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Abstract: With the emergence of connected vehicle data and high-resolution weather data, there is
an opportunity to develop models with high spatial-temporal fidelity to characterize the impact of
weather on interstate traffic speeds. In this study, 275,422 trip records from 41,234 unique journeys on
42 rainy days in 2021 and 2022 were obtained. These trip records are categorized as no rain, slight
rain, moderate rain, heavy rain, and very heavy rain periods using the precipitation rate from NOAA
High-Resolution Rapid-Refresh (HRRR) data. It was observed that average speeds decreased by
approximately 8.4% during conditions classified as very heavy rain compared to no rain. Similarly,
the interquartile range of traffic speeds increased from 8.34 mph to 12.24 mph as the rain intensity
increased. This study also developed a disaggregate approach using logit models to characterize
the relationship between weather-related variables (precipitation rate, visibility, temperature, wind,
and day or night) and interstate speed reductions. Estimation results reveal that the odds ratio
of reducing speed is 5.8% higher for drivers if the precipitation rate is increased by 1 mm/h. The
headwind was found to have a positive significant impact of only up to a 10% speed reduction, and
speed reduction is greater during nighttime conditions compared to daytime conditions by a factor of
1.68. The additional explanatory variables shed light on drivers’ speed selection in adverse weather
environments, providing more information than the single precipitation intensity measure. Results
from this study will be particularly helpful for agencies and automobile manufacturers to provide
advance warnings to drivers and establish thresholds for autonomous vehicle control.

Keywords: rain intensity; traffic speeds; weather impacts; precipitation rate; connected vehicle data;
big data

1. Introduction

Moderate and heavy rain often affects freeway speeds and driver workload [1,2] and is
often associated with an increase in crashes. According to the Federal Highway Administra-
tion, more than 1.2 million crash incidents (approximately 21% of total crashes) that occur
annually are weather-related [3]. Additionally, approximately 23% of non-recurrent delays
were incurred by adverse weather events (snow, rain, and fog). Especially, on freeways,
traffic flow speeds are reported to decrease by 3 to 16 percent during rain events [3]. Due to
safety and mobility concerns, understanding the magnitude of adverse weather impact has
attracted extensive research interests in transportation and meteorological communities.
Looking forward, understanding the impact of weather on freeway traffic speeds is partic-
ularly important for emerging Connected and Autonomous Vehicles (CAV) that will be
operating in a heterogeneous environment with various automation levels and capabilities.

Sensor data and naturalistic driving data have been widely applied in previous studies
to investigate the impact of adverse weather events on highway speed. Collected from
inductive loop detectors [4], toll stations [5,6], and Remote Traffic Microwave Sensors [7–9],
sensor data is capable of gathering interstate speed patterns at specific highway locations
on a temporal scale, but sensor data provides limited speed information within restricted
segments. Speed patterns under adverse weather conditions are likely to change in different
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locations, road geometries, and traffic characteristics. As an alternative, a Naturalistic
Driving Study (NDS) has been utilized to study driver speed selection during adverse
weather conditions. Using NDS, trajectory-level analysis can be conducted to observe
and analyze driver speed selection under various weather and traffic conditions along a
traversed roadway segment [10,11]. However, the temporal scale is underrepresented in
the NDS due to a small number of participants, in which young drivers are overrepresented.
The lack of nighttime driving samples in NDS is likely to result in an underrepresentation
of the magnitude of adverse weather impacts on interstate travel speed.

2. Objective

Factors such as precipitation (type, rate, and start/end times), visibility impairment,
and temperature extremes have been revealed to have significantly adverse impacts on in-
terstate travel speed. The objective of this paper is to use the near real-time National Oceanic
and Atmospheric Administration’s (NOAA) High-Resolution Rapid Refresh (HRRR) data
and high fidelity connected vehicle (CV) data to develop a statistical model of how rain
impacts traffic speeds. With the fusion of weather data from HRRR and connected vehicle
data, this study develops and assesses a statistical model that estimates the impact of pre-
cipitation intensity, visibility, wind, and daytime versus nighttime conditions on freeway
speeds. The paper is organized as follows:

• Literature review (Section 3).
• Data collection and integration of CV data with HRRR data (Section 4).
• Explanatory variables’ description and estimation (Section 5).
• Methodology for filtering technique (Section 6).
• Qualitative approach using case study along Interstate-65 (Section 7).
• Quantitative approach at aggregate and disaggregate levels (Section 8).
• Conclusions (Section 9).

3. Literature Review

The following sections highlight the review of literature on different types of inclement
weather conditions and contributing factors on interstate travel speeds.

3.1. Rainfall

The impacts of rainfall intensity on highway speeds have been extensively investi-
gated [12–18]. A series of studies exploring driver behaviors under inclement weather
conditions have been conducted using the second Strategic Highway Research Program
(SHRP2) Naturalistic Driving Study. Using NDS data, researchers are capable of conducting
disaggregate analysis to observe and analyze individual driving behaviors under different
driving environments [19]. On the basis of NDS trajectory data, one study [20] has found
that the probability of speed reduction increased by 55% under rainy conditions. Specif-
ically, light rain and heavy rain contributed to 23% and 29% increases in probabilities of
speed reductions associated with more than 5 km per hour below the speed limits [10].
Probabilities of speed reductions increased 1.4 times and 1.7 times during light rain and
heavy rain conditions, respectively [11] compared to no rain conditions. Another European
NDS collecting driving behavior patterns from 47 drivers [21] confirmed that drivers were
more conservative during heavy rain with a 22% speed reduction observed.

Gathering information from multi-source sensors, aggregate analysis was widely
utilized to reveal the macroscopic relationship between precipitation intensities and free
flow speeds. Collecting speed profiles from onsite microwave sensors, a study in China
indicated that the increase in precipitation intensity could lead to 9.4% reductions in
highway speeds [9]. The negative impacts of heavy rain were found to be more significant
during peak-hour and nighttime. Another following research took advantage of GPS-based
probe data and confirmed that at highly congested segments, 95% of travel time increased
as much as 54% at Interstate 71/75 in Northern Kentucky under rainfall conditions [22].
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3.2. Effects of Visibility

Every type of precipitation is associated with a reduction in visibility [23]. A reduc-
tion in visibility is likely to influence driver speed selection. Several studies explored
the car-following behavior [24–26], lane-keeping behavior [27,28], and driver’s speed
selections [29–32] under low-visibility environments (e.g., foggy and sandstorm condi-
tions). In low-visibility environments, the speed reduction theory that drivers tend to
choose a lower speed and take more time to respond to dangerous situations has been
proposed by numerous studies. Notably, 3% to 10% reductions in driver speeds were
observed in the SHRP2 due to the impairment of visibility in fog environments [31]. In
contrast to the speed reduction theory, a driving simulator study [29] suggested that as a
result of lower visibility, drivers took more time to respond to road geometry changes in a
proper manner, and drivers were more likely to operate at a higher speed. Additionally,
most drivers kept fairly high speeds and failed to adjust their speeds to shorter stopping
sight distances incurred in foggy environments [30,33].

3.3. Data Resource and Data Analytics

Sensors such as inductive loop detectors, toll stations, and Remote Traffic Microwave
Sensors are classic data resources to quantify the impact of inclement weather events on
expressway speeds [34–38]. Average speed, headways, and weather information are aggre-
gated by sensor locations. Sensor data provide an adequate number of speed profiles that
researchers can utilize to delineate the relationship between inclement weather events and
interstate travel speeds. Even though aggregate analysis provides a general understanding
of the effects of adverse driving environments on interstate speeds, it suffers from a critical
drawback. Speed profiles are limited to specific geolocations, failing to capture a continuous
and longitudinal understanding of the adverse weather impact.

As an alternative to segment-based speed data, trajectory-level analysis attracted
researchers’ attention to observe and analyze naturalistic driving data under heterogeneous
driving environments. Drivers were recruited in naturalistic driving and simulator studies
to collect trajectory profiles. Driver speed selections can be estimated at various interstate
locations with different traffic volumes, horizontal and vertical alignments, junctions, medi-
ans, shoulder widths, and road widths [39]. Although disaggregate analysis using a driving
simulator and naturalistic driving data has been conducted at a limited scale, limitations
on adequate sample size and/or realistic simulation environments have impeded progress
using trajectory based analytics.

4. Data Collection
4.1. Connected Vehicle (CV) Trajectory Data

Commercially available anonymized trajectory data provides a unique waypoint with
a reporting interval of 3 to 5 s. Each waypoint is associated with GPS location, vehicle
speed, heading, timestamp, and an anonymous trajectory identification number. By linking
individual waypoints by their anonymized trajectory identification number, a vehicle’s
trajectory can be obtained. Figure 1 shows more than 1.5 million waypoints of CV data for
a sample 5-min period around noon on Sunday, 6 March 2022, in Indiana. Each red dot
represents the individual waypoint. It can be seen from the figure that most of Indiana’s
major roadways are covered within five minutes of the CV data. A previous study has
shown that the penetration of CV data on Indiana interstates is approximately 4–5% [40].
Such granular information received from individual vehicles has been curated for a variety
of applications in the past such as work zone monitoring [41–43], assessment of winter
operations [44,45], and assessment of roadways in general.

4.2. High-Resolution Rapid-Refresh (HRRR) Data

HRRR provides hourly weather parameter information for every 3-by-3 km spatial
boundary, hereafter referred to as the HRRR grid. It provides information about precip-
itation rate or rain intensity, temperature conditions, visibility, wind speeds, and solar
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flux values, along with timestamp and location identification. Table 1 shows the rain
categorization as laid out by the United States Geological Survey (USGS) [46] based on
precipitation rate values.
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Figure 1. More than 1.5 million CV data waypoints in Indiana between 12:00 p.m. and 12:05 p.m. on
Sunday, 6 March 2022.

Table 1. Categorization of precipitation rate by USGS.

Rain Category Precipitation Rate (mm/h)

No rain 0

Slight rain 0–0.5

Moderate rain 0.5–4

Heavy rain 4–8

Very heavy rain >8

4.3. Integration of CV Data and HRRR Data

CV trajectory data was geospatially mapped within each HRRR grid to define a trip
starting and ending inside the spatial boundaries. Figure 2a shows an example HRRR grid
along I-65 in Indiana. Callout h refers to the boundary of the HRRR grid. Callouts i and ii
indicate start mile marker (MM) 181.3 and end MM 183.2 of interstates within this HRRR
grid in the northbound (NB) direction and vice versa for the southbound (SB) direction.
Figure 2b shows an example CV dataset within this grid going NB for a one-hour period
between 1 p.m. and 2 p.m. on 14 May 2022. The vertical axis shows the mile marker
along the interstate and the horizontal axis shows the hour of the day. Individual dots
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represent waypoints color coded by speed. Waypoints from the same trajectory identifier
are connected and shown by underlying lines. Each of these individual trajectory identifiers
within the same HRRR grid and one-hour time bin is defined as a trip record. The average
speed for each trip record is then calculated using all the waypoints along the trajectory
within the grid. The average is then associated with the weather data attributes from HRRR
for the same hour. The method is repeated for all rainstorm events in 2021 and 2022.
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Figure 2. Visualization of CV trajectories spanning one HRRR block for one hour on 14 May 2022,
along I-65 northbound direction from MM 181.3 to MM 183.2. (a) HRRR data grid (b) Individual CV
data waypoints color coded by speed bin within HRRR data grid.



Vehicles 2023, 5 138

4.4. Dataset

Several rainstorm events were selected along Indiana interstates I-65, I-70, and I-74 in
2021 and 2022 to build the dataset. HRRR data consisted of categorical variables that are
used for filtering rainstorm events. A temporal boundary is established around each rain
event, and additional two-hour buffers are included on each side of the boundary where
the precipitation rate was zero. The following filters are applied:

• Exclusion of any storm events with snow or ice pellets.
• Exclusion of work zone regions (recurring congestion).
• Exclusion of incident-related traffic congestion.
• Exclusion of periods where no rain condition was experienced at all.

Additional manual screening of spatial boundaries was essential to avoid any external
factors that are affecting motorists’ traffic speed. Table 2 shows the list of all rainstorm
events with information about interstates, mile markers, and time ranges. A total of 562 h
were selected across 42 unique days. A total of 8397 mile-hours were analyzed during this
study. More than 0.3 million trip records were gathered from these rainstorm events.

Table 2. Summary of rainstorm events over 42 unique days on Indiana interstates.

# Date Day Interstate Start
MM End MM Start

Time End Time Total Time
(Hours)

Total
Miles

Total
Mile-Hours

1 10 April 2021 Saturday I-70 125 145 11:00 a.m. 8:00 p.m. 9 20 180

2 10 April 2021 Saturday I-70 40 50 10:00 a.m. 4:00 p.m. 6 10 60

3 28 April 2021 Wednesday I-65 203 220 5:00 p.m. 11:59 p.m. 7 17 119

4 28 April 2021 Wednesday I-70 15 45 8:00 p.m. 11:00 p.m. 3 30 90

5 29 April 2021 Thursday I-65 203 220 12:00 a.m. 7:00 a.m. 7 17 119

6 9 May 2021 Sunday I-65 203 220 12:00 a.m. 12:00 p.m. 12 17 204

7 9 May 2021 Sunday I-74 140 150 12:00 p.m. 3:00 p.m. 3 10 30

8 9 May 2021 Sunday I-74 35 50 3:00 a.m. 8:00 a.m. 5 15 75

9 28 May 2021 Friday I-70 40 50 3:00 p.m. 6:00 p.m. 3 10 30

10 3 June 2021 Thursday I-70 52 58 7:00 a.m. 10:00 a.m. 3 6 18

11 3 June 2021 Thursday I-74 130 134 2:00 p.m. 5:00 p.m. 3 4 12

12 3 June 2021 Thursday I-74 160 171 4:00 p.m. 8:00 p.m. 4 11 44

13 19 June 2021 Saturday I-65 20 42 12:00 a.m. 7:00 a.m. 7 22 154

14 19 June 2021 Saturday I-70 15 45 12:00 a.m. 9:00 a.m. 9 30 270

15 19 June 2021 Saturday I-74 135 150 1:00 a.m. 6:00 a.m. 5 15 75

16 19 June 2021 Saturday I-74 135 150 3:00 a.m. 8:00 a.m. 5 15 75

17 19 June 2021 Saturday I-74 135 150 3:00 a.m. 8:00 a.m. 5 15 75

18 1 July 2021 Thursday I-65 115 122 1:00 a.m. 10:00 a.m. 9 7 63

19 1 July 2021 Thursday I-70 15 45 12:00 a.m. 4:00 a.m. 4 30 120

20 1 July 2021 Thursday I-70 15 45 6:00 a.m. 11:00 a.m. 5 30 150

21 1 July 2021 Thursday I-74 35 50 1:00 a.m. 7:00 a.m. 6 15 90

22 1 July 2021 Thursday I-74 20 33 1:00 a.m. 7:00 a.m. 6 13 78

23 8 July 2021 Thursday I-70 130 145 10:00 a.m. 3:00 p.m. 5 15 75

24 8 July 2021 Thursday I-74 20 33 8:00 a.m. 12:00 p.m. 4 13 52

25 11 July 2021 Sunday I-65 208 218 4:00 a.m. 10:00 a.m. 6 10 60

26 11 July 2021 Sunday I-70 130 145 12:00 a.m. 5:00 a.m. 5 15 75

27 13 July 2021 Tuesday I-65 40 48 9:00 a.m. 12:00 p.m. 3 8 24

28 13 July 2021 Tuesday I-74 128 132 1:00 p.m. 4:00 p.m. 3 4 12
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Table 2. Cont.

# Date Day Interstate Start
MM End MM Start

Time End Time Total Time
(Hours)

Total
Miles

Total
Mile-Hours

29 16 July 2021 Friday I-65 75 85 3:00 p.m. 11:00 p.m. 8 10 80

30 16 July 2021 Friday I-70 125 145 1:00 a.m. 7:00 a.m. 6 20 120

31 16 July 2021 Friday I-70 125 136 5:00 p.m. 8:00 p.m. 3 11 33

32 16 July 2021 Friday I-74 150 165 7:00 p.m. 11:59 p.m. 5 15 75

33 16 July 2021 Friday I-74 150 165 12:00 p.m. 3:00 p.m. 3 15 45

34 20 September 2021 Monday I-65 75 90 4:00 a.m. 5:00 p.m. 13 15 195

35 20 September 2021 Monday I-70 40 50 3:00 a.m. 7:00 a.m. 4 10 40

36 20 September 2021 Monday I-74 35 50 12:00 a.m. 3:00 a.m. 3 15 45

37 21 September 2021 Tuesday I-65 75 90 8:00 p.m. 11:59 p.m. 4 15 60

38 22 September 2021 Wednesday I-70 125 135 2:00 a.m. 12:00 p.m. 10 10 100

39 22 September 2021 Wednesday I-70 125 135 1:00 p.m. 11:59 p.m. 11 10 110

40 22 September 2021 Wednesday I-74 35 50 2:00 a.m. 8:00 p.m. 18 15 270

41 2 October 2021 Saturday I-65 237 247 7:00 p.m. 11:59 p.m. 5 10 50

42 3 October 2021 Sunday I-65 254 258 3:00 p.m. 7:00 p.m. 4 4 16

43 3 October 2021 Sunday I-70 125 135 6:00 p.m. 9:00 p.m. 3 10 30

44 3 October 2021 Sunday I-74 20 33 2:00 p.m. 6:00 p.m. 4 13 52

45 7 October 2021 Thursday I-65 254 258 5:00 a.m. 9:00 a.m. 4 4 16

46 7 October 2021 Thursday I-74 60 66 2:00 a.m. 5:00 a.m. 3 6 18

47 11 October 2021 Monday I-65 254 258 4:00 p.m. 11:00 p.m. 7 4 28

48 11 October 2021 Friday I-74 20 33 12:00 a.m. 8:00 a.m. 8 13 104

49 15 October 2021 Friday I-65 40 48 9:00 p.m. 11:00 p.m. 2 8 16

50 15 October 2021 Friday I-70 40 50 12:00 a.m. 6:00 a.m. 6 10 60

51 15 October 2021 Friday I-70 40 50 8:00 p.m. 11:59 p.m. 4 10 40

52 24 October 2021 Sunday I-65 203 220 6:00 p.m. 11:59 p.m. 6 17 102

53 24 October 2021 Sunday I-70 40 50 6:00 a.m. 5:00 p.m. 11 10 110

54 24 October 2021 Sunday I-70 125 135 12:00 p.m. 5:00 p.m. 5 10 50

55 25 October 2021 Monday I-65 203 220 12:00 a.m. 7:00 a.m. 7 17 119

56 25 October 2021 Monday I-70 125 135 3:00 a.m. 8:00 a.m. 5 10 50

57 25 October 2021 Monday I-74 20 33 12:00 a.m. 5:00 a.m. 5 13 65

58 25 October 2021 Monday I-74 35 50 12:00 a.m. 5:00 a.m. 5 15 75

59 6 March 2022 Sunday I-65 185 200 1:00 a.m. 4:00 a.m. 3 15 45

60 7 March 2022 Monday I-65 190 210 11:00 p.m. 5:00 a.m. 6 20 120

61 7 March 2022 Monday I-65 215 240 11:00 p.m. 5:00 a.m. 6 25 150

62 11 March 2022 Friday I-65 215 240 10:00 p.m. 10:00 a.m. 12 25 300

63 18 March 2022 Friday I-65 190 210 12:00 p.m. 6:00 p.m. 6 20 120

64 30 March 2022 Wednesday I-65 215 240 6:00 p.m. 11:59 p.m. 6 25 150

65 13 April 2022 Wednesday I-70 130 145 1:00 p.m. 11:59 p.m. 11 15 165

66 13 April 2022 Wednesday I-70 97 105 2:00 p.m. 11:00 p.m. 9 8 72

67 18 April 2022 Monday I-65 215 230 2:00 a.m. 9:00 a.m. 7 15 105

68 18 April 2022 Monday I-70 120 130 4:00 a.m. 10:00 a.m. 6 10 60

69 18 April 2022 Monday I-74 20 33 2:00 a.m. 8:00 a.m. 6 13 78

70 18 April 2022 Monday I-74 41 65 2:00 a.m. 8:00 a.m. 6 24 144

71 21 April 2022 Thursday I-74 20 33 12:00 a.m. 8:00 a.m. 8 13 104

72 24 April 2022 Sunday I-65 190 210 4:00 p.m. 11:00 p.m. 7 20 140
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Table 2. Cont.

# Date Day Interstate Start
MM End MM Start

Time End Time Total Time
(Hours)

Total
Miles

Total
Mile-Hours

73 25 April 2022 Monday I-70 70 80 12:00 a.m. 11:00 a.m. 11 10 110

74 25 April 2022 Monday I-74 41 73 12:00 a.m. 12:00 p.m. 12 32 384

75 1 May 2022 Sunday I-70 110 120 12:00 a.m. 6:00 a.m. 6 10 60

76 6 May 2022 Friday I-65 151 160 1:00 p.m. 7:00 p.m. 6 9 54

77 14 May 2022 Saturday I-65 180 190 1:00 p.m. 5:00 p.m. 4 10 40

78 14 May 2022 Saturday I-70 55 70 2:00 p.m. 6:00 p.m. 4 15 60

79 14 May 2022 Saturday I-70 32 50 4:00 p.m. 8:00 p.m. 4 18 72

80 20 May 2022 Friday I-65 75 105 12:00 a.m. 5:00 a.m. 5 30 150

81 20 May 2022 Friday I-70 70 80 12:00 a.m. 6:00 a.m. 6 10 60

82 20 May 2022 Friday I-74 60 72 12:00 a.m. 4:00 a.m. 4 12 48

83 26 May 2022 Thursday I-65 182 200 8:00 p.m. 11:59 p.m. 4 18 72

84 26 May 2022 Thursday I-65 205 210 8:00 p.m. 11:59 p.m. 4 5 20

85 26 May 2022 Thursday I-65 215 230 8:00 p.m. 11:59 p.m. 4 15 60

86 26 May 2022 Thursday I-70 40 50 8:00 a.m. 2:00 p.m. 6 10 60

87 26 May 2022 Thursday I-74 20 30 9:00 a.m. 10:00 p.m. 13 10 130

88 1 June 2022 Wednesday I-65 12 26 8:00 p.m. 11:59 p.m. 4 14 56

89 1 June 2022 Wednesday I-70 138 153 7:00 p.m. 11:59 p.m. 5 15 75

90 1 June 2022 Wednesday I-74 125 150 7:00 p.m. 11:00 p.m. 4 25 100

91 6 June 2022 Monday I-65 220 240 8:00 p.m. 11:59 p.m. 4 20 80

92 6 June 2022 Monday I-70 110 125 8:00 p.m. 11:59 p.m. 4 22 88

93 6 June 2022 Monday I-74 60 70 5:00 p.m. 11:59 p.m. 7 10 70

94 7 June 2022 Tuesday I-65 213 235 12:00 a.m. 4:00 a.m. 4 22 88

95 8 June 2022 Wednesday I-65 213 240 1:00 p.m. 5:00 p.m. 4 27 108

Total 562 1386 8397

5. Explanatory Variables
5.1. Free Flow Speed Estimation

For each trip record, free flow speed (FFSi,g) is defined as the average speed of all trips
around a four-hour time window on either side of the trip start time with zero precipitation
rate value within the same HRRR grid location. For example, free flow speed for the first
trip record that started around 1:00 p.m. shown in Figure 2b is calculated using the average
speed estimation of the trips between 9:00 a.m. and 5:00 p.m. with zero precipitation rate
value on the same day within the same HRRR grid (Figure 2a).

For any ith trip record with the start time as ti within HRRR grid g, free flow speed
FFSi,g is calculated as given in Equation (1).

FFSi,g =
1
N ∑ stj ,g ∀tj ∈ {No Rain}, ∀tj ∈ {ti − 4, ti + 4} (1)

where Stj ,g is the speed for trip record at time tj within the same HRRR grid g such that
tj belongs to no rain event set and tj is within ti − 4 and ti + 4 hours. It was defined
to estimate the free-flowing condition speed that is location-specific and time of the day
relevant instead of assuming a constant value. The speed limit on the interstate was 70 mph.
For 83% of the trip records across all events, the free flow speed was within the range of
65 to 75 mph when no rain was experienced.
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5.2. Speed Reduction

For each trip record, if the average speed is lower than the estimated free flow speed,
the difference is calculated as speed reduction for the trip record. Speed reduction was
observed for 54.6% of the trip records. For each trip record with an observed speed
reduction, the speed reduction percentage was estimated as the percentage decrease in
average speed from the free flow speed. Six new indicator variables were created to show
if the speed reductions were above thresholds of 0%, 5%, 10%, 15%, 20%, and 25%.

5.3. Descriptive Statistics

Table 3 shows the percentage of records for key indicator parameters. The nighttime
indicator was defined as 1 if the start time of the trip was after 8 p.m. and before 6 a.m..
Of the 275,422 total records, 22.86% were observed during nighttime conditions. Among
different rain categories, no rain conditions had the highest percentage of records (44.8%)
followed by moderate rain (34.5%), slight rain (11.3%), heavy rain (5.7%), and very heavy
rain (3.7%). Speed reduction was observed for more than half of the dataset (54.57%) but
only 3.35% of the trip records experienced more than 25% of speed reduction. Figure 3
shows the histogram plot of continuous variables. The maximum precipitation rate value
observed was 92.16 mm/h with an overall mean of 1.55 mm/h. The precipitation rate
was mostly observed near 0 with a decreasing frequency for higher rain intensity values
(Figure 3a). Wind speed ranged from 0.05 to 14.33 m/s (Figure 3b) with a mean of 4.07 m/s.
Temperature values varied between 23.21 ◦F and 86.71 ◦F. Two clear peaks were observed
on the histogram plot for temperature (Figure 3c) around 56 ◦F and 70 ◦F indicatives of
daytime and nighttime conditions, respectively. HRRR data also provided information
about visibility in meters. Figure 3d shows the histogram plot for visibility. Mean visibility
during daytime was 14,171 m which was reduced to 12,450 m during nighttime.

Table 3. Percent of records for key indicator parameters.

Description Percent of Trip Records

Indicator variable for nighttime (from 8 p.m. to 6 a.m.) 22.86%

Rain category: No rain 44.8%

Rain category: Slight rain 11.3%

Rain category: Moderate rain 34.5%

Rain category: Heavy rain 5.7%

Rain category: Very heavy rain 3.7%

Indicator speed reduction percent greater than 0% 54.57%

Indicator speed reduction percent greater than 5% 32.87%

Indicator speed reduction percent greater than 10% 18.64%

Indicator speed reduction percent greater than 15% 10.32%

Indicator speed reduction percent greater than 20% 5.75%

Indicator speed reduction percent greater than 25% 3.35%

5.4. Directional Wind Estimation

Alongside the intensity of rain, wind speed, and its directions are also hypothesized
to influence traffic speeds. A qualitative example described later in Figure 6 shows that
wind direction had impacted one direction of travel significantly more than another along
the same stretch of interstate. HRRR data provides the wind in meteorological wind
directions [47]. It is important to superimpose the direction with respect to the route as
motorists experience different effects from the wind blowing opposite to the direction of
the travel (headwind) or with the direction (tailwind). Figure 4 shows the methodology
used to compute the components of wind in four different directions. Callout r denotes
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the heading of the route, i.e., the direction of travel. Callout w denotes the wind-blowing
direction. The components of wind are resolved in four directions shown by callouts i
(headwind), ii (wind blowing from right), iii (tailwind), and iv (wind blowing from left).
For example, wind w shown in Figure 4 has a headwind component (denoted by wi) and
wind blowing from the right component (denoted by wii). The other two components will
be zero in this case. Depending on the direction of the blowing wind, there will always
be at least two components absent. Directional wind components were estimated from all
trip records.
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6. Methodology—Filtering Technique

Among the trip records generated initially, several of the records are filtered using
the following techniques for data cleaning purposes. Figure 5 shows the distribution of
average speed from 302,178 trip records. Callout i points to the outlier trip records with
average speeds closer to 0 mph due to ramps within the HRRR grid. These accounted for
0.76% of the trip records, were considered outliers, and were removed from the analysis.

Any trips with fewer than two waypoints are also removed from the analysis. Any
trips found to be trip chaining inside the HRRR grid are removed, i.e., if the time difference
between the first and last recorded waypoint within the grid is more than the estimated
time to traverse the section of the interstate within the grid at the lowest recorded speed for
the trip. After data cleaning, 275,422 trip records remained from the initial total of 302,178.
Further, a qualitative and quantitative approach was utilized to study the impact of rain
intensity on traffic speeds.
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7. Qualitative Approach—Case Study along I-65

Figure 6 shows a qualitative example of the impact of precipitation rate observed
from HRRR data on traffic speeds along I-65 on 8 July 2021. Figure 6a,b show a spatial-
temporal heatmap of traffic speed from CV data color coded by speed bins for 55 miles of
the I-65 section from MM 115 to MM 170 for NB and SB, respectively. The horizontal axis
represents the time of the day and the vertical axis shows the mile marker location. The
direction of the arrow next to the vertical axis represents the direction of travel. Figure 6c
shows the precipitation rate from HRRR data provided with a temporal resolution of one
hour. The rainstorm was moving SB starting around 6:00 a.m. near MM 170 and reaching
MM 115 in six hours around noon. It can be estimated that the storm was moving SB at
a speed of approximately 9 mph. Traffic speeds were observed to be impacted in orange
(35 to 44 mph) and in red (25 to 34 mph) in both NB and SB directions [48]. However, it can
be seen that traffic in the SB direction (Figure 6b) was adversely impacted compared to NB
(Figure 6a).

Particularly, an hour of very heavy rain (>8 mm/h) between 11:00 a.m. and noon
shown by callout iii from MM 120 to MM 130 impacted SB travel severely (callout ii)
however NB traveling traffic was less impacted (callout i). Though the rain intensities
were the same as it was the same stretch of the interstate, the direction of the wind was
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opposite for SB traffic (headwind) and in the direction (tailwind) for NB traffic. This
example qualitatively confirms that along with precipitation, wind speed also has an effect
on traffic speeds during rainstorm events. Figure 7 shows the ITS camera images along I-65.
Camera image from MM 126.3 at 10:36 a.m. (Figure 7a) shows no sign of rain, at 11:12 a.m.
(Figure 7b) very heavy rain is observed and at 12:06 p.m. (Figure 7c) the rain is cleared.
Camera images confirm the ground information provided by HRRR data.
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Figure 6. Qualitative example of the impact of rain and wind direction on traffic speeds on 8 July 2021.
(a) Traffic speeds from CV data along I-65 NB direction (b) Traffic speed from CV data along I-65 SB
direction. (c) Precipitation rate from HRRR data along I-65.
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Figure 7. ITS Camera images along I-65 MM 126.3 at similar locations shown by callout i, ii, and iii in
Figure 6 and MM 138. (a) Before very heavy rain at 10:36 a.m. at MM 126.3 (b) During very heavy
rain at 11:12 a.m. at MM 126.3 (c) After very heavy rain at 12:06 p.m. at MM 126.3 (d) Camera image
of work zone operation at 7:15 p.m. at MM 138.

Around MM 140, traffic speeds were observed to be congested with back-of-queue
traffic in both directions of travel shown by callouts a and b in Figure 6 due to work zone
operations. The camera image from MM 138 at 7:15 p.m. confirms the active work zone
deployment and congested traffic (callout a) shown in Figure 7d. In order to eliminate any
such external factors affecting traffic speeds, all rainstorm cases were manually pruned to
restrict temporal and spatial boundaries (Table 2) as explained in the data collection section.

8. Quantitative Approach
8.1. Aggregate Analysis

Figure 8 shows the density and cumulative density of average speed by precipitation
rate categories as defined in Table 1 for all 275,244 trip records. It can be clearly observed
that speeds lowered (shifted to the left) with increasing rain intensity category. Vertical
dotted lines shown in Figure 8a represent the mean value color coded for the respective
categories. The density distribution was left-skewed for all categories. Horizontal lines in
Figure 8b show the first quartile (25th percentile), second quartile/median (50th percentile),
and third quartile (75th percentile) respectively from bottom to top. The cumulative
distribution shows a wider gap at the first quartile but a tighter fit at the third quartile
between the categories, indicating an extended lower speed tail for higher precipitation
rate categories due to driver behavior variability in inclement conditions.

Table 4 summarizes speed statistics for each of these categories. Mean speed was
72.05 mph during no rain conditions which decreased up to 66 mph in very heavy rain. It
decreased only by 1.93% in slight rain, 4.19% in moderate rain, 5.04% in heavy rain, and
8.40% in very heavy rain conditions. Interquartile range (IQR), i.e., third quartile minus first
quartile increased with increasing precipitation rate, suggesting the driver speed selection
during rainstorms increased in variability. Figure 9 shows a box-whisker plot of average
speeds in different rain categories. The bottom line represents the 25th percentile, the center
line 50th percentile/median, and the top line 75th percentile of average speeds for each of
the categories. Black dots denote the mean of average speeds.
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Table 4. Summary of speed impacted by precipitation rate categories.

Precipitation
Rate Category

Precipitation
Rate

(mm/hour)

Number of
Trip Records

Mean Speed
(mph)

25th
Percentile

Speed (mph)

Median
Speed (mph)

75th
Percentile

Speed (mph)

Interquartile
Range

Percent
Decrease in

Average Speed

No rain 0 123,450 72.05 68.48 73.21 76.82 8.34 -

Slight rain 0–0.5 35,243 70.66 66.77 71.86 75.79 9.02 1.93%

Moderate rain 0.5–4 107,762 69.03 64.58 70.21 74.52 9.94 4.19%

Heavy rain 4–8 20,160 68.42 63.97 69.61 74.15 10.18 5.04%

Very heavy rain >8 10,689 66.00 60.94 68.00 73.21 12.27 8.40%
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8.2. Disaggregate Analysis

The aggregate analysis above indicates the impact of precipitation rate on interstate
travel speeds by combining all trip records together within each precipitation intensity
category. However, there may exist speed variations across different HRRR grids or geolo-
cations due to other environmental nuances, such as temperature, visibility, wind speed,
and direction. A less aggregated approach is required to capture the complex relation-
ship between speed reduction and environment-based variables. Instead of aggregating
speed profiles from five rain categories, weather-related variables described in Table 3
and Figure 3 were incorporated in each trip record by spatial-temporally matching HRRR
weather grids with CV data. Trip records along with weather-related explanatory variables
enable us to delineate the adverse weather impact on individual drivers’ speed selection
behavior in a more discretized way.

As noted in Table 3, a speed reduction behavior has a binary outcome: reduced speed (Y = 1)
or greater than equal to the estimated free-flowing speed (Y = 0). The response (dependent)
variable is an event {Y = 1} if speed reduction percentage is greater than the threshold, Z. Six
levels of speed reduction thresholds are introduced: Z ∈ {0%, 5%, 10%, 15%, 20%, 25%}. Six
separate logit models were developed corresponding to each of the speed reduction levels.
The estimation results of six logit models are shown in Table 5. The probability of speed
reduction above the defined threshold is given by Equation (2).

P{Y = 1} =
(

exp
(

βTX
)

exp(βTX) + 1

)
(2)

where Y = 1 denotes that a speed reduction is observed above the threshold, X represents
the matrix of explanatory variables, and βT represents the coefficients. Along with the
estimated coefficient information, Table 5 also presents the percent-correct prediction for
each of the six models. First, the predicted/replicated response is calculated as given
in Equation (3).
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yrep
i =


1 , i f 0.5 <

(
exp

(
β̂T Xi

)
exp

(
β̂T Xi

)
+1

)
≤ 1

0 , i f 0 ≤
(

exp
(

β̂T Xi

)
exp

(
β̂T Xi

)
+1

)
≤ 0.5

(3)

where Xi denotes the explanatory variables. β̂T represents the estimated coefficients in
Table 5. The replicated response yrep

i is then compared to the actual value of the response
variable Y. Thus, accuracy or percent-correct prediction is calculated as the percent of
the replicated response that matches the actual response. It is important to note that this
includes both (Y = 0) and (Y = 1) responses. Model 1 had an accuracy of only 54.96%;
however, the accuracy increased to 96.63% for Model 6. It is also important to note that
with an increasing threshold of speed reduction, the number of trip records above that
threshold also decreased, i.e., Y = 1 type is decreased as shown on Table 3. Models are
more accurate in correctly predicting the response variable for higher speed reduction
percentages compared to lower reductions.

Table 5. Estimation results of six logit models.

Variable

Estimated Coefficients, Significance Level (z-Statistics)

Model 1:
Speed

Reduction
>0%

Model 2:
Speed

Reduction
>5%

Model 3:
Speed

Reduction
>10%

Model 4:
Speed

Reduction
>15%

Model 5:
Speed

Reduction
>20%

Model 6:
Speed

Reduction
>25%

Intercept
−0.383

***
(−12.19)

−1.651
***

(−48.29)

−3.021
***

(−70.20)

−4.44
***

(−76.91)

−6.023
***

(−75.58)

−7.482
***

(−69.42)

Precipitation rate in
mm/hour

0.0531
***

(37.26)

0.0565
***

(44.75)

0.0528
***

(43.66)

0.0515
***

(41.38)

0.0492
***

(36.47)

0.0486
***

(31.93)

Temperature in ◦F
0.008

***
(16.14)

0.0136
***

(25.40)

0.0236
***

(35.36)

0.0354
***

(39.85)

0.0509
***

(42.10)

0.0657
***

(40.56)

Headwind in m/s
0.0273

***
(10.82)

0.0106
***

(3.98)

−0.0647
*

(−2.01)

−0.0296
***

(−7.02)

−0.0661
***

(−11.53)

−0.106
***

(−13.64)

Tailwind in m/s
−0.0113

***
(−4.52)

−0.0261
***

(−9.64)

−0.0403
***

(−12.04)

−0.0529
***

(−12.12)

−0.0713
***

(−12.31)

−0.0881
***

(−11.60)

Cross wind blowing
right in m/s

−0.001
−

(−0.60)

−0.00598
**

(−3.02)

−0.0102
***

(−4.17)

−0.0178
***

(−5.53)

−0.0134
**

(−3.14)

−0.0131
*

(−2.33)

Nighttime indicator
0.351

***
(15.82)

0.526
***

(23.53)

0.609
***

(23.90)

0.651
***

(20.80)

0.556
***

(13.81)

0.412
***

(7.84)

Visibility during
daytime in 1000 m

−0.0217
***

(−14.29)

−0.0268
***

(−17.31)

−0.0308
***

(−17.40)

−0.0348
***

(−15.99)

−0.0337
***

(−12.12)

−0.033
***

(−8.99)

Visibility during
nighttime in 1000

−0.0062
***

(−10.25)

−0.006
***

(−9.24)

−0.00836
***

(−10.67)

−0.00928
***

(−9.39)

−0.0126
***

(−9.98)

−0.015
***

(−9.56)

Number of observations 275,244 275,244 275,244 275,244 275,244 275,244
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Table 5. Cont.

Variable

Estimated Coefficients, Significance Level (z-Statistics)

Model 1:
Speed

Reduction
>0%

Model 2:
Speed

Reduction
>5%

Model 3:
Speed

Reduction
>10%

Model 4:
Speed

Reduction
>15%

Model 5:
Speed

Reduction
>20%

Model 6:
Speed

Reduction
>25%

Restricted log likelihood −189753 −174421 −132480 −91461 −60633 −40413

Log likelihood at
convergence −188071 −171936 −129872 −89107 −58670 −38808

Percent correct
prediction 54.96% 67.09% 81.23% 89.59% 94.22% 96.63%

*** p < 0.001; ** p < 0.01; and * p < 0.05.

8.3. Impact of Precipitation Intensity on Speeds

All coefficients of precipitation rate among the six levels of speed reductions are posi-
tive (Table 5), which means the increase in precipitation rate will increase the likelihood of
speed reductions. In other words, it confers with the hypothesis that an increase in precip-
itation rate will increase the probability of speed reduction above the defined threshold.
Additionally, in logistic regression, the odds ratio is defined as given in Equation (4).

odds ratio =

(
pi

1− pi

)
= exp

(
β0 +

8

∑
j=1

β jxij

)
(4)

where, pi represents the probability of {Y = 1}, 1− pi represents the probability of {Y = 0},
β0 represents the coefficient of intercept, β j represents the estimated coefficients listed in
Table 5, and xij represents the explanatory variables.

For Model 2, the precipitation rate has the maximum estimated coefficient (0.0565 in
Table 5). Based on Equation (4), the estimated coefficients of precipitation rate indicates
that the odds ratio of reducing speed within 10% is exp(0.0565), i.e., 1.058 times higher
for drivers if the precipitation rate is increased by 1 mm/h. Equivalently, a 5.8% increase
in the probability of speed reduction is estimated with the increase of precipitation rate
by 1 mm/h.

8.4. Impact of Nighttime Conditions

In addition, the night variable has positive estimated coefficients in the six models,
which indicates that during nighttime conditions, drivers are more likely to operate at lower
speeds. Based on Equation (4), the estimated coefficients (0.609 in Table 4) of driving at night
indicates that the odds of reducing speed by 15% are exp(0.609), i.e., 1.838 times higher for
drivers during nighttime conditions compared to daytime conditions. On average, among
all the models, the speed reduction is greater during nighttime conditions compared to
daytime conditions by a factor of 1.68.

8.5. Impact of Wind

All coefficients of tailwind and wind blowing right for six models are significant and
negative (Table 5), which means the increase in these will decrease the likelihood of speed
reductions. Cross-directional wind blowing left was not significant and hence not included
in the final model. Recall that callout iii in Figure 4 represents the direction of a tailwind
which is defined as a wind blowing in the direction of travel of a vehicle. The tailwind had
a subdued impact on speed reduction.

However, a headwind blowing opposite of the direction of travel will intuitively
increase the likelihood of a speed reduction, up to a certain point. From Table 5, the
headwind does have positive coefficients in Model 1 and Model 2, which means the increase
in headwinds will increase the probability of speed reduction. Yet, for a higher level of
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speed reduction, the effect of headwind is less significant for Model 3 (>10%) and becomes
negative for Models 4, 5, and 6 (>15%, >20%, and >25%). The headwind was found to have
a positive significant impact of only up to a 10% speed reduction. A plausible explanation is
that a greater than 15% speed reduction is a considerably large speed reduction, which may
not be commensurate with the intensity of headwinds experienced across the 42 storms.
Hence, it is reasonable to hypothesize that the marginal effect of headwinds will not be
greater than a 10% reduction in speed.

A qualitative example of the effect of tailwind and headwind is also shown in Figure 6.
The impacts of precipitation rate on the NB direction from callout i and the SB direction
from callout ii are disproportional. Traffic from the NB direction is less influenced by the
precipitation rate than the SB direction. This is because traffic from the NB direction experi-
enced a tailwind, and traffic from the SB direction experienced a headwind. Combining
qualitative and quantitative results connected the relationship between driver intuition,
speed, and weather data.

8.6. Impact of Temperature

The temperature had a positive impact on the likelihood of speed reductions. However,
the magnitude was small, indicating only a 0.8% increase in the probability of speed
reduction in the case of Model 1 when the temperature was increased by 1 ◦F. This is the
opposite of the expected behavior, though the magnitude of impact is small.

8.7. Impact of Visibility

Visibility was observed to be a significant factor in logit models. An interaction vari-
able was used in the final model to understand the impact due to daytime visibility and
nighttime visibility separately. Both factors, daytime, and nighttime visibility coefficients,
were negative, suggesting a decrease in the likelihood of speed reduction with an improve-
ment in visibility. The absolute magnitude of the daytime visibility coefficient was greater
than the nighttime visibility coefficient. For model 1, 1000 m of improvement in visibility
reduces the probability of speed reduction by 2.19% during daytime and only by 0.62%
during nighttime.

8.8. Probability of Speed Reductions

Figure 10 shows the probability of speed reduction above the percentage thresholds
for varying precipitation rate values during day and night conditions. The logit model
was modified to include only the precipitation rate and nighttime indicator variable for
this purpose. The probability of reduction of speed above a certain threshold is estimated
using Equation (2). The probabilities at zero precipitation rate values show the stochastic
variation in speeds under normal/no rain conditions. The probability of speed reduction
increased with the increase in precipitation rate values. However, the probability of speed
reduction decreased as the reduction threshold increased at any given precipitation rate.
The impact of precipitation rate during night conditions (Figure 10b) was severe compared
to during daytime (Figure 10a) observed from an upward shift in the probabilities plot. This
can provide helpful guidance to agencies and automobile manufacturers to understand the
likelihood of speed reductions for a given rain intensity during day or night conditions.
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9. Conclusions

This paper used CV data and NOAA’s HRRR weather data to observe and analyze
the impact of rainstorms on interstate travel speeds. By integrating HRRR data and CV
trip records spatially and temporally, this study collected 275,422 trip records during no
rain, slight rain, moderate rain, heavy rain, and very heavy rain conditions over 42 days in
2021 and 2022.

First, a qualitative analysis using the case study on I-65 shows that speed impacted
in both directions of travel was spatially and temporally matched with precipitation data
during rainstorms. It was also noted that the impact on the SB direction of travel was
significantly higher than the NB direction due to the effect of wind and its direction.
Moreover, an aggregate analysis of the adverse impact of rain intensity on interstate travel
speeds showed average speeds decreased by 1.93% in slight rain, 4.19% in moderate rain,
5.04% in heavy rain, and 8.40% in very heavy rain compared to the average speed of
72.05 mph during no rain conditions. Finally, a disaggregate analysis of the speed reduction



Vehicles 2023, 5 153

probability is investigated using logit models. Estimation results indicated that a maximum
of 5.8% increase in the probability of speed reduction is estimated with the increase of
precipitation rate by 1 mm/h. The headwind was found to have a significant positive
impact of only up to 10% speed reduction. The inclement weather impact on individual
speed reduction is greater during nighttime conditions compared to daytime conditions by
a factor of 1.68 across all speed reduction categories.

Both aggregate analysis and disaggregate analysis in this paper enable agencies and
automobile manufacturers to answer the question about the intensity of rain it takes to
begin impacting traffic speeds. Proactive measures such as providing advance warnings
that improve the situational awareness of motorists and enhance roadway safety should be
considered during very heavy rain periods, wind events, and daylight conditions.
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