LIB ECM RC is described by Equations (4)–(7), and at this point we added the
process noise of 2× 2 covariance matrix Qw, and the measurement noise of 1× 1 covariance
matrix Rv:

x(k + 1) = Ax(k) + Bu(k) + w(k) (A1)

y(k) = Cx(k) + Du(k) + h(x1(k)) + v(k), D = −R, h(x1(k)) = OCV(x1(k)), x1(k) = SOC(k) (A2)

h(x1(k)) = k0 − k1
1

x1(k)
− k2x1(k) + k3 ln(x1(k)) + k4 ln(1− x1(k)) (A3)

C =

 d(OCV(x1)
dx1

|x1(k)

x1(k)
− 1

 (A4)

Equation (A4) represents the components of vector C after linearization, required for
the EKF algorithm, where the noises w(k) and v(k) are assumed to be Gaussian, uncorre-
lated, zero mean, and of covariance matrices Qw and Rv.

Steps:

1. Initialization of the states x1 (SOCini = 0.3) and x2 (Voltage polarization, x20 = 0),
covariance matrix of the states Px, and tuning values for covariance matrices for the
process noise Qw and measurement noise Rv. For k = 1, 2, 3, . . . , 2478 DO:

2. Prediction step

1. Prediction equations (forecast):

x̂(k + 1|k) = Ax̂(k|k) + Bu(k) + w(k) (A5)

ŷ(k + 1|k) = Cx̂(k|k + 1) + Du(k) + v(k) (A6)

2. Prediction state covariance:

P̂(k + 1|k) = AP̂(k|k)AT + Qw (A7)

1. Correction step (measurement update)

1. Kalman filter gain computation:

Kk = P̂(k + 1|k)CT
(

CP̂(k + 1|k)CT + Rv

)−1
(A8)

2. Correction estimates equation with a new measurement:

x̂(k + 1|k + 1) = Ax̂(k|k + 1) + Kk(ymeasured − ŷ(k + 1|k)) (A9)

3. Update the state covariance matrix:

P̂(k + 1|k + 1) = (I2 − KkC)P̂(k + 1|k) (A10)

4. Update the output estimate:

ŷ(k|k) = Cx̂(k|k) + Du(k)
Px = P̂(k + 1|k + 1)

(A11)

END
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Appendix A.2. Adaptive Neural Fuzzy Inference System (ANFIS) Model of LIB OCV(SOC) [11,18]

Step 1: Set up the training data set: LIB SOC as input, and LIB OCV as output.
Step 2: Generate the ANFIS model grid partition method-based” options”:
options = genfisOptions (‘GridPartition’)
Step 3: As one of options is to set up the number of membership functions for the

fuzzy inference system (FIS):
options. NumMembershipFunctions = 5, but the user has the flexibility of increasing

this number to improve the model accuracy
Step 4: Construct the FIS input attached to LIB SOC and OCV
in_fis = genfis (SOC, OCV, options)
Step 5: Select for training the OCV(SOC) ANFIS model the following options:
options = anfisOptions
options. InitialFIS = in_fis
options. EpochNumber = 20 or greater for the LIB OCV(SOC) model accuracy im-

provement
Step 6: Construct the FIS output attached to LIB SOC and OCV
out_fis = anfis ([SOC OCV], options)
Step 7: Plot the input–output measurement data set versus input–output OCV(SOC)

ANFIS model.
plot (SOC, OCV, SO’, evalfis (SO’, ‘out_fis’))
legend (‘Training Data’, ‘ANFIS Output’).

Appendix B

Adaptive nonlinear observer estimator (ANOE) summary steps [5,11]:

1. Initialization of the states x1 (SOCini = 0.3) and x2 (voltage polarization, x20 = 0),
observer filter gain L0 For k = 1, 2, 3, . . . , 2478 DO:

2. NOE LIB dynamics equations 2.1 Observer estimator gain adaptive law.

The measurements on terminal voltage of the LIB y(k) are generated by the LIB ECM
RC model described by Equations (4)–(7).

L(k) = L0+ ∝ (exp(β(y(k− 1)− ŷ(k− 1)))) (A12)

1. NOE dynamics equations

The dynamic of LIB SOC is given by

x̂1(k + 1) = x̂1(k)−
ηTs

Qnom
u(k) + L(k)[y(k)− ŷ(k)] (A13)

The fast dynamic for R1C1 polarization voltage cell is described by

x̂2(k + 1) =
(

1− Ts

R1C1

)
x̂2(k) +

Ts

C1
u(k) (A14)

ŷ(k) = h(x̂1(k)) + Du(k) (A15)

h(x̂1(k)) = k0 − k1
1

x̂1(k)
− k2 x̂1(k) + k3 ln(x̂1(k)) + k4 ln(1− x̂1(k)), x̂1(k) = ˆSOC(k) (A16)

END
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